首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myeloid differentiation factor (MyD)88, an adaptor protein shared by the Toll-interleukin 1 receptor superfamily, plays a critical role in host defence during many systemic bacterial infections by inducing protective inflammatory responses that limit bacterial growth. However, the role of innate responses during gastrointestinal (GI) infections is less clear, in part because the GI tract is tolerant to commensal antigens. The current study investigated the role of MyD88 following infection by the murine bacterial pathogen, Citrobacter rodentium . MyD88-deficient mice suffered a lethal colitis coincident with colonic mucosal ulcerations and bleeding. Their susceptibility was associated with an overwhelming bacterial burden and selectively impaired immune responses in colonic tissues, which included delayed inflammatory cell recruitment, reduced iNOS and abrogated production of TNF-α and IL-6 from MyD88-deficient macrophages and colons cultured ex vivo . Immunostaining for Ki67 and BrDU revealed that MyD88 signalling mediated epithelial hyper-proliferation in response to C. rodentium infection. Thus, MyD88-deficient mice could not promote epithelial cell turnover and repair, leading to deep bacterial invasion of colonic crypts, intestinal barrier dysfunction and, ultimately, widespread mucosal ulcerations. In conclusion, MyD88 signalling within the GI tract plays a critical role in mediating host defence against an enteric bacterial pathogen, by controlling bacterial numbers and promoting intestinal epithelial homeostasis.  相似文献   

2.
Toll-like receptors (TLRs) are a group of sensors on the surface of antigen-presenting cells, such as dendritic cells and macrophages, which recognize microbial pathogens and induce innate and adaptive immune responses. Periodontitis is an inflammatory disease characterized by the destruction of tooth-supporting structures. In order to address whether TLR4 signaling plays a role in periodontitis, we studied the gene expression change in human periodontal ligament cells (HPDLCs) in response to TLR4 ligand, lipopolysaccharide treatment by microarray analysis. Expression of TLR4 was detected in HPDLCs. Lipopolysaccharide treatment increased the expression of 12 genes (more than twofold), including TLR4, TLR5, TLR7, Pellino 1, colony stimulating factor 2 (CSF2) and IL-6. In addition, the expression of 15 genes (less than equal to twofold) was decreased, including Fos, LY64 and LY86. In addition, real-time PCR was used to confirm the change of gene expression of TLR4, IL-6 and Fos. We also showed that the upregulation of IL-6 by lipopolysaccharide treatment was TLR4-dependent. This pattern of gene expression indicates that pathogens may trigger TLR4 signaling and cause periodontitis. Manipulating TLR4 signaling may potentially become one of the recognized therapies for periodontitis.  相似文献   

3.
Emerging evidence supports a pathological link between vitamin D deficiency and the risk of inflammatory bowel disease (IBD). To explore the mechanism we used the dextran sulfate sodium (DSS)-induced colitis model to investigate the role of the vitamin D receptor (VDR) in mucosal barrier homeostasis. While VDR(+/+) mice were mostly resistant to 2.5% DSS, VDR(-/-) mice developed severe diarrhea, rectal bleeding, and marked body weight loss, leading to death in 2 wk. Histological examination revealed extensive ulceration and impaired wound healing in the colonic epithelium of DSS-treated VDR(-/-) mice. Severe ulceration in VDR(-/-) mice was preceded by a greater loss of intestinal transepithelial electric resistance (TER) compared with VDR(+/+) mice. Confocal and electron microscopy (EM) revealed severe disruption in epithelial junctions in VDR(-/-) mice after 3-day DSS treatment. Therefore, VDR(-/-) mice were much more susceptible to DSS-induced mucosal injury than VDR(+/+) mice. In cell cultures, 1,25-dihydroxy-vitamin D(3) [1,25(OH)(2)D(3)] markedly enhanced tight junctions formed by Caco-2 monolayers by increasing junction protein expression and TER and preserved the structural integrity of tight junctions in the presence of DSS. VDR knockdown with small interfering (si)RNA reduced the junction proteins and TER in Caco-2 monolayers. 1,25(OH)(2)D(3) can also stimulate epithelial cell migration in vitro. These observations suggest that VDR plays a critical role in mucosal barrier homeostasis by preserving the integrity of junction complexes and the healing capacity of the colonic epithelium. Therefore, vitamin D deficiency may compromise the mucosal barrier, leading to increased susceptibility to mucosal damage and increased risk of IBD.  相似文献   

4.
Summary   Soil-disturbing animals have wide-ranging effects on both biotic and abiotic processes across a number of Australian ecosystems. They alter soil quality by mixing surface soils and trapping litter and water, leading to areas of increased decomposition of organic matter. The foraging pits of indigenous soil-disturbing animals tend to have different soil chemical characteristics, greater levels of infiltration and lower levels of soil density than adjacent areas. Enhanced capture of seeds and water turns disturbance pits into areas of enhanced plant germination. The burrows, pits and mounds of both native and exotic animals provide habitat for a range of vertebrates and invertebrates and contribute to patchiness in the landscape. Given their wide-ranging effects on surface soil and ecological processes, we argue in this review that soil disturbance by native animals has the potential to contribute to restoration of degraded landscapes, particularly in arid and semi-arid areas.  相似文献   

5.
F-spondin is associated with the regulation of axonal growth and the development of the nervous system. Its mechanism of action, however, is not clearly understood. In this study, we found that murine neuroblastoma Neuro-2a cells expressed a significant level of IL-6, but only trace amounts of IL-12, tumor necrosis factor α and nitric oxide. Knock-down of F-spondin mRNA in murine neuroblastoma NB41A3 and Neuro-2a cells using small interfering RNAs led to decreased IL-6 levels along with lower resistance to serum starvation and cytotoxic amyloid β1–42 (Aβ1–42) peptide. Restoring decline of F-spondin or IL-6 induced by F-spondin knock-down through adding exogenous F-spondin, IL-6 or over-expressing F-spondin reversed the cell death induced by Aβ1–42 peptide or serum starvation. The decrease of IL-6 level was positively correlated with decrease of NF-κB and inhibition of p38 mitogen-activated protein kinase (MAPK). Over-expressing MEKK, a kinase activator of the p38 MAPK pathway, increased IL-6 production, restored the decrease of p38 induced by F-spondin knock-down, and rescued the cells from death caused by Aβ1–42 peptide. Taken together, these results suggest that F-spondin may play a critical role in murine neuroblastoma survival under adverse conditions by maintaining IL-6 level via a MEKK/p38 MAPK/NF-κB-dependent pathway.  相似文献   

6.
Innate immune and inflammatory responses mediated by Toll like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. This study examined the role of TLR3 in myocardial injury induced by two models, namely, myocardial infarction (MI) and I/R. First, we examined the role of TLR3 in MI. TLR3 deficient (TLR3−/−) and wild type (WT) mice were subjected to MI induced by permanent ligation of the left anterior descending (LAD) coronary artery for 21 days. Cardiac function was measured by echocardiography. Next, we examined whether TLR3 contributes to myocardial I/R injury. TLR3−/− and WT mice were subjected to myocardial ischemia (45 min) followed by reperfusion for up to 3 days. Cardiac function and myocardial infarct size were examined. We also examined the effect of TLR3 deficiency on I/R-induced myocardial apoptosis and inflammatory cytokine production. TLR3−/− mice showed significant attenuation of cardiac dysfunction after MI or I/R. Myocardial infarct size and myocardial apoptosis induced by I/R injury were significantly attenuated in TLR3−/− mice. TLR3 deficiency increases B-cell lymphoma 2 (BCL2) levels and attenuates I/R-increased Fas, Fas ligand or CD95L (FasL), Fas-Associated protein with Death Domain (FADD), Bax and Bak levels in the myocardium. TLR3 deficiency also attenuates I/R-induced myocardial nuclear factor KappaB (NF-κB) binding activity, Tumor necrosis factor alpha (TNF-α) and Interleukin-1 beta (IL-1β) production as well as I/R-induced infiltration of neutrophils and macrophages into the myocardium. TLR3 plays an important role in myocardial injury induced by MI or I/R. The mechanisms involve activation of apoptotic signaling and NF-κB binding activity. Modulation of TLR3 may be an effective approach for ameliorating heart injury in heart attack patients.  相似文献   

7.
The p55 TNF-alpha receptor plays a critical role in T cell alloreactivity   总被引:11,自引:0,他引:11  
TNF-alpha is known to be an important mediator of tissue damage during allograft rejection and graft-vs-host disease (GVHD), but its role in supporting T cell responses to allogeneic Ags is unclear. We have studied this question by comparing normal mice with those lacking the p55 (p55 TNFR-/-) or p75 (p75 TNFR-/-) TNF-alpha receptors as donors in well-defined bone marrow transplant (BMT) models. Recipients of p55 TNFR-/- cells had significantly reduced mortality and morbidity from GVHD compared with the other two sources of T cells. In vitro, T cells lacking the p55 (but not the p75) TNF-alpha receptor exhibited decreased proliferation and production of Th1 cytokines in MLC. This defect was only partially restored by exogenous IL-2 and affected both CD4+ and CD8+ populations. CD8+ p55 TNFR-/- proliferation was impaired independently of IL-2 whereas CTL effector function was impaired in an IL-2-dependent fashion. Inhibition of TNF-alpha with TNFR:Fc in primary MLC also impaired the proliferation and Th1 differentiation of wild-type T cells. BMT mixing experiments demonstrated that the reduced ability of p55 TNFR-/- donor cells to induce GVHD was due to the absence of the p55 TNFR on T cells rather than bone marrow cells. These data highlight the importance of TNF-alpha in alloreactive T cell responses and suggest that inhibition of the T cell p55 TNF-alpha receptor may provide an additional useful therapeutic maneuver to inhibit alloreactive T cell responses following bone marrow and solid organ transplantation.  相似文献   

8.
Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3?/? cells. Notably, Ada3?/? cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G? or G? phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3?/? cells confirmed higher residual DNA damage in Ada3?/? cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability.  相似文献   

9.
Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3−/− cells. Notably, Ada3−/− cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G₁ or G₂ phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3−/− cells confirmed higher residual DNA damage in Ada3−/− cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability.  相似文献   

10.
A buffalo heart galectin-1 purified by gel filtration chromatography revealed the presence of 3.55% carbohydrate content, thus it is the first mammalian heart galectin found to be glycosylated in nature and emphasizes the need to perform deglycosylation studies. Physicochemical comparative analysis between the properties of the native and deglycosylated proteins was carried out to understand the significance of glycosylation. The deglycosylated protein exhibited lesser thermal and pH stability compared to the native galectin. When exposed to thiol blocking reagents, denaturants, and detergents, remarkable differences were observed in the properties of the native and deglycosylated protein. Compared to the native glycosylated protein, the deglycosylated galectin showed enhanced fluorescence quenching when exposed to various agents. CD and FTIR analysis showed that deglycosylation of the purified galectin and its exposure to different chemicals resulted in significant deviations from regular secondary structure of the protein, thus emphasizing the significance of glycosylation for maintaining the active conformation of the protein. The remarkable differences observed in the properties of the native and deglycosylated galectin add an important dimension to the significance of protein glycosylation and its associated biological and clinical relevance.  相似文献   

11.
To determine whether Bmi-1 deficiency could lead to renal tubulointerstitial injury by mitochondrial dysfunction and increased oxidative stress in the kidney, 3-week-old Bmi-1-/- mice were treated with the antioxidant N-acetylcysteine (NAC, 1 mg mL−1) in their drinking water, or pyrro-quinoline quinone (PQQ, 4 mg kg−1 diet) in their diet for 2 weeks, and their renal phenotypes were compared with vehicle-treated Bmi1-/- and wild-type mice. Bmi-1 was knocked down in human renal proximal tubular epithelial (HK2) cells which were treated with 1 mm NAC for 72 or 96 h, and their phenotypes were compared with control cells. Five-week-old vehicle-treated Bmi-1-/- mice displayed renal interstitial fibrosis, tubular atrophy, and severe renal function impairment with decreased renal cell proliferation, increased renal cell apoptosis and senescence, and inflammatory cell infiltration. Impaired mitochondrial structure, decreased mitochondrial numbers, and increased oxidative stress occurred in Bmi-1-/- mice; subsequently, this caused DNA damage, the activation of TGF-β1/Smad signaling, and the imbalance between extracellular matrix synthesis and degradation. Oxidative stress-induced epithelial-to-mesenchymal transition of renal tubular epithelial cells was enhanced in Bmi-1 knocked down HK2 cells. All phenotypic alterations caused by Bmi-1 deficiency were ameliorated by antioxidant treatment. These findings indicate that Bmi-1 plays a critical role in protection from renal tubulointerstitial injury by maintaining redox balance and will be a novel therapeutic target for preventing renal tubulointerstitial injury.  相似文献   

12.

Background

Collective neural crest cell migration is critical to the form and function of the vertebrate face and neck, distributing bone, cartilage, and nerve cells into peripheral targets that are intimately linked with head vasculature. The vasculature and neural crest structures are ultimately linked, but when and how these patterns develop in the early embryo are not well understood.

Results

Using in vivo imaging and sophisticated cell behavior analyses, we show that quail cranial neural crest and endothelial cells share common migratory paths, sort out in a dynamic multistep process, and display multiple types of motion. To better understand the underlying molecular signals, we examined the role of angiopoietin 2 (Ang2), which we found expressed in migrating cranial neural crest cells. Overexpression of Ang2 causes neural crest cells to be more exploratory as displayed by invasion of off-target locations, the widening of migratory streams into prohibitive zones, and differences in cell motility type. The enhanced exploratory phenotype correlates with increased phosphorylated focal adhesion kinase activity in migrating neural crest cells. In contrast, loss of Ang2 function reduces neural crest cell exploration. In both gain and loss of function of Ang2, we found disruptions to the timing and interplay between cranial neural crest and endothelial cells.

Conclusions

Together, these data demonstrate a role for Ang2 in maintaining collective cranial neural crest cell migration and suggest interdependence with endothelial cell migration during vertebrate head patterning.
  相似文献   

13.
Although plasma norepinephrine (NE) increases and hepatocellular function is depressed during early sepsis, it is unknown whether gut is a significant source of NE and, if so, whether gut-derived NE helps produce hepatocellular dysfunction. We subjected rats to sepsis by cecal ligation and puncture (CLP), and 2 h later (i.e., early sepsis) portal and systemic blood samples were collected and plasma levels of NE were assayed. Other rats were enterectomized before CLP. Hepatocellular function was assessed with an in vivo indocyanine green (ICG) clearance technique, systemic levels of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 were determined, and the effect of NE on hepatic ICG clearance capacity was assessed in an isolated, perfused liver preparation. Portal levels of NE were significantly higher than systemic levels at 2 h after CLP. Prior enterectomy reduced NE levels in septic animals. Thus gut appears to be the major source of NE release during sepsis. Enterectomy before sepsis also attenuated hepatocellular dysfunction and downregulated TNF-alpha, IL-1beta, and IL-6. Perfusion of the isolated livers with 20 nM NE (similar to that observed in sepsis) significantly reduced ICG clearance capacity. These results suggest that gut-derived NE plays a significant role in hepatocellular dysfunction and upregulating inflammatory cytokines. Modulation of NE release and/or hepatic responsiveness to NE should provide a novel approach for maintaining hepatocellular function in sepsis.  相似文献   

14.
Escherichia coli translation initiation factor 2 (IF2) performs the unexpected function of promoting transition from recombination to replication during bacteriophage Mu transposition in vitro, leading to initiation by replication restart proteins. This function has suggested a role of IF2 in engaging cellular restart mechanisms and regulating the maintenance of genome integrity. To examine the potential effect of IF2 on restart mechanisms, we characterized its influence on cellular recovery following DNA damage by methyl methanesulfonate (MMS) and UV damage. Mutations that prevent expression of full-length IF2-1 or truncated IF2-2 and IF2-3 isoforms affected cellular growth or recovery following DNA damage differently, influencing different restart mechanisms. A deletion mutant (del1) expressing only IF2-2/3 was severely sensitive to growth in the presence of DNA-damaging agent MMS. Proficient as wild type in repairing DNA lesions and promoting replication restart upon removal of MMS, this mutant was nevertheless unable to sustain cell growth in the presence of MMS; however, growth in MMS could be partly restored by disruption of sulA, which encodes a cell division inhibitor induced during replication fork arrest. Moreover, such characteristics of del1 MMS sensitivity were shared by restart mutant priA300, which encodes a helicase-deficient restart protein. Epistasis analysis indicated that del1 in combination with priA300 had no further effects on cellular recovery from MMS and UV treatment; however, the del2/3 mutation, which allows expression of only IF2-1, synergistically increased UV sensitivity in combination with priA300. The results indicate that full-length IF2, in a function distinct from truncated forms, influences the engagement or activity of restart functions dependent on PriA helicase, allowing cellular growth when a DNA-damaging agent is present.  相似文献   

15.
PVR, the Drosophila homolog of the PDGF/VEGF receptor, has been implicated in border cell migration during oogenesis and hemocyte migration during embryogenesis. It was earlier shown that Mbc, a CDM family protein, and its effector, Rac, transduced the guidance signal from PVR during border cell migration. Here we demonstrate that PVR is also required for the morphogenetic process, thorax closure, during metamorphosis. The results of genetic and biochemical experiments indicate that PVR activates the JNK pathway. We present evidence showing Crk (an adaptor molecule), Mbc, ELMO (a homolog of Caenorhabditis elegans CED-12 and mammalian ELMO), and Rac to be mediators of JNK activation by PVR. In addition, we suppose that not only Rac but also Cdc42 is activated and involved in JNK activation downstream of PVR.  相似文献   

16.
The NOT2 protein is a component of the CCR4-NOT complex that plays multiple roles in the regulation of mRNA production in the yeast Saccharomyces cerevisiae. We have identified four novel not2 mutations and have characterized these and two previously described alleles as to the means by which they affect CCR4-NOT function. While two of the not2 alleles, not2-4 (carrying a G31R alteration) and not2::L9P, resulted in severe growth defects and caused a not phenotype at the HIS3 locus, these phenotypes appear to arise from partially different effects. The not2::L9P mutation resulted in complete loss of the 1.9x10(6)Da (1.9MDa) CCR4-NOT complex, and the not2::L9P protein displayed increased ability to associate with the NOT5 protein. In contrast, the not2-4 allele destabilized the CCR4-NOT complex to a lesser extent and had no effect on NOT5 association with NOT2. Instead, as previously reported, it displayed defective interactions with ADA2, a component of the SAGA complex. The not2::R165G also abrogated NOT2 ability to interact with ADA2 but had little effect on the integrity of the CCR4-NOT complex. Alterations in NOT2 contacts to ADA2, therefore, do not necessarily result in effects on the CCR4-NOT complex nor result in severe growth defects. We also observed that the four NOT2 N-terminal mutations affected NOT5 association with the CCR4-NOT complexes, suggesting that it is the N terminus of NOT2 that contacts and stabilizes NOT5 interactions. These results indicate that it is the loss of the integrity of the CCR4-NOT complex which leads to severe not2 phenotypes and that the NOT2 contacts to ADA2 play a lesser role in NOT2 function.  相似文献   

17.
We previously showed that Caenorhabditis elegans APN-1, the only metazoan apurinic/apyrimidinc (AP) endonuclease belonging to the endonuclease IV family, can functionally rescue the DNA repair defects of Saccharomyces cerevisiae mutants completely lacking AP endonuclease/3′-diesterase activities. While this complementation study provided the first evidence that APN-1 possesses the ability to act on DNA lesions that are processed by AP endonucleases/3′-diesterase activities, no former studies were conducted to examine its biological importance in vivo. Herein, we show that C. elegans knockdown for apn-1 by RNAi displayed phenotypes that are directly linked with a defect in maintaining the integrity of the genome. apn-1(RNAi) animals exhibited a 5-fold increase in the frequency of mutations at a gfp-lacZ reporter and showed sensitivities to DNA damaging agents such as methyl methane sulfonate and hydrogen peroxide that produce AP site lesions and strand breaks with blocked 3′-ends. The apn-1(RNAi) worms also displayed a delay in the division of the P1 blastomere, a defect that is consistent with the accumulation of unrepaired lesions. Longevity was only compromised, if the apn-1(RNAi) animals were challenged with the DNA damaging agents. We showed that apn-1(RNAi) knockdown suppressed formation of apoptotic corpses in the germline caused by an overburden of AP sites generated from uracil DNA glycosylase mediated removal of misincorporated uracil. Finally, we showed that depletion of APN-1 by RNAi partially rescued the lethality resulting from uracil misincorporation, suggesting that APN-1 is an important AP endonuclease for repair of misincorporated uracil.  相似文献   

18.
The role of nitric oxide (NO) in inflammatory bowel diseases has traditionally focused on the inducible form of NO synthase (iNOS). However, the constitutive endothelial (eNOS) and neuronal (nNOS) isoforms may also impact on colitis, either by contributing to the inflammation or by regulating mucosal integrity in response to noxious stimuli. To date, studies examining the roles of the NOS isoforms in experimental colitis have been conflicting, and the mechanisms by which these enzymes exert their effects remain unclear. To investigate and clarify the roles of the NOS isoforms in gut inflammation, we induced trinitrobenzenesulfonic acid colitis in eNOS, nNOS, and iNOS knockout (KO) mice, assessing the course of colitis at early and late times. Both eNOS and iNOS KO mice developed a more severe colitis compared with wild-type mice. During colitis, iNOS expression dramatically increased on epithelial and lamina propria mononuclear cells, whereas eNOS expression remained localized to endothelial cells. Electron and fluorescence microscopy identified bacteria in the ulcerated colonic mucosa of eNOS KO mice, but not in wild-type, iNOS, or nNOS KO mice. Furthermore, eNOS KO mice had fewer colonic goblet cells, impaired mucin production, and exhibited increased susceptibility to an inflammatory stimulus that was subthreshold to other mice. This susceptibility was reversible, because the NO donor isosorbide dinitrate normalized goblet cell numbers and ameliorated subsequent colitis in eNOS KO mice. These results identify a protective role for both iNOS and eNOS during colitis, with eNOS deficiency resulting in impaired intestinal defense against lumenal bacteria and increased susceptibility to colitis.  相似文献   

19.
Essential role for nuclear PTEN in maintaining chromosomal integrity   总被引:22,自引:0,他引:22  
Shen WH  Balajee AS  Wang J  Wu H  Eng C  Pandolfi PP  Yin Y 《Cell》2007,128(1):157-170
A broad spectrum of mutations in PTEN, encoding a lipid phosphatase that inactivates the P13-K/AKT pathway, is found associated with primary tumors. Some of these mutations occur outside the phosphatase domain, suggesting that additional activities of PTEN function in tumor suppression. We report a nuclear function for PTEN in controlling chromosomal integrity. Disruption of Pten leads to extensive centromere breakage and chromosomal translocations. PTEN was found localized at centromeres and physically associated with CENP-C, an integral component of the kinetochore. C-terminal PTEN mutants disrupt the association of PTEN with centromeres and cause centromeric instability. Furthermore, Pten null cells exhibit spontaneous DNA double-strand breaks (DSBs). We show that PTEN acts on chromatin and regulates expression of Rad51, which reduces the incidence of spontaneous DSBs. Our results demonstrate that PTEN plays a fundamental role in the maintenance of chromosomal stability through the physical interaction with centromeres and control of DNA repair. We propose that PTEN acts as a guardian of genome integrity.  相似文献   

20.
Toll-like receptors (TLR) are crucial pattern recognition receptors in innate immunity. The importance of TLR2 in host defense against Gram-positive bacteria has been suggested by the fact that this receptor recognizes major Gram-positive cell wall components, such as peptidoglycan and lipoteichoic acid. To determine the role of TLR2 in pulmonary Gram-positive infection, we first established that TLR2 is indispensable for alveolar macrophage responsiveness toward Streptococcus pneumoniae. Nonetheless, TLR2 gene-deficient mice intranasally inoculated with S. pneumoniae at doses varying from nonlethal (with complete clearance of the infection) to lethal displayed only a modestly reduced inflammatory response in their lungs and an unaltered antibacterial defense when compared with normal wild-type mice. These data suggest that TLR2 plays a limited role in the innate immune response to pneumococcal pneumonia, and that additional pattern recognition receptors likely are involved in host defense against this common respiratory pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号