首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The expression of minigenes in bacteria inhibits protein synthesis and cell growth. Presumably, the translating ribosomes, harboring the peptides as peptidyl-tRNAs, pause at the last sense codon of the minigene directed mRNAs. Eventually, the peptidyl-tRNAs drop off and, under limiting activity of peptidyl-tRNA hydrolase, accumulate in the cells reducing the concentration of specific aminoacylable tRNA. Therefore, the extent of inhibition is associated with the rate of starvation for a specific tRNA. Here, we used minigenes harboring various last sense codons that sequester specific tRNAs with different efficiency, to inhibit the translation of reporter genes containing, or not, these codons. A prompt inhibition of the protein synthesis directed by genes containing the codons starved for their cognate tRNA (hungry codons) was observed. However, a non-specific in vitro inhibition of protein synthesis, irrespective of the codon composition of the gene, was also evident. The degree of inhibition correlated directly with the number of hungry codons in the gene. Furthermore, a tRNA(Arg4)-sequestering minigene promoted the production of an incomplete beta-galactosidase polypeptide interrupted, during bacterial polypeptide chain elongation at sites where AGA codons were inserted in the lacZ gene suggesting ribosome pausing at the hungry codons.  相似文献   

3.
Ribosome bypassing refers to the ability of the ribosome::peptidyl-tRNA complex to slide down the message without translation to a site several or dozens of nucleotides downstream and resume protein chain elongation there. The product is an isoform of a protein with a 'coding' gap corresponding to the region of the message which was bypassed. Previous work showed that ribosome bypassing was strongly stimulated at 'hungry' codons calling for a tRNA whose aminoacylation was limited. We have now used the 'minigene' phenomenon to ascertain whether depletion of the pool of specific isoacceptors has a similar effect. High level expression of plasmid-borne minigenes results in the sequestration as peptidyl-tRNA of tRNA cognate to the last triplet of the minigene, thereby limiting protein synthesis for lack of the tRNA in question. We find that induction of a minigene ending in AUA stimulates bypassing at an AUA codon, but not in a control sequence with AGA at the test position; induction of a minigene ending in AGA stimulates bypassing at the latter but not the former. Induction of the AUA minigene also stimulates both leftward and rightward frameshifting at 'shifty' sequences containing an AUA codon. The normal, background frequency of bypassing at an AUA codon is markedly reduced by increasing the cellular level of the tRNA which reads the codon. Thus, the frequency of bypassing can be increased or decreased by lowering or raising the concentration of a relevant tRNA isoacceptor. These observations suggest that the occurrence of ribosome bypassing reflects the length of the pause at a given codon.  相似文献   

4.
Rare AGA or AGG codons close to the initiation codon inhibit protein synthesis by a tRNA-sequestering mechanism as toxic minigenes do. To further understand this mechanism, a parallel analysis of protein synthesis and peptidyl-tRNA accumulation was performed using both a set of lacZ constructs where AGAAGA codons were moved codon by codon from +2, +3 up to +7, +8 positions and a series of 3-8 codon minigenes containing AGAAGA codons before the stop codon. Beta-galactosidase synthesis from the AGAAGA lacZ constructs (in a Pth defective in vitro system without exogenous tRNA) diminished as the AGAAGA codons were closer to AUG codon. Likewise, beta-galactosidase expression from the reporter +7 AGA lacZ gene (plus tRNA, 0.25 microg/microl) waned as the AGAAGAUAA minigene shortened. Pth counteracted both the length-dependent minigene effect on the expression of beta-galactosidase from the +7 AGA lacZ reporter gene and the positional effect from the AGAAGA lacZ constructs. The +2, +3 AGAAGA lacZ construct and the shortest +2, +3 AGAAGAUAA minigene accumulated the highest percentage of peptidyl-tRNA(Arg4). These observations lead us to propose that hungry codons at early positions, albeit with less strength, inhibit protein synthesis by a minigene-like mechanism involving accumulation of peptidyl-tRNA.  相似文献   

5.
The objective of the present study is to establish a minigene model for studying pre-mRNA alternative splicing. To prepare the minigene DNA constructs, with human or mouse genomic DNA as templates, GluR-B, FGF-2R and Zis “minigene” fragments were amplified using PCR and cloned to the eukaryotic expression vectors. The three constructed minigenes and the expression vectors of Tra2β1 and Zis2 were co-transfected in Hela cells. RT-PCR analysis was performed to semi-quantitatively determine the spliced products from the minigenes. The results demonstrated that the constructed minigenes are useful in studying the pre-mRNA alternative splicing in cultured cells. With the established Zis minigene, we for the first time found that Zis2 isoform regulates the alternative splicing of Zis minigene.  相似文献   

6.
7.
We constructed mouse dihydrofolate reductase (DHFR) minigenes (dhfr) that had 1.5 kilobases of 5' flanking sequences and contained either none or only one of the intervening sequences that are normally present in the coding region. They were greater than or equal to 3.2 kilobase long, about one-tenth the size of the corresponding chromosomal gene. Both of these minigenes complemented the DHFR deficiency in Chinese hamster ovary dhfr-1-cells at a high frequency after DNA-mediated gene transfer. The level of DHFR enzyme in various transfected clones varied over a 10-fold range but never was as high as in wild-type Chinese hamster ovary cells. In addition, the level of DHFR in primary transfectants did not vary directly with the copy number of the minigene, which ranged from fewer than five to several hundred per genome. The minigenes could be amplified to a level of over 2,000 copies per genome upon selection in methotrexate, a specific inhibitor of DHFR. In one case, the amplified minigenes were present in a tandem array; in two other cases, a rearranged minigene plasmid and its flanking chromosomal DNA sequence were amplified. Thus, the mouse dhfr minigenes could be transcribed, expressed, and amplified in Chinese hamster ovary cells, although the efficiency of expression was generally low. The key step in the construction of these minigenes was the generation in vivo of lambda phage recombinants by overlapping regions of homology between genomic and cDNA clones. The techniques used here for dhfr should be generally applicable to any gene, however large, and could be used to generate novel genes from members of multigene families.  相似文献   

8.
Abbreviated purine nucleoside phosphorylase (PNP) genes were engineered to determine the effect of introns on human PNP gene expression. PNP minigenes containing the first intron (complete or shortened from 2.9 kb down to 855 bp), the first two introns or all five PNP introns resulted in substantial human PNP isozyme expression after transient transfection of murine NIH 3T3 cells. Low level human PNP activity was observed after transfection with a PNP minigene containing the last three introns. An intronless PNP minigene construct containing the PNP cDNA fused to genomic flanking sequences resulted in undetectable human PNP activity. Heterogeneous, stable NIH 3T3 transfectants of intron-containing PNP minigenes (verified by Southern analysis), expressed high levels of PNP activity and contained appropriately processed 1.7 kb message visualized by northern analysis. Stable transfectants of the intronless PNP minigene (40-45 copies per haploid genome) contained no detectable human PNP isozyme or mRNA. Insertion of the 855 bp shortened intron 1 sequence in either orientation upstream or downstream of a chimeric PNP promoter-bacterial chloramphenicol acetyltransferase (CAT) gene resulted in a several-fold increase in CAT expression in comparison with the parental PNP-CAT construct. We conclude that human PNP gene expression at the mRNA and protein level is dependent on the presence of intronic sequences and that the level of PNP expression varies directly with the number of introns included. The disproportionately greatest effect of intron 1 can be explained by the presence of an enhancer-like element retained in the shortened 855 bp intron 1 sequence.  相似文献   

9.
Expression of minigenes encoding tetra- or pentapeptides MXLX or MXLXV (E peptides), where X is a nonpolar amino acid, renders cells erythromycin resistant whereas expression of minigenes encoding tripeptide MXL does not. By using a 3A′ reporter gene system beginning with an E-peptide-encoding sequence, we asked whether the codons UGG and GGG, which are known to promote peptidyl-tRNA drop-off at early positions in mRNA, would result in a phenotype of erythromycin resistance if located after this sequence. We find that UGG or GGG, at either position +4 or +5, without a following stop codon, is associated with an erythromycin resistance phenotype upon gene induction. Our results suggest that, while a stop codon at +4 gives a tripeptide product (MIL) and erythromycin sensitivity, UGG or GGG codons at the same position give a tetrapeptide product (MILW or MILG) and phenotype of erythromycin resistance. Thus, the drop-off event on GGG or UGG codons occurs after incorporation of the corresponding amino acid into the growing peptide chain. Drop-off gives rise to a peptidyl-tRNA where the peptide moiety functionally mimics a minigene peptide product of the type previously associated with erythromycin resistance. Several genes in Escherichia coli fulfill the requirements of high mRNA expression and an E-peptide sequence followed by UGG or GGG at position +4 or +5 and should potentially be able to give an erythromycin resistance phenotype.  相似文献   

10.
Construction and expression of mouse thymidylate synthase minigenes   总被引:10,自引:0,他引:10  
Mouse thymidylate synthase minigenes that lack introns were constructed by ligating restriction fragments containing 4.5, 1.0, or 0.25 kilobase pairs (kb) of 5'-flanking DNA of the normal thymidylate synthase gene and as little as 0.25 kb of 3'-flanking DNA to full-length thymidylate synthase cDNA. All three minigenes were expressed at approximately the same levels following transfection into hamster V79 cells that were deficient in thymidylate synthase. S1 nuclease protection assays revealed that the multiple 5' and 3' termini of thymidylate synthase mRNA in cells transfected with these minigenes were at the same positions as those of the normal mRNA in mouse cells. Deletion analysis of the promoter region revealed that minigenes extending to position -150 nucleotides (relative to the AUG codon) were expressed at approximately the same level as those extending to -1 kb. However, minigenes extending to -53 nucleotides were inactive. To determine if the minigenes were capable of being regulated in a cell cycle-dependent manner, thymidylate synthase gene expression was measured in hamster cells that were stably transfected with the largest minigene and synchronized by serum-stimulation. Thymidylate synthase enzyme level and mRNA content increased 3-5-fold as cells progressed from G1 through S phase.  相似文献   

11.
12.
High-level expression of non-functional model proteins, derived from elongation factor EF-Tu by the deletion of an essential domain, greatly inhibits the growth of Escherichia coli partly deficient in peptidyl-tRNA hydrolase. High-level expression in wild-type cells has little effect on growth. The inhibitory effect is therefore presumably due to the sequestration of essential tRNA species, partly in the form of free peptidyl-tRNA. The growth inhibitory effect can be modulated by changing the last sense codon in the genes encoding the model proteins. Thus, replacement of Ser by Lys or His at this position increases growth inhibition. The effects of 11 changes studied are related to the rates of accumulation previously observed of the corresponding families of peptidyl-tRNA. Two non-exclusive hypotheses are proposed to account for these observations: first, the last sense codon of mRNA is a prefered site of peptidyl-tRNA drop-off in cells, due to the slow rate of translation termination compared with sense codon translation; secondly, the relatively long pause of the ribosome at the stop codon (of the order of 1 s), results in significant temporary sequestration on the ribosome of the tRNA cognate to the last sense codon.  相似文献   

13.
14.
15.
The pre-mRNA processing enhancer (PPE) element is an RNA sequence element derived from the intronless HSV-TK gene. Insertion of the element into the highly intron-dependent human β-globin gene leads to efficient expression in the absence of splicing. We have analyzed the effect of the PPE element on the expression of mouse thymidylate synthase (TS) minigenes. We have previously shown that the expression of intronless TS minigenes is moderately (up to 20-fold) stimulated by the inclusion of introns. Furthermore, S phase-specific expression of TS minigenes in growth-stimulated cells depends on the presence of a spliceable intron as well as the TS promoter. The goal of our study was to determine if the PPE element would overcome the dependence on introns for efficient expression and for S phase-specific expression of transfected TS minigenes. We found that insertion of the PPE element into an intronless TS minigene partially overcame intron dependence. However, the increase in expression was much less than that observed for the intronless β-globin gene. We also found that intronless TS or HSV-TK genes that contained the PPE element and that were driven by the TS promoter were expressed at a constant level in serum-stimulated cells. However, when an intron was included in these genes, they were expressed in an S phase-specific manner. Thus the PPE element was not able to overcome the dependence on introns for S phase-specific expression of TS minigenes. J. Cell. Biochem. 69:104–116, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
17.
The minigenes encoding Plasmodiumfalciparum CTL epitopes restricted to human MHC class I molecular HLA-A2 and HLA-B51, which were both at high frequency among Chinese population, were constructed as mono-epitope CTL vaccines named pcDNA3.1/tr and pcDNA3.1/sh. The minigenes of the two epitopes were then tandem linked to form a dimeric CTL epitope minigene recombinant vaccine. After DNA transfection, the epitope minigenes were expressed respectively in two human cell lines, each bearing one MHC class I molecule named CIR/HLA-A2.1 and K562/HLA-B51. The intracellular expression of the CTL epitope minigenes not only enhanced the stability of HLA-A2.1 and HLA-B51 molecules but also increased the assemblage of MHC class I molecules on cell surfaces, which testified the specific process and presentation of those endogenous expressed epitopes. For the cells transfected with the dimeric minigene encoding two tandem linked epitopes, the expression and presentation of each epitope were also detected on cell membranes that bore different MHC class I molecules. It meant that the adjacency of the two CTL epitopes did not interfere with the specific process and presentation of each epitope. Compared with the ordinary CTL studies that inoculated synthesized epitope peptides with peripheral blood cells, this work aimed to process the epitopes directly inside HLA class I allele specific human cells, and thus theoretically imitated the same procedurein vivo. It was also an economical way to predict the immunogenicity of CTL epitopes at an early stage especially in laboratories with limited financial resource.  相似文献   

18.
Lambda bacteriophage development is impaired in Escherichia coli cells defective for peptidyl (pep)-tRNA hydrolase (Pth). Single-base-pair mutations (bar(-)) that affect translatable two-codon open reading frames named bar minigenes (barI or barII) in the lambda phage genome promote the development of this phage in Pth-defective cells (rap cells). When the barI minigene is cloned and overexpressed from a plasmid, it inhibits protein synthesis and cell growth in rap cells by sequestering tRNA(2)(Ile) as pep-tRNA(2)(Ile). Either tRNA(2)(Ile) or Pth may reverse these effects. In this paper we present evidence that both barI and barII minigenes are translatable elements that sequester tRNA(2)(Ile) as pep-tRNA(2)(Ile). In addition, overexpression of the barI minigene impairs the development even of bar(-) phages in rap cells. Interestingly, tRNA or Pth may reestablish lambda phage development. These results suggest that lambda bar minigenes are expressed and tRNA(2)(Ile) is sequestered as pep-tRNA(2)(Ile) during lambda phage development.  相似文献   

19.
Regulation of argininosuccinate synthetase (AS) was studied by using minigenes containing 3 kilobases of DNA upstream from the TATAA box and 9 kilobases downstream (including the first four exons of the AS gene) ligated to either the cDNA for AS or to the chloramphenicol acetyltransferase (CAT) gene. Unlike the endogenous AS gene, expression of the CAT minigene was not elevated in Canr1 cells, which overproduce AS compared with parental RPMI-2650 cells. Expression of the CAT minigene in both stable and transient analyses was four- to five-fold higher in RPMI-2650 cells grown in citrulline medium than in cells grown in arginine medium. Although endogenous AS activity is not subject to metabolite regulation in Canr1 cells and expression of the CAT minigene in Canr1 cells was not increased when cells were grown in citrulline medium, expression of the CAT minigene was 10- to 22-fold greater when intracellular arginine pools were depleted by transient starvation for arginine and citrulline.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号