首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytical expressions describing convective flow in a continuous arteriovenous hollow fiber hemofilter were developed. In the lumen of the hollow fiber membrane, existing analytical expressions were applied to describe velocity profiles and pressure. For flow in the shell (the extracapillary space separating the fibers), analytical expressions for the radial and axial velocity profiles and pressure distribution were derived by first finding the stream function. The expressions are based on a similarity solution. Previous analyses of ultrafiltration have either ignored osmotic pressure or assumed constant shell pressure. In this paper, the axial variation in lumen pressure, shell pressure, and osmotic pressure were accounted for. The predicted filtration rates agree well with the experimental results. This flow model is general enough to describe flow in hollow fiber membrane systems employed as bioreactors (e.g., for cell cultures and as bioartificial organs) and as separators (e.g., ultrafiltration and microfiltration) operating in the open-shell mode. The results were applied to determine the design of an optimally functioning bioartificial hemofilter for use ex vivo or in vivo.  相似文献   

2.
The bioartificial pancreas, in which transplanted pancreatic tissue or isolated cells are cultured on a hollow fiber membrane, is an attractive approach to restore physiologic insulin delivery in the treatment of diabetes. Insulin response in prototype devices has been unacceptable due to the large mass transport limitations associated with the membrane and the surrounding shell region. Although available theoretical analyses provide some insight into the combined effects of transport and reaction in the bioartificial pancreas, they cannot quantitatively account for the effects of convective recirculation flow, complex intrinsic insulin secretory kinetics, and non-uniform distribution of pancreatic cells. We have developed a detailed model for glucose and insulin transport and insulin secretion in the hollow fiber bioartificial pancreas based on the solution of the mass and momentum conservation equations describing flow and transport in the lumen, matrix, and shell. Model predictions are in good agreement with literature data obtained in a hollow fiber device with minimal radial convective flow. Although no quantitative data are available for a device with significant radial convection, model simulations demonstrate that convective recirculation flow can dramatically improve insulin response, allowing the device to accurately capture the bi-phasic insulin secretion characteristic of the normal physiologic response. Results provide fundamental insights into the coupling between kinetics and transport in the hollow fiber system and a rational basis for the design of clinical devices.  相似文献   

3.
Current renal substitution therapy with hemodialysis or hemofiltration has been the only successful long-term ex vivo organ substitution therapy to date. Although this approach is life sustaining, it is still unacceptably suboptimal with poor clinical outcomes of patients with either chronic end-stage renal disease or acute renal failure. This current therapy utilizes synthetic membranes to substitute for the small solute clearance function of the renal glomerulus but does not replace the transport, metabolic, and endocrinologic functions of the tubular cells. The addition of tubule cell replacement therapy in a tissue-engineered bioartificial kidney comprising both biologic and synthetic components will likely optimize renal replacement to improve clinical outcomes. This report demonstrates that the combination of a synthetic hemofiltration device and a renal tubule cell therapy device containing porcine renal tubule cells in an extracorporeal perfusion circuit successfully replaces filtration, transport, metabolic, and endocrinologic functions of the kidney in acutely uremic dogs.  相似文献   

4.
A mathematical model describing O2 transport in a hepatic hollow fiber (HF) bioreactor supplemented with perfluorocarbons (PFCs) in the circulating cell culture media was developed to explore the potential of PFCs in properly oxygenating a bioartificial liver assist device (BLAD). The 2‐dimensional model is based on the geometry of a commercial HF bioreactor operated under steady‐state conditions. The O2 transport model considers fluid motion of a homogeneous mixture of cell culture media and PFCs, and mass transport of dissolved O2 in a single HF. Each HF consists of three distinct regions: (1) the lumen (conducts the homogeneous mixture of cell culture media and PFCs), (2) the membrane (physically separates the lumen from the extracapillary space (ECS), and (3) the ECS (hepatic cells reside in this compartment). In a single HF, dissolved O2 is predominantly transported in the lumen via convection in the axial direction and via diffusion in the radial direction through the membrane and ECS. The resulting transport equations are solved using the finite element method. The calculated O2 transfer flux showed that supplementation of the cell culture media with PFCs can significantly enhance O2 transport to the ECS of the HF when compared with a control with no PFC supplementation. Moreover, the O2 distribution and subsequent analysis of ECS zonation demonstrate that limited in vivo‐like O2 gradients can be recapitulated with proper selection of the operational settings of the HF bioreactor. Taken together, this model can also be used to optimize the operating conditions for future BLAD development that aim to fully recapitulate the liver's varied functions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

5.
A dual-layer coaxial hollow fiber (DLHF) bioreactor for cell immobilization developed to overcome nutrients transport limitation is presented. Cells were contained in the annular space between two coaxial hollow fibers, and nutrients were supplied by a forced convective transport from the shell side through the annular space to the lumen side. With judicious selection of the membrane materials, a low operating transmembrane pressure of 50 kPa, and using E. coli as the model organism, a high cell density of 10(11) cells/mL annular space volume and a high cell viability of (up to 80%) were obtained.  相似文献   

6.
A hybrid bioartificial liver device supporting a large mass of cells expressing differentiated hepatocyte metabolic capabilities is necessary for the successful treatment of fulminant hepatic failure. The three-compartment gel-entrapment porcine hepatocyte bioartificial liver was designed to provide "bridge" support to transplantation or until native liver recovery is achieved for patients with acute liver failure. The device is an automated mammalian cell culture system supporting 6-7 × 109 porcine hepatocytes entrapped in a collagen matrix and inoculated into the capillary lumen spaces of two 100 kDa molecular mass cut-off hollow fiber bioreactors. Gel contraction recreates a small lumen space within the hollow fiber which allows for the delivery of a nutrient medium. This configuration supported hepatocyte viability and differentiated phenotype as measured by albumin synthesis, ureagenesis, oxygen consumption, and vital dye staining during both cell culture and ex vivo application. The hollow fiber membrane was also shown to isolate the cells from xenogenic immunoglobulin attack. The gel-entrapment bioartificial liver maintained a large mass of functional hepatocytes by providing a three-dimensional cell culture matrix, by delivering basal nutrients through lumen media perfusion, and by preventing rejection of the xenocytes. These features make this device a favorable candidate for the treatment of clinical fulminant hepatic failure.  相似文献   

7.
RWPV bioreactor mass transport: earth-based and in microgravity   总被引:3,自引:0,他引:3  
Mass transport and mixing of perfused scalar quantities in the NASA Rotating Wall Perfused Vessel bioreactor are studied using numerical models of the flow field and scalar concentration field. Operating conditions typical of both microgravity and ground-based cell cultures are studied to determine the expected vessel performance for both flight and ground-based control experiments. Results are presented for the transport of oxygen with cell densities and consumption rates typical of colon cancer cells cultured in the RWPV. The transport and mixing characteristics are first investigated with a step change in the perfusion inlet concentration by computing the time histories of the time to exceed 10% inlet concentration. The effects of a uniform cell utilization rate are then investigated with time histories of the outlet concentration, volume average concentration, and volume fraction starved. It is found that the operating conditions used in microgravity produce results that are quite different then those for ground-based conditions. Mixing times for microgravity conditions are significantly shorter than those for ground-based operation. Increasing the differential rotation rates (microgravity) increases the mixing and transport, while increasing the mean rotation rate (ground-based) suppresses both. Increasing perfusion rates enhances mass transport for both microgravity and ground-based cases, however, for the present range of operating conditions, above 5-10 cc/min there are diminishing returns as much of the inlet fluid is transported directly to the perfusion exit. The results show that exit concentration is not a good indicator of the concentration distributions in the vessel. In microgravity conditions, the NASA RWPV bioreactor with the viscous pump has been shown to provide an environment that is well mixed. Even when operated near the theoretical minimum perfusion rates, only a small fraction of the volume provides less than the required oxygen levels.  相似文献   

8.
9.
The total operating costs of small-scale monoclonal antibody production were calculated for two different upstream options and general downstream procedure based on protein A chromatography. The upstream options were a spin-filter equipped stirred-tank bioreactor (STR) and a hollow fiber bioreactor (HFB). Both the bioreactors were operated in perfusion mode. The total operating costs of the processes were 6,900 €/g for STR option and 6,400 €/g for the HFB option. In the both systems, the costs were dominated by expenses derived from the downstream section (almost 80%) that was almost identical in the both systems. In the upstream section, the investment depreciation was the largest cost item. The lower total costs of the HFB option were a result of lower investment costs and more concentrated product that led into savings also in downstream section. This study brings out the HFB as on viable alternative for stirred-tank bioreactor, especially in small-scale diagnostic monoclonal antibody production.  相似文献   

10.
Batch cell cultures of a human-human hybridoma line in a convective flow dominant intercalated-spiral altetnate-dead-ended hollow fiber are compared with those using conventional axial-flow hollow fiber bioreactors and a stirred-tank bioreactor. Relatively short-term fed-batch and perfusion cell cultures were also employed for the intercalated-spiral bioreactor. When operating conditions of a batch intercalated-spiral bioreactor were properly chosen, the cell growth and substrate consumption paralleled that of a batch stirred-tank culture. The results verified the premise of the intercalated-spiral hollow fiber bioreactor that nutrient transport limitations can be eliminated when the convective flux through the extracapillary space is sufficiently high.(c) John Wiley & Sons, Inc.  相似文献   

11.
A hollow-fiber membrane bioreactor was used to separate trichloroethylene (TCE) from a gaseous waste stream with subsequent cometabolic biodegradation by a pure culture of Methylosinus trichosporium OB3b PP358. The two-stage bioreactor system was successfully operated for 20 days. PP358 was grown in a continuous-flow chemostat and circulated through the fiber lumen of a hollow-fiber membrane module (HFMM), while TCE contaminated air (141 to 191 microg/L) was pumped through the HFMM shell. Between 54% -84% TCE transfer and 92%-96% TCE cometabolism were obtained in the HFMM reactor loop. Short shell-residence times, 1.6 to 5.0 minutes, demonstrated quick throughput of TCE contaminated air. Best-fit computer modeling of the biological experiments estimated mass transfer coefficients between 2.0 x 10(-3) cm/min and 5.6 x 10(-3) cm/min. The average pseudo-first-order biodegradation rate constant for the biological experiments was 0.46 L/mg TSS/d. These results demonstrate that the hollow-fiber membrane bioreactor represents an attractive technology for the bioremediation of gaseous waste streams.  相似文献   

12.
We have developed a hepatocyte entrapment hollow fiber bioreactor for potential use as a bioartificial liver. Hepatocytes were entrapped in collagen gel inside the lumen of the hollow fibers. Medium was perfused through the intraluminal region after contraction of the hepatocyte-entrapment gel. Another medium stream, comparable to the patient's blood during clinical application, passed through the extracapillary space. Viability of hepatocytes remained high after 5 days as judged by the rate of oxygen uptake and viability staining. Urea and albumin synthetic activities were also sustained. Transmission electron microscopic examination demonstrated normal ultrastructural integrity of hepatocytes in such a bioreactor. With its sort-term, extracorporeal support of acute liver failure, the current bioreactor warrants further investigation. (c) 1993 John Wiley & Sons, Inc.  相似文献   

13.
A priori knowledge of the dissolved oxygen (O2) concentration profile within a hepatic hollow fiber (HF) bioreactor is important in developing an effective bioartificial liver assist device (BLAD). O2 provision is limiting within HF bioreactors and we hypothesize that supplementing a hepatic HF bioreactor's circulating media with bovine red blood cells (bRBCs), which function as an O2 carrier, will improve oxygenation. The dissolved O2 concentration profile within a single HF (lumen, membrane, and representative extra capillary space (ECS)) was modeled with the finite element method, and compared to experimentally measured data obtained on an actual HF bioreactor with the same dimensions housing C3A hepatoma cells. Our results (experimental and modeling) indicate bRBC supplementation of the circulating media leads to an increase in O2 consumed by C3A cells. Under certain experimental conditions (pO2,IN) = 95 mmHg, Q = 8.30 mL/min), the addition of bRBCs at 5% of the average in vivo human red blood cell concentration (% hRBC) results in approximately 50% increase in the O2 consumption rate (OCR). By simply adjusting the operating conditions (pO2,IN) = 25 mmHg, Q = 1.77 mL/min) and increasing bRBC concentration to 25% hRBC the OCR increase is approximately 10-fold. However, the improved O2 concentration profile experienced by the C3A cells could not duplicate the full range of in vivo O2 tensions (25-70 mmHg) typically experienced within the liver sinusoid with this particular HF bioreactor. Nonetheless, we demonstrate that the O2 transport model accurately predicts O2 consumption within a HF bioreactor, thus setting up the modeling framework for improving the design of future hepatic HF bioreactors.  相似文献   

14.
Model of oxygen transport limitations in hollow fiber bioreactors   总被引:4,自引:0,他引:4  
Axial and radial oxygen depletion are believed to be critical scale-limiting factors in the design of cell culture hollow fiber bioreactors. A mathematical analysis of oxygen depletion has been performed in order to develop effectiveness factor plots to aid in the scaling of hollow fiber bioreactors with cells immobilized in the shell-side. Considerations of the lumen mass transport resistances and the axial gradients were added to previous analyses of this immobilization geometry. An order of magnitude analysis was used to evaluate the impact of the shell-side convective fluxes on the oxygen transport. A modified Thiele modulus and a lumen and membrane resistance factor have been derived from the model. Use of these terms in the effectiveness factor plots results in a considerable simplification of the presentation and use of the model. Design criteria such as fiber dimensions and spacing, reactor lengths, and recycle flow rates can be selected using these plots. Model predictions of the oxygen limitations were compared to experimental measurements of the axial cell distributions in a severely oxygen limited hollow fiber bioreactor. Despite considerable uncertainty in our parameters and nonidealities in hollow fiber geometry, the cell distribution correlated well with the modeling results.  相似文献   

15.
A simple reaction-diffusion model has been developed to describe the mass transport of nutrients and nerve growth factor within a bioartificial nerve graft (BNG). The BNG consists of a porous polymer conduit that is preseeded with Schwann cells in its lumen. The Schwann cells produce growth factors to stimulate nerve regeneration within the lumen of the conduit. The model can predict the wall thickness, porosity, and Schwann cell seeding density needed to maximize the axon extension rate while ensuring that sufficient nutrients, especially oxygen, are made available to the neurons until the formation of the neovasculature. The model predicts a sixteen-fold increase in the levels of nerve growth factor by dropping the porosity from 95 to 55% but only at the expense of reducing the oxygen concentration. At higher porosities, increasing the wall thickness and increasing the Schwann cell seeding density both have the same effect of increasing the concentration of nerve growth factor within the lumen of the conduit. This model provides a simple tool for evaluating various conduit designs before continuing with experimental studies in vivo.  相似文献   

16.
17.
Treatment with bioartificial kidneys had beneficial effects in animal experiments and improved survival of critically ill patients with acute kidney injury in a Phase II clinical trial. However, a Phase II b clinical trial failed. This and other results suggested various problems with the current design of bioartificial kidneys. We propose a novel design to improve various properties of device, including haemocompatibility and cell performance. An important feature of the novel design is confinement of the blood to the lumina of the hollow fibre membranes. This avoids exposure of the blood to the non‐haemocompatible outer surfaces of hollow fibre membranes, which usually occurs in bioartificial kidneys. We use these outer surfaces as substrate for cell growth. Our results show that commercial hollow fibre membranes can be directly applied in the bioreactor when human primary renal proximal tubular cells are grown in this configuration, and no coatings are required for the formation of robust and functional renal epithelia. Furthermore, we demonstrate that the bioreactor unit produces significant amounts of interleukins. This result helps to understand the immunomodulatory effects of bioartificial kidneys, which have been observed previously. The novel bioartificial kidney design outlined here and the results obtained would be expected to improve the safety and performance of bioartificial kidneys and to contribute to a better understanding of their effects.  相似文献   

18.
Modified Vaccinia Ankara (MVA) virus is a promising vector for vaccination against various challenging pathogens or the treatment of some types of cancers, requiring a high amount of virions per dose for vaccination and gene therapy. Upstream process intensification combining perfusion technologies, the avian suspension cell line AGE1.CR.pIX and the virus strain MVA-CR19 is an option to obtain very high MVA yields. Here the authors compare different options for cell retention in perfusion mode using conventional stirred-tank bioreactors. Furthermore, the authors study hollow-fiber bioreactors and an orbital-shaken bioreactor in perfusion mode, both available for single-use. Productivity for the virus strain MVA-CR19 is compared to results from batch and continuous production reported in literature. The results demonstrate that cell retention devices are only required to maximize cell concentration but not for continuous harvesting. Using a stirred-tank bioreactor, a perfusion strategy with working volume expansion after virus infection results in the highest yields. Overall, infectious MVA virus titers of 2.1–16.5 × 109 virions/mL are achieved in these intensified processes. Taken together, the study shows a novel perspective on high-yield MVA virus production in conventional bioreactor systems linked to various cell retention devices and addresses options for process intensification including fully single-use perfusion platforms.  相似文献   

19.
Cell therapy in kidney failure   总被引:2,自引:0,他引:2  
Current therapy for acute renal failure continues to have an exceedingly high mortality rate, exceeding 50% even with dialytic or hemofiltrative support. Current renal replacement therapy in ARF only substitutes for filtration function of the kidney but not its cellular metabolic functions. Replacing these metabolic functions may optimize current therapy for this devastating disease process. In this regard, a renal tubule assist device (RAD) has been developed to be placed in an extracorporeal continuous hemoperfusion circuit in series with a hemofilter. The RAD consists of porcine renal proximal tubule cells grown as confluent monolayers in a multifiber bioreactor with a membrane surface area from 0.4 to 1.6 m2. The cells along the inner surface of the hollow fibers are immunoprotected from the patient's blood by the hollow fiber membrane. In vitro experiments demonstrate that this device possesses differentiated renal transport, metabolic and endocrinologic properties. These properties, in fact, are responsive to normal physiological regulatory parameters. In preliminary experiments in uremic dogs, this device has also been shown to tolerate a uremic environment while providing reabsorptive, metabolic, and endocrinologic activity. Pilot human trials of the RAD are anticipated within the next year to improve current renal replacement therapy in this devastating disease process. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Tissue engineering of a bioartificial kidney   总被引:2,自引:0,他引:2  
Tissue engineering is a rapidly growing field in biotechnology. The use and packaging of synthetic materials, biologic compounds, and cellular components of specific tissues can be envisioned to replace physiologic function of diseased organs. Long-term ex vivo therapy for kidney failure has been achieved, so that the kidney may be the first solid organ in which tissue engineering concepts can produce an implantable device for long-term in vivo replacement therapy. To replace the kidney's excretory function, an implantable bioartificial kidney requires both a device to replace blood ultrafiltration performed by renal glomeruli and a device to replace transport regulatory function of the renal tubule. The initial concepts for these devices are just beginning to be considered and developed. (c) 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号