首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Redox properties of the photosynthetic gene repressor PpsR and the blue-light photoreceptor/antirepressor AppA from Rhodobacter sphaeroides have been characterized. Redox titrations of PpsR reveal the presence of a two-electron couple, with an E (m) value of -320 mV at pH 7.0, which is likely to arise from the reversible conversion of two cysteine thiols to a disulfide. This E (m) value is very much more negative than the E (m) = -180 mV value measured previously at pH 7.0 for the disulfide/dithiol couple in CrtJ, the homolog for PpsR in the closely related bacterium Rhodobacter capsulatus. AppA, a flavin-containing blue-light receptor that is also involved in the regulation of gene expression in R. sphaeroides, contains multiple cysteines in its C-terminal region, two of which function as a redox-active dithiol/disulfide couple with an E (m) value of -325 mV at pH 7.0 in the dark. Titrations of this dithiol/disulfide couple in illuminated samples of AppA indicate that the E (m) value of this disulfide/dithiol couple is -315 mV at pH 7.0, identical to the value obtained for AppA in the dark within the combined experimental uncertainties of the two measurements. The E (m) values of AppA and PpsR demonstrate that these proteins are thermodynamically capable of electron transfer for their activity as an anti-repressor/repressor in R. sphaeroides.  相似文献   

2.
3.
4.
The AppA protein plays an essential regulatory role in development of the photosynthetic apparatus in the anoxygenic phototrophic bacterium Rhodobacter sphaeroides 2.4.1 (M. Gomelsky and S. Kaplan, J. Bacteriol. 177:4609-4618, 1995). To gain additional insight into both the role and site of action of AppA in the regulatory network governing photosynthesis gene expression, we investigated the relationships between AppA and other known regulators of photosynthesis gene expression. We determined that AppA is dispensable for development of the photosynthetic apparatus in a ppsR null background, where PpsR is an aerobic repressor of genes involved in photopigment biosynthesis and puc operon expression. Moreover, all suppressors of an appA null mutation thus far isolated, showing improved photosynthetic growth, were found to contain mutations in the ppsR gene. Because ppsR gene expression in R. sphaeroides 2.4.1 appears to be largely independent of growth conditions, we suggest that regulation of repressor activity occurs predominately at the protein level. We have also found that PpsR functions as a repressor not only under aerobic but under anaerobic photosynthetic conditions and thereby is involved in regulating the abundance of the light harvesting complex II, depending on light intensity. It seems likely therefore, that PpsR responds to an integral signal (e.g., changes in redox potential) produced either by changes in oxygen tension or light intensity. The profile of the isolated suppressor mutations in PpsR is in accord with this proposition. We propose that AppA may be involved in a redox-dependent modulation of PpsR repressor activity.  相似文献   

5.
6.
7.
8.
9.
10.
11.
FnrL, the homolog of the global anaerobic regulator Fnr, is required for the induction of the photosynthetic apparatus in Rhodobacter sphaeroides 2.4.1. Thus, the precise role of FnrL in photosynthesis (PS) gene expression and its interaction(s) with other regulators of PS gene expression are of considerable importance to our understanding of the regulatory circuitry governing spectral complex formation. Using a CcoP and FnrL double mutant strain, we obtained results which suggested that FnrL is not involved in the transduction of the inhibitory signal, by which PS gene expression is "silenced," emanating from the cbb(3) oxidase encoded by the ccoNOQP operon under aerobic conditions. The dominant effect of the ccoP mutation in the FnrL mutant strain with respect to spectral complex formation under aerobic conditions and restoration of a PS-positive phenotype suggested that inactivation of the cbb(3) oxidase to some extent bypasses the requirement for FnrL in the formation of spectral complexes. Additional analyses revealed that anaerobic induction of the bchE, hemN, and hemZ genes, which are involved in the tetrapyrrole biosynthetic pathways, requires FnrL. Thus, FnrL appears to be involved at multiple loci involved in the regulation of PS gene expression. Additionally, bchE was also shown to be regulated by the PrrBA two-component system, in conjunction with hemN and hemZ. These and other results to be discussed permit us to more accurately describe the role of FnrL as well as the interactions between the FnrL, PrrBA, and other regulatory circuits in the regulation of PS gene expression.  相似文献   

12.
13.
The DNA sequences of chromosomes I and II of Rhodobacter sphaeroides strain 2.4.1 have been revised, and the annotation of the entire genomic sequence, including both chromosomes and the five plasmids, has been updated. Errors in the originally published sequence have been corrected, and ∼11% of the coding regions in the original sequence have been affected by the revised annotation.  相似文献   

14.
15.
16.
17.
This paper describes the DNA sequence of the photosynthesis region of Rhodobacter sphaeroides 2.4.1T. The photosynthesis gene cluster is located within a ~73 kb AseI genomic DNA fragment containing the puf, puhA, cycA and puc operons. A total of 65 open reading frames (ORFs) have been identified, of which 61 showed significant similarity to genes/proteins of other organisms while only four did not reveal any significant sequence similarity to any gene/protein sequences in the database. The data were compared with the corresponding genes/ORFs from a different strain of R.sphaeroides and Rhodobacter capsulatus, a close relative of R.sphaeroides. A detailed analysis of the gene organization in the photosynthesis region revealed a similar gene order in both species with some notable differences located to the pucBAC=cycA region. In addition, photosynthesis gene regulatory protein (PpsR, FNR, IHF) binding motifs in upstream sequences of a number of photosynthesis genes have been identified and shown to differ between these two species. The difference in gene organization relative to pucBAC and cycA suggests that this region originated independently of the photosynthesis gene cluster of R.sphaeroides.  相似文献   

18.
The genome of Rhodobacter sphaeroides encodes the components of two distinct pathways for salvaging cobinamide (Cbi), a precursor of adenosylcobalamin (AdoCbl, coenzyme B12). One pathway, conserved among bacteria, depends on a bifunctional kinase/guanylyltransferase (CobP) enzyme to convert adenosylcobinamide (AdoCbi) to AdoCbi-phosphate (AdoCbi-P), an intermediate in de novo AdoCbl biosynthesis. The other pathway, of archaeal origin, depends on an AdoCbi amidohydrolase (CbiZ) enzyme to generate adenosylcobyric acid (AdoCby), which is converted to AdoCbi-P by the AdoCbi-P synthetase (CobD) enzyme. Here we report that R. sphaeroides strain 2.4.1 synthesizes AdoCbl de novo and that it salvages Cbi using both of the predicted Cbi salvaging pathways. AdoCbl produced by R. sphaeroides was identified and quantified by high-performance liquid chromatography and bioassay. The deletion of cobB (encoding an essential enzyme of the de novo corrin ring biosynthetic pathway) resulted in a strain of R. sphaeroides that would not grow on acetate in the absence of exogenous corrinoids. The results from a nutritional analysis showed that the presence of either CbiZ or CobP was necessary and sufficient for Cbi salvaging, that CbiZ-dependent Cbi salvaging depended on the presence of CobD, and that CobP-dependent Cbi salvaging occurred in a cbiZ+ strain. Possible reasons why R. sphaeroides maintains two distinct pathways for Cbi salvaging are discussed.Cobamides, such as adenosylcobalamin (AdoCbl, coenzyme B12), are a group of complex cobalt-containing cyclic tetrapyrrole cofactors whose biosynthesis by bacteria and archaea requires substantial genetic information (>25 genes) (reviewed in references 25, 47, and 56). Two pathways for the de novo synthesis of the corrin ring have been described on the basis of the timing of cobalt insertion into the ring. The late cobalt insertion or aerobic pathway has been well studied in Pseudomonas denitrificans (9), while the early cobalt insertion or anaerobic pathway has been best studied in Salmonella enterica serovar Typhimurium LT2 (25). Many organisms, including those that synthesize AdoCbl de novo, salvage incomplete corrinoids (e.g., cobinamide [Cbi]) from their environments and use them as precursors for the synthesis of complete cobamide cofactors. Cbi is not an intermediate of the de novo AdoCbl biosynthesis pathway but can be converted into one by a process known as Cbi salvaging (Fig. (Fig.1)1) (24).Open in a separate windowFIG. 1.Abbreviated view of cobinamide salvaging pathways. Corrin ring-containing intermediates are in bold text. The letter A indicates the de novo corrin ring biosynthesis pathway. Abbreviations: Ado-, adenosyl-; AP, 1-amino-2-propanol; AP-P, 1-amino-2-propanol-phosphate; CobB, hydrogenobyrinic acid a,c-diamide synthase; CobD, adenosylcobinamide-phosphate synthetase; CobP, NTP:adenosylcobinamide kinase, GTP:adenosylcobinamide-phosphate guanylyltransferase; CobY, GTP:adenosylcobinamide-phosphate guanylyltransferase; CbiZ, adenosylcobinamide amidohydrolase. Functional groups are indicated as follows: Me, methyl; Ac, acetamide; and Pr, propionamide.The first step of Cbi salvaging is adenosylation of the molecule to adenosylcobinamide (AdoCbi) (24). The adenosyltransferases which catalyze this reaction are broadly distributed throughout the three domains of life (13, 14, 20, 32, 38). Two distinct pathways for converting AdoCbi into an intermediate of the de novo AdoCbl biosynthesis pathway have been described for prokaryotes. One, which is to date found only in bacteria, relies on a bifunctional nucleoside triphosphate (NTP):AdoCbi kinase (EC 2.7.7.62), GTP:AdoCbi-phosphate (AdoCbi-P) guanylyltransferase (EC 2.7.1.156) enzyme (called CobP in P. denitrificans and CobU in S. Typhimurium), which phosphorylates AdoCbi to AdoCbi-P and converts AdoCbi-P to AdoCbi-GDP (10, 41, 55).Previous work from our laboratory has shown that archaea lack the bifunctional NTP:AdoCbi kinase, GTP:AdoCbi-P guanylyltransferase enzyme and rely on a second pathway for Cbi salvaging (54, 62). In this pathway, AdoCbi is converted to adenosylcobyric acid (AdoCby) by an AdoCbi amidohydrolase (EC 3.5.1.90) known as CbiZ (58, 59, 62). The conversion of AdoCbi-P to AdoCbi-GDP for de novo AdoCbl biosynthesis in archaea is catalyzed by a monofunctional GTP:AdoCbi-P guanylyltransferase (EC 2.7.7.62) called CobY (54, 60), which has not been found in any bacterium.We recently showed that a small percentage of bacterial genomes encode orthologs of both CobP-type and CbiZ-type Cbi salvaging enzymes, raising the question of why these organisms might contain two redundant Cbi salvaging systems (29). A phylogenetic analysis showed that CbiZ has its roots in the archaea and that the cbiZ gene was acquired by several bacterial lineages via horizontal gene transfer.We previously showed that the CbiZ and CobP enzymes from the photosynthetic alphaproteobacterium Rhodobacter sphaeroides are functional in vitro and in vivo in a heterologous complementation system (29). However, the question of how the two Cbi salvaging systems might function in R. sphaeroides remained unresolved.In this paper, we show that R. sphaeroides 2.4.1 synthesizes substantial amounts of cobalamin (Cbl) and that it salvages incomplete corrinoids from its environment. We present in vivo genetic evidence that both the bacterial-type CobP-dependent and archaeal-type CbiZ-dependent Cbi salvaging pathways are functional in this organism. This work represents the first in vivo genetic analysis of coenzyme B12 synthesis and salvaging in R. sphaeroides.  相似文献   

19.
20.
The hemF gene of Rhodobacter sphaeroides 2.4.1 is predicted to code for an oxygen-dependent coproporphyrinogen III oxidase. We found that a HemF- mutant strain is unable to grow under aerobic conditions. We also determined that hemF expression is controlled by oxygen, which is mediated, at least in part, by the response regulatory protein PrrA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号