首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 368 毫秒
1.
Euglena obtusa F. Schmitz possesses novel pellicle surface patterns, including the greatest number of strips (120) and the most posterior subwhorls of strip reduction in any euglenid described so far. Although the subwhorls form a mathematically linear pattern of strip reduction, the pattern observed here differs from the linear pattern described for Euglena mutabilis F. Schmitz in that it contains seven linear subwhorls, rather than three, and is developmentally equivalent to three whorls of exponential reduction, rather than two. These properties imply that the seven‐subwhorled linear pattern observed in E. obtusa is evolutionarily derived from an ancestral bilinear pattern, rather than from a linear pattern, of strip reduction. Furthermore, analysis of the relative lateral positions of the strips forming the subwhorls in E. obtusa indicates that (1) the identity (relative length, lateral position, and maturity) of each strip in any mother cell specifies that strip’s identity in one of the daughter cells following pellicle duplication and cell division, (2) the relative length of any given pellicle strip regulates the length of the nascent strip it will produce during pellicle duplication, and (3) pellicle pores develop within the heels of the most mature pellicle strips. These observations suggest that continued research on pellicle development could eventually establish an ideal system for understanding mechanisms associated with the morphogenesis and evolution of related eukaryotic cells.  相似文献   

2.
ABSTRACT. Members of the euglenid genus Phacus are morphologically differentiated from other photosynthetic species by the presence of a rigid cytoskeleton (pellicle) and predominantly dorsoventrally flattened, leaf-shaped cells. In order to better understand the evolutionary history of this lineage, we used scanning electron microscopy to examine patterns of pellicle strips in Phacus acuminatus, Phacus longicauda var. tortus, Phacus triqueter, Phacus segretii, Phacus pleuronectes, Phacus similis, Phacus pusillus, Phacus orbicularis, Phacus warszewiczii , and Discoplastis spathirhyncha , a putative close relative of Phacus and Lepocinclis . Our observations showed that while the earliest diverging species in our analyses, namely P. warszewiczii , has three whorls of exponential reduction, most members of Phacus have clustered patterns of posterior strip reduction that are bilaterally symmetrical distortions of the radially symmetrical "whorled" patterns found in other photosynthetic euglenids. Comparative morphology, interpreted within the context of molecular phylogenetic analyses of combined nuclear small subunit rDNA and partial nuclear large subunit rDNA sequences, demonstrates that clustered patterns of posterior strip reduction arose after the divergence of Phacus from other photosynthetic euglenids and are the result of developmental processes that govern individual strip length. Clustered patterns of pellicle strips in Phacus do not appear to be adaptively significant themselves; they evolved in association with the origin of cell flattening and cell rigidity, which may be adaptations to a planktonic lifestyle.  相似文献   

3.
In anticipation that improved knowledge of euglenid morphology will provide robust apomorphy-based definitions for clades, transmission and scanning electron microscopy were used to reveal novel morphological patterns associated with the euglenid pellicle. In some taxa, the number of pellicle strips around the cell periphery reduces as discrete whorls at the anterior and posterior ends of the cell. The number of whorls at either end varies between selected euglenid taxa but is invariant within a taxon. The pattern of strip reduction associated with these whorls is shown to have at least three evolutionarily linked states: exponential, pseudoexponential, and linear. Two general equations describe these states near the posterior end of euglenid cells. Exponential patterns of strip reduction near the anterior end are described by a third equation. In addition, several euglenid taxa were found to possess conspicuous pellicle pores. These pores are arranged in discrete rows that follow the articulation zones between adjacent strips. The number of strips between rows of pores varies between taxa and displays a series of consecutive character states that differ by a power of two. The patterns of pores may not only have phylogenetical and taxonomical value but may provide morphological markers for following strip maturation during cytoskeletal reproduction.  相似文献   

4.
Abstract Trends in the evolution of the euglenid pellicle were described using phylogenetic methods on 18S rDNA, morphological, and combined data from 25 mostly phototrophic taxa. The tree topology from a total‐evidence analysis formed a template for a synthetic tree that took into account conflicting results derived from the partitioned datasets. Pellicle character states that can only be observed with the assistance of transmission and scanning electron microscopy were phylogenetically mapped onto the synthetic tree to test a set of previously established homology statements (inferences made independently from a cladogram). The results permitted us to more confidently infer the ancestral‐derived polarities of character state transformations and provided a framework for understanding the key cytoskeletal innovations associated with the evolution of phototrophic euglenids. We specifically addressed the character evolution of (1) the maximum number of pellicle strips around the cell periphery; (2) the patterns of terminating strips near the cell posterior end; (3) the substructural morphology of pellicle strips; (4) the morphology of the cell posterior tip; and (5) patterns of pellicle pores on the cell surface.  相似文献   

5.
Yubuki N  Leander BS 《Protoplasma》2012,249(4):859-869
We introduce a hypothetical model that explains how surface microtubules in euglenids are generated, integrated and inherited with the flagellar apparatus from generation to generation. The Euglenida is a very diverse group of single-celled eukaryotes unified by a complex cell surface called the "pellicle", consisting of proteinaceous strips that run along the longitudinal axis of the cell and articulate with one another along their lateral margins. The strips are positioned beneath the plasma membrane and are reinforced with subtending microtubules. Euglenids reproduce asexually, and the two daughter cells inherit pellicle strips and associate microtubules from the parent cell in a semi-conservative pattern. In preparation for cell division, nascent pellicle strips develop from the anterior end of the cell and elongate toward the posterior end between two parent (mature) strips, so that the total number of pellicle strips and underlying microtubules is doubled in the predivisional cell. Each daughter cell inherits an alternating pattern of strips consisting of half of the nascent strips and half of the parent (mature) strips. This observation combined with the fact that the microtubules underlying the strips are linked to the flagellar apparatus created a cytoskeletal riddle: how do microtubules associated with an alternating pattern of nascent strips and mature strips maintain their physical relationship to the flagellar apparatus when the parent cell divides? The model of microtubular inheritance articulated here incorporates known patterns of cytoskeletal semi-conservatism and two new inferences: (1) a multigenerational "pellicle microtubule organizing center" (pMTOC) extends from the dorsal root of the flagellar apparatus, encircles the flagellar pocket, and underpins the microtubules of the pellicle; and (2) prior to cytokinesis, nascent pellicle microtubules fall within one of two "left/right" constellations that are linked to one of the two new dorsal basal bodies.  相似文献   

6.
The pellicle of Euglena has been investigated by anoptral and phase contrast light microscopy, and by electron microscopy of osmium-fixed, Epon-embedded, lead-stained sections and of carbon/platinum replicas.

Observations on living cells show that the pellicular striatiors of Euglena spirogyra trace a left-handed (S) helix in a majority of cells, and a right-handed (Z) helix in only 5 to 30% of the cells in any one culture. All cells of E. spirogyra var. fusca have a left-handed (S) helix. Ornamentation on the pellicle takes the form of rows of knobs in various patterns. The living pellicle can be dissociated into long flat strips.

Electron microscopy shows that each pellicular strip has an elaborate cross-sectional shape, features of which are accessory teeth and ribs and a continuous ridge which articulates in a groove running along the edge of the next strip. The strips can move against one another, presumably by the ridges sliding in the grooves, and it is suggested that the joints might be lubricated by mucilage supplied from the helically disposed muciferous bodies. One single and one pair of fibrils or tubes, 200–250 Å in diameter, are regularly arranged parallel to each pellicular strip. A continuous tripartite plasmalemma, 80–100 Å thick, lies externally to the strips; external to this membrane lie the pellicular knobs. Each cell has from 35 to 45 pellicular strips, reducing to a few at the posterior end of the cell by successive fusions. Similar fusions occur at the anterior end of the cell, mainly within the canal.

These observations are compared with those made on the euglenoid pellicle by previous authors, and the following problems are discussed: direction of helix; the nature and cause of ornamentation; euglenoid movement with reference to fibrils, cytoplasmic flow, pellicle flexibility and the proteinaceous nature of the pellicle; helical and bilateral symmetry in the cell; and cet growth and division.  相似文献   

7.
Since the separation of the Trachelomonas subgroup "Saccatae" into a new genus, Strombomonas Deflandre (1930), there has been some question as to its validity. Deflandre's separation was based on morphological characteristics such as the shape of the lorica, lack of a distinctive collar, possession of a tailpiece, lack of ornamentation, and ability to aggregate particles on the lorica. Recent molecular analyses indicated that the loricate taxa were monophyletic, but few species have been sampled. The LSU rDNA from eleven Strombomonas and thirty-eight Trachelomonas species was sequenced to evaluate the monophyly of the two genera. Bayesian and maximum-likelihood analyses found one monophyletic clade for each genus. The Trachelomonas clade was weakly supported, but had five strongly supported subclades. Morphological characters, such as lorica development and pellicle strip reduction, also supported separation of the genera. Lorica development in Strombomonas occurred from the anterior of the cell to the posterior, forming a shroud over the protoplast whereas in Trachelomonas , a layer of mucilage was excreted over the entire protoplast, followed by creation of the collar at the anterior end. Taxa from both genera underwent exponential strip reduction at the anterior and posterior poles. In Strombomonas , only one reduction was visible in the anterior pole, while in most Trachelomonas species, two reductions were visible. Likewise, Strombomonas species possessed two whorls of strip reduction in their posterior end compared to a single whorl of strip reduction in Trachelomonas species. The combined morphological and molecular data support the retention of Trachelomonas and Strombomonas as separate genera.  相似文献   

8.
9.
The surface complex of Euglena has been examined intact and after isolation and purification by the use of mild sonication to disrupt cells. In intact cells the surface complex (pellicle complex) is oriented in a series of parallel ridges and grooves, and possesses among other components a characteristic group of four to seven microtubules. Isolated pellicles retain the ridge and groove pattern but no microtubules are present. Isolates yielded at least three major polypeptides on SDS acrylamide gels; one or more of the polypeptides are postulated to be identical with a submembrane layer present in both intact and isolated pellicles; one polypeptide appears to be in or on the surface membrane. Antibodies directed against the isolated pellicles were conjugated directly or indirectly to fluorescein, latex spheres, or ferritin. In appropriate experiments with these antibody conjugates, it has been found that antigenic sites are immobile and that new antigenic sites (daughter strips) are inserted between parental strips in replicating cells. These results together with direct observation of daughter strips by transmission electron microscopy suggest that surface growth in Euglena occurs by intussusception. Microtubules associated with the pellicle complex are postulated to play a role in the development of new daughter strips, and possibly also in cell movements.  相似文献   

10.
Molecular studies based on small subunit (SSU) rDNA sequences addressing euglenid phylogeny hitherto suffered from the lack of available data about phagotrophic species. To extend the taxon sampling, SSU rRNA genes from species of seven genera of phagotrophic euglenids were investigated. Sequence analyses revealed an increasing genetic diversity among euglenid SSU rDNA sequences compared with other well‐known eukaryotic groups, reflecting an equally broad diversity of morphological characters among euglenid phagotrophs. Phylogenetic inference using standard parsimony and likelihood approaches as well as Bayesian inference and spectral analyses revealed no clear support for euglenid monophyly. Among phagotrophs, monophyly of Petalomonas cantuscygni and Notosolenus ostium, both comprising simple ingestion apparatuses, is strongly supported. A moderately supported clade comprises phototrophic euglenids and primary osmotrophic euglenids together with phagotrophs, exhibiting a primarily flexible pellicle composed of numerous helically arranged strips and a complex ingestion apparatus with two supporting rods and four curved vanes. Comparison of molecular and morphological data is used to demonstrate the difficulties to formulate a hypothesis about how the ingestion apparatus evolved in this group.  相似文献   

11.
Multilamellar whorls were demonstrated by transmission electron microscopy to be associated with sporozoites and all generations of merozoites of Eimeria tenella, in chicken cecal tissue fixed without tannic acid or ruthenium red at room temperature. Whorls were found within the parasitophorous vacuoles of recently invaded cells at all stages of development, suggesting a role in the formation of the host parasite interface. Whorls were also associated with intraluminal third-generation merozoites prior to host cell invasion and appeared to be secreted directly through the pellicle. Membranous sheaths, shown by serial sectioning to be derived from intracellular whorl material, were observed enveloping some intraluminal merozoites. In many third-generation merozoites, whorl material was located within discrete novel organelles (here termed lamellosomes) located in the apical region. These densely staining spherical organelles were morphologically distinct from micronemes and rhoptries and were one-third the size of dense granules. These findings confirm that whorls are nonartifactual secretions whose lamellar organization is lost during normal fixation on ice without tannic acid. It is hypothesized that whorls secreted prior to invasion are involved in protection of the motile zoite, immune evasion, or some aspect of gliding motility.  相似文献   

12.
Since the separation of the Trachelomonas subgroup “Saccatae” into a new genus, Strombomonas Deflandre (1930), there has been some question as to its validity. Deflandre's separation was based on morphological characteristics such as the shape of the lorica, lack of a distinctive collar, possession of a tailpiece, lack of ornamentation, and ability to aggregate particles on the lorica. Recent molecular analyses indicated that the loricate taxa were monophyletic, but few species have been sampled. The LSU rDNA from eleven Strombomonas and thirty‐eight Trachelomonas species was sequenced to evaluate the monophyly of the two genera. Bayesian and maximum‐likelihood analyses found one monophyletic clade for each genus. The Trachelomonas clade was weakly supported, but had five strongly supported subclades. Morphological characters, such as lorica development and pellicle strip reduction, also supported separation of the genera. Lorica development in Strombomonas occurred from the anterior of the cell to the posterior, forming a shroud over the protoplast whereas in Trachelomonas, a layer of mucilage was excreted over the entire protoplast, followed by creation of the collar at the anterior end. Taxa from both genera underwent exponential strip reduction at the anterior and posterior poles. In Strombomonas, only one reduction was visible in the anterior pole, while in most Trachelomonas species, two reductions were visible. Likewise, Strombomonas species possessed two whorls of strip reduction in their posterior end compared to a single whorl of strip reduction in Trachelomonas species. The combined morphological and molecular data support the retention of Trachelomonas and Strombomonas as separate genera.  相似文献   

13.
Since the separation of the Trachelomonas Ehrenberg subgroup “Saccatae” into a new genus, Strombomonas Deflandre (1930) , there has been some question as to its validity. Deflandre's separation was based entirely on characteristics of the lorica, including the shape of the lorica, the lack of a distinctive collar, possession of a tailpiece, lack of ornamentation, and the ability of Strombomonas species to aggregate particles on the surface of the lorica. Recent molecular analyses indicated that the loricate taxa (Trachelomonas and Strombomonas) formed a single monophyletic clade; however, the phylogenetic relationship of Strombomonas to Trachelomonas remains unclear because only two Strombomonas taxa have been sequenced to date. In this study, we evaluated the monophyly of the loricate genera using two sets of morphological characters, lorica development and pellicle strip reduction. Lorica development in Strombomonas occurred from the anterior of the cell to the posterior, forming a shroud over the protoplast. In Trachelomonas, a layer of mucilage was excreted over the entire protoplast, followed by creation of the collar at the anterior end. Taxa from both genera underwent exponential strip reduction at the anterior and posterior poles. In Strombomonas only one reduction was visible in the anterior pole, whereas in most Trachelomonas species two reductions were visible. Likewise, Strombomonas species possessed two whorls of strip reduction in the posterior end compared with a single whorl of strip reduction in Trachelomonas species. These morphological characters support the separation of Trachelomonas and Strombomonas as distinct genera.  相似文献   

14.
《Developmental biology》1987,119(1):302-304
During morphogenesis in the slime mold Polysphondylium pallidum, spherical masses of cells called whorls pinch off from the slug at regular intervals. Soon afterward, branches form at equidistant positions around the whorl equator. We have quantified the relationship between the number of cells in a whorl, and the number of branches that form. We find that the number of branches produced is proportional to the surface area of the whorl, suggesting that the patterning process is confined to the whorl surface. This observation is consistent with theoretical arguments that mechanisms for pattern formation would likely operate in one or two dimensions, not three.  相似文献   

15.
用扫描电镜观察了囊瓣木(Saccopetalum prolificum)和刺果番荔枝(Annona muricata)花器官的形态发生过程。刺果番荔枝和囊瓣木花被片均为3轮,其中刺果番荔枝内轮花被片数目为3枚、5枚或7枚。囊瓣木花原基最初为圆锥形,最外轮3枚花被片很快发生,之后中、内轮花被片原基连续发生,3轮花被片互生。此时花原基为六边形。花被片分化完成时,圆球形雄蕊原基沿六边形花原基的6个边螺旋向心发生,最终近轮状排列于花原基上。刺果番荔枝的雄蕊较多(约1000枚),首先在中轮花被片所对的花原基边缘发生,之后大量雄蕊螺旋状发生。心皮分化的早期阶段,与雄蕊原基很相似,当心皮数目逐渐增多时,不能分辩出发生的顺序。成熟花中,心皮和雄蕊全都被毛覆盖,毛具有粘住传粉滴的作用。  相似文献   

16.
A I Radchenko 《Tsitologiia》1988,30(8):1010-1013
At least two functions of the micropore, one of the zoite's apical organelles, have been established on examining S. muris intermediate cells. The micropore is known to function primarily as an ultracytostome for taking up the food. The newly discovered function of the micropore appears to be involved in the final step of daughter cell separation in dividing intermediate cell. The micropores seem to be the sites where daughter cells find their exit from the mother cell. In addition, the pattern of the daughter cell pellicle formation was followed.  相似文献   

17.
重瓣紫蓝大岩桐组培苗的花同源异型现象(简报)   总被引:1,自引:0,他引:1  
Six types of floral homeotic variants of in vitro seedlings were observed in doubleflower sinningia. Type I, red and green mosaic petals exist in the outermost whorl of petal-whorls, 2.38%. Type II, the outermost whorl of petal-whorls exhibit green petals with thin yellow edge, 25.0%. Type III, green petals exist in the innermost side of normal red petal whorls, 1.78%. Type IV, multiple whorls of green petals exist in the inner side of normal sepals, no stamen and carpel, 1.67%. Type V, it exhibits duplicated whorls of sepals in the outermost, 7.14%. Type VI, it exists multiple whorls of green sepals, no petal, stamen and carpel, 0.12%. The total percentage of all types of floral homeotic variants is up to 38.1%. The distribution of nodal site of homeotic flowers were analyzed, and the results showed that the homeotic flower occurred mainly at the fourth and fifth nodes.  相似文献   

18.
19.
This research integrates a large morphological data set into a molecular context. Nineteen pellicle characters and 62 states from 13 euglenid taxa were analyzed cladistically. The pellicle morphology of Euglena tripteris (Klebs), Lepocinclis ovata (Conrad), Phacus brachykentron (Pochmann), P. oscillans (Klebs), P. pyrum (Stein), and P. triqueter (Dujardin) is described comprehensively. These data are compared with new information on the pellicle morphology of Euglena acus (Ehrenberg), E. stellata (Mainx), and Peranema trichophorum (Stein) in addition to published data on Entosiphon sulcatum (Dujardin), Euglena gracilis (Klebs), Distigma proteus (Pringsheim), and Petalomonas cantuscygni (Cann and Pennick). Nuclear small subunit (SSU) rDNA sequences provided an independent test for establishing a robust organismal pedigree of the same taxa. A synthetic tree derived from the combined phylogenetic analyses of pellicle morphology and SSU rDNA enabled us to parsimoniously map morphological character states. This approach demonstrated the utility of pellicle morphology for inferring phylogenetic relationships of euglenids and establishing apomorphy-based clade definitions. Three robust clades with unambiguous pellicle-based apomorphies can be recognized within taxa traditionally classified as Phacus : (1) L. ovata and P. pyrum , (2) E. tripteris and P. triqueter , and (3) P. brachykentron and P. oscillans. Taxonomic concerns that emerged from these results are discussed.  相似文献   

20.
The morphological diversity associated with the strip substructure of the euglenid pellicle was examined, and after identifying characters and states, we outlined hypotheses about their evolution. We have attempted to standardize terms necessary for analytical comparisons of strips by providing a glossary and comparing published synonyms. Most of the substructural diversity found in euglenids is demonstrated with 13 representative taxa. Strips are generally composed of two subcomponents: frames and projections. Frames support the basic shape of strips and many can be described as either S-shaped, plateau-shaped, M-shaped, or A-shaped. Projections branch laterally from the frames, are usually periodic, and can be described as thread-like structures, an indented plate, tooth-like structures, and plate-like structures. The ancestral state included strips that were few in number, flat, and fused. The strips became S-shaped and disjoined in the lineage leading to most euglenid taxa. These strips became secondarily flattened and fused in one lineage. In some lineages of phototrophs, the strips became increasingly robust. Two strips of different morphology formed the repeating pellicular unit or doublet in four taxa. These doublets evolved convergently at least three times and may provide insights into developmental patterns of the cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号