首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We developed a pipeline to integrate the proteomic technologies used from the discovery to the verification stages of plasma biomarker identification and applied it to identify early biomarkers of cardiac injury from the blood of patients undergoing a therapeutic, planned myocardial infarction (PMI) for treatment of hypertrophic cardiomyopathy. Sampling of blood directly from patient hearts before, during and after controlled myocardial injury ensured enrichment for candidate biomarkers and allowed patients to serve as their own biological controls. LC-MS/MS analyses detected 121 highly differentially expressed proteins, including previously credentialed markers of cardiovascular disease and >100 novel candidate biomarkers for myocardial infarction (MI). Accurate inclusion mass screening (AIMS) qualified a subset of the candidates based on highly specific, targeted detection in peripheral plasma, including some markers unlikely to have been identified without this step. Analyses of peripheral plasma from controls and patients with PMI or spontaneous MI by quantitative multiple reaction monitoring mass spectrometry or immunoassays suggest that the candidate biomarkers may be specific to MI. This study demonstrates that modern proteomic technologies, when coherently integrated, can yield novel cardiovascular biomarkers meriting further evaluation in large, heterogeneous cohorts.  相似文献   

2.
Proteomic analysis at the bedside: early detection of cancer   总被引:4,自引:0,他引:4  
Proteomic technologies promise to accelerate rapidly a new era in molecular medicine, especially in the detection and discovery of disease-related biomarkers. These technologies have no bigger impact than in the field of human cancer research. Beyond lifestyle-associated prevention strategies, early detection of cancer has the most profound impact on the ultimate course of the disease: the earlier the cancer is detected, the better the prognosis. Today, new proteomic technologies are being used to discover new diagnostic and prognostic biomarkers for the early detection and treatment of cancer that will have important implications at the bedside.  相似文献   

3.
Advances in mass spectrometry technologies have created new opportunities for discovering novel protein biomarkers in systemic lupus erythematosus (SLE). We performed a systematic review of published reports on proteomic biomarkers identified in SLE patients using mass spectrometry‐based proteomics and highlight their potential disease association and clinical utility. Two electronic databases, MEDLINE and EMBASE, were systematically searched up to July 2015. The methodological quality of studies included in the review was performed according to Preferred Reporting Items for Systematic Reviews and Meta‐analyses guidelines. Twenty‐five studies were included in the review, identifying 241 SLE candidate proteomic biomarkers related to various aspects of the disease including disease diagnosis and activity or pinpointing specific organ involvement. Furthermore, 13 of the 25 studies validated their results for a selected number of biomarkers in an independent cohort, resulting in the validation of 28 candidate biomarkers. It is noteworthy that 11 candidate biomarkers were identified in more than one study. A significant number of potential proteomic biomarkers that are related to a number of aspects of SLE have been identified using mass spectrometry proteomic approaches. However, further studies are required to assess the utility of these biomarkers in routine clinical practice.  相似文献   

4.
Proteomic profiling of pancreatic cancer for biomarker discovery   总被引:15,自引:0,他引:15  
Pancreatic cancer is a uniformly lethal disease that is difficult to diagnose at early stage and even more difficult to cure. In recent years, there has been a substantial interest in applying proteomics technologies to identify protein biomarkers for early detection of cancer. Quantitative proteomic profiling of body fluids, tissues, or other biological samples to identify differentially expressed proteins represents a very promising approach for improving the outcome of this disease. Proteins associated with pancreatic cancer identified through proteomic profiling technologies could be useful as biomarkers for the early diagnosis, therapeutic targets, and disease response markers. In this article, we discuss recent progress and challenges for applying quantitative proteomics technologies for biomarker discovery in pancreatic cancer.  相似文献   

5.
Human saliva is an attractive body fluid for disease diagnosis and prognosis because saliva testing is simple, safe, low-cost and noninvasive. Comprehensive analysis and identification of the proteomic content in human whole and ductal saliva will not only contribute to the understanding of oral health and disease pathogenesis, but also form a foundation for the discovery of saliva protein biomarkers for human disease detection. In this article, we have summarized the proteomic technologies for comprehensive identification of proteins in human whole and ductal saliva. We have also discussed potential quantitative proteomic approaches to the discovery of saliva protein biomarkers for human oral and systemic diseases. With the fast development of mass spectrometry and proteomic technologies, we are enthusiastic that saliva protein biomarkers will be developed for clinical diagnosis and prognosis of human diseases in the future.  相似文献   

6.
Human saliva is an attractive body fluid for disease diagnosis and prognosis because saliva testing is simple, safe, low-cost and noninvasive. Comprehensive analysis and identification of the proteomic content in human whole and ductal saliva will not only contribute to the understanding of oral health and disease pathogenesis, but also form a foundation for the discovery of saliva protein biomarkers for human disease detection. In this article, we have summarized the proteomic technologies for comprehensive identification of proteins in human whole and ductal saliva. We have also discussed potential quantitative proteomic approaches to the discovery of saliva protein biomarkers for human oral and systemic diseases. With the fast development of mass spectrometry and proteomic technologies, we are enthusiastic that saliva protein biomarkers will be developed for clinical diagnosis and prognosis of human diseases in the future.  相似文献   

7.
Recent advances in cancer biology have subsequently led to the development of new molecularly targeted anti-cancer agents that can effectively hit cancer-related proteins and pathways. Despite better insight into genomic aberrations and diversity of cancer phenotypes, it is apparent that proteomics too deserves attention in cancer research. Currently, a wide range of proteomic technologies are being used in quest for new cancer biomarkers with effective use. These, together with newer technologies such as multiplex assays could significantly contribute to the discovery and development of selective and specific cancer biomarkers with diagnostic or prognostic values for monitoring the disease state. This review attempts to illustrate recent advances in the field of cancer biomarkers and multifaceted approaches undertaken in combating cancer.  相似文献   

8.
In the last decade, many proteomic technologies have been applied, with varying success, to the study of tissue samples of breast carcinoma for protein expression profiling in order to discover protein biomarkers/signatures suitable for: characterization and subtyping of tumors; early diagnosis, and both prognosis and prediction of outcome of chemotherapy. The purpose of this review is to critically appraise what has been achieved to date using proteomic technologies and to bring forward novel strategies – based on the analysis of clinically relevant samples – that promise to accelerate the translation of basic discoveries into the daily breast cancer clinical practice. In particular, we address major issues in experimental design by reviewing the strengths and weaknesses of current proteomic strategies in the context of the analysis of human breast tissue specimens.  相似文献   

9.
Introduction: Patient outcomes from gastric cancer vary due to the complexity of stomach carcinogenesis. Recent research using proteomic technologies has targeted components of all of these systems in order to develop biomarkers to aid the early diagnosis of gastric cancer and to assist in prognostic stratification.

Areas covered: This review is comprised of evidence obtained from literature searches from PubMed. It covers the evidence of diagnostic, prognostic, and predictive biomarkers for gastric cancer using proteomic technologies, and provides up-to-date references.

Expert commentary: The proteomic technologies have not only enabled the screening of a large number of samples, but also enabled the identification of diagnostic, prognostic and predictive biomarkers for gastric cancer. While major challenges still remain, to date, proteomic studies in gastric cancer have provided a wealth of information in revealing proteome alterations associated with the disease.  相似文献   


10.
The ability to detect and monitor bladder cancer in noninvasively obtained urine samples is a major goal. While a number of protein biomarkers have been identified and commercially developed, none have greatly improved the accuracy of sample evaluation over invasive cystoscopy. The ongoing development of high-throughput proteomic profiling technologies will facilitate the identification of molecular signatures that are associated with bladder disease. The appropriate use of these approaches has the potential to provide efficient biomarkers for the early detection and monitoring of recurrent bladder cancer. Identification of disease-associated proteins will also advance our knowledge of tumor biology, which, in turn, will enable development of targeted therapeutics aimed at reducing morbidity from bladder cancer. In this article, we focus on the accumulating proteomic signatures of urine in health and disease, and discuss expected future developments in this field of research.  相似文献   

11.
Conclusion The future of cancer diagnostics will be based on a panel of proteomic biomarkers. They could be used to detect cancer at an early stage, to predict and to direct therapies. Enzymes and related proteins are important biological molecules, which could serve as cancer biomarkers. These biomarkers could be intact or fragments of proteins. The challenge is to be able to find and validate these potential biomarkers as clinical diagnostics. With the advances in proteomic technologies, we are closer than ever to find these “new” enzyme molecules or fragments. The translation of newly discovered biomarkers could provide an opportunity to revolutionize the era of personalized medicine.  相似文献   

12.
Despite advances in molecular medicine, genomics, proteomics and translational research, prostate cancer remains the second most common cause of cancer-related mortality for men in the Western world. Clearly, early detection, targeted treatment and post-treatment monitoring are vital tools to combat this disease. Tumor markers can be useful for diagnosis and early detection of cancer, assessment of prognosis, prediction of therapeutic effect and treatment monitoring. Such tumor markers include prostate-specific antigen (prostate), cancer antigen (CA)15.3 (breast), CA125 (ovarian), CA19.9 (gastrointestinal) and serum α-fetoprotein (testicular cancer). However, all of these biomarkers lack sensitivity and specificity and, therefore, there is a large drive towards proteomic biomarker discovery. Current research efforts are directed towards discovering biosignatures from biological samples using novel proteomic technologies that provide high-throughput, in-depth analysis and quantification of the proteome. Several of these studies have revealed promising biomarkers for use in diagnosis, assessment of prognosis, and targeting treatment of prostate cancer. This review focuses on prostate cancer proteomic biomarker discovery and its future potential.  相似文献   

13.
Multiple sclerosis (MS) is a complex disease characterized by extensive phenotypic variability. Biomarkers to capture the different aspects of MS heterogeneity, and to help make a diagnosis and monitor disease progression, while providing insights into etiopathogenesis and response to treatment, are urgently needed. Omics technologies and research efforts with microRNAs have provide unparalleled opportunities for exploring altered protein profiles associated with molecular mechanisms of disease, substantially expanding the list of candidate biomarkers for MS. This review presents evidence from proteomic studies that have focused on identification of biomarkers released in biofluids as a result of the different pathophysiological processes of MS. Also discussed is the emerging role of miRNAs as complementary biomarkers related to cellular processes occurring in MS patients. Also provided is an overview of candidate biomarkers that have been proposed for elucidating pathophysiological processes and disease activity and for guiding clinical diagnosis and/or therapeutic interventions in MS.  相似文献   

14.
Cutaneous malignant melanoma (CMM) is the most serious type of skin cancer because of its tendency to metastasize. The prognosis and therapeutic management of patients are primarily based on clinical criteria (number of cancerous lymph nodes and/or the presence of distant metastases) and histopathological criteria (tumor depth, presence of ulceration and mitotic index). Although these factors are informative in advanced stages of the disease, they are less important in the early stages. In recent years, a number of attempts have been made to identify new serological prognostic biomarkers, especially for early forms of CMM. The recent development of proteomic techniques may offer new perspectives in this field. This article details the considerations of each of the proteomic techniques used today and describes the results of the most recent clinical studies conducted to identify new potential prognostic serum biomarkers for CMM. However, independent and large validation studies are needed before such markers can be used in everyday clinical practice.  相似文献   

15.
The success of clinical proteome analysis should be assessed based on the clinical impact following implementation of findings. Although there have been several technological advancements in mass spectrometry in the last years, these have not resulted in similar advancements in clinical proteomics. In addition, application of proteomic biomarkers in clinical diagnostics and practical improvement in the disease management is extremely rare. In this review, we discuss the relevant issues associated with identification of robust biomarkers of clinical value. Urine appears to be an ideal source of biomarkers, for theoretical, methodological, and practical reasons. Therefore, this review is focused on the search for biomarkers in urine within the last decade. Urine can be used for non-invasive assessment of a variety of diseases including those affecting the urogenital tract and also other pathologies such as cardiovascular disease or appendicitis. We also discuss the importance of data validation, an essential step in translating biomarkers into the clinical practice. Furthermore, we examine several examples of apparently successful proteomic biomarker discovery studies and their implications for disease diagnosis, prognosis, and therapy evaluation. We also discuss some current challenges in this field and reflect on future research prospects. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

16.
New technologies for the detection and therapy of early stage breast cancer are urgently needed. Pathological changes in breast might be reflected in proteomic patterns in serum. A proteomic tool was used to identify proteomic patterns in serum that distinguishes neoplastic from non-neoplastic disease within the breast. Preliminary results derived from the serum analysis from 54 unaffected women and 76 patients with breast cancer were analyzed by two-dimensional (2-D) electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry, HSP27 was found up-regulated while 14-3-3 sigma was down-regulated in the serum of breast cancer patients. The two protein biomarkers were then used to classify an independent set of 104 masked serum samples. The results showed that the protein pattern on 2-D gels can completely segregate the serum of breast cancer from non-cancer. The discriminatory pattern correctly identified all 69 breast cancer cases in the masked set. Of the 35 cases of non-malignant disease, 34 were recognized as non-cancer. These findings justify a prospective population-based assessment of proteomic technology as a screening or diagnostic tool for breast cancer in high-risk and general populations. These two protein biomarkers could also be used as targets for further study in drug design and breast cancer therapy.  相似文献   

17.
Proteomics has been widely used in the last few years to look for new biomarkers and decipher the mechanism of HIV-host interaction.Herein,we review the recent developments of HIV/AIDS proteomic research,including the samples used in HIV/AIDS related research,the technologies used for proteomic study,the diagnosis biomarkers of HIV-associated disease especially HIV-associated neurocognitive impairment,the mechanisms of HIV-host interaction,HIV-associated dementia,substance abuse,and so on.In the end of this review,we also give some prospects about the limitation and future improvement of HIV/AIDS proteomic research.  相似文献   

18.
Saliva diagnostics utilizing nanotechnology and molecular technologies to detect oral squamous cell carcinoma (OSCC) has become an attractive field of study. However, no specific methods have been established. To refine the diagnostic power of saliva peptide fingerprints for the early detection of OSCC, we screened the expression spectrum of salivary peptides in 40 T1 stage OSCC patients (and healthy controls) using MALDI-TOF-MS combined with magnetic beads. Fifty proteins showed significantly different expression levels in the OSCC samples (P<0.05). Potential biomarkers were also predicted. The novel diagnostic proteomic model with m/z peaks of 1285.6 Da and 1432.2 Da are of certain value for early diagnosis of OSCC.  相似文献   

19.

Background

Non Small Cell Lung Cancer (NSCLC) is the major cause of cancer related-death. Many patients receive diagnosis at advanced stage leading to a poor prognosis. At present, no satisfactory screening tests are available in clinical practice and the discovery and validation of new biomarkers is mandatory. Surface Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-ToF-MS) is a recent high-throughput technique used to detect new tumour markers. In this study we performed SELDI-ToF-MS analysis on serum samples treated with the ProteoMiner? kit, a combinatorial library of hexapeptide ligands coupled to beads, to reduce the wide dynamic range of protein concentration in the sample. Serum from 44 NSCLC patients and 19 healthy controls were analyzed with IMAC30-Cu and H50 ProteinChip Arrays.

Results

Comparing SELDI-ToF-MS protein profiles of NSCLC patients and healthy controls, 28 protein peaks were found significantly different (p < 0.05), and were used as predictors to build decision classification trees. This statistical analysis selected 10 protein peaks in the low-mass range (2-24 kDa) and 6 in the high-mass range (40-80 kDa). The classification models for the low-mass range had a sensitivity and specificity of 70.45% (31/44) and 68.42% (13/19) for IMAC30-Cu, and 72.73% (32/44) and 73.68% (14/19) for H50 ProteinChip Arrays.

Conclusions

These preliminary results suggest that SELDI-ToF-MS protein profiling of serum samples pretreated with ProteoMiner? can improve the discovery of protein peaks differentially expressed between NSCLC patients and healthy subjects, useful to build classification algorithms with high sensitivity and specificity. However, identification of the significantly different protein peaks needs further study in order to provide a better understanding of the biological nature of these potential biomarkers and their role in the underlying disease process.  相似文献   

20.
The development of proteomic technologies that display a wide variety of antigenic structures has led to the identification of autoantibodies to cancer-derived tumor antigens. These autoantibodies have been detected in sera from patients with multiple cancer types, and are being evaluated as biomarkers for early cancer detection. It is not known whether these antibodies also contribute to active immune surveillance or even tumorigenicity of developing tumors. Here, we review which tumor antigen-specific antibodies are prognostic biomarkers of cancer outcome, and emerging proteomic methods for the isolation and cloning of these antibodies for potential molecular diagnostics and therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号