首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenol biodegradation by suspended and immobilized cells of Rhodococcus erythropolis UPV-1 was studied in discontinuous and continuous mode under optimum culture conditions. Phenol-acclimated cells were adsorbed on diatomaceous earth, where they grew actively forming a biofilm of short filaments. Immobilization protected cells against phenol and resulted in a remarkable enhancement of their respiratory activity and a shorter lag phase preceding active phenol degradation. Under optimum operation conditions in a laboratory-scale air-stirred reactor, the immobilized cells were able to completely degrade phenol in synthetic wastewater at a volumetric productivity of 11.5 kg phenol m(-3) day(-1). Phenol biodegradation was also tested in two different industrial wastewaters (WW1 and WW2) obtained from local resin manufacturing companies, which contained both phenols and formaldehyde. In this case, after wastewater conditioning (i.e., dilution, pH, nitrogen and phosphorous sources and micronutrient amendments) the immobilized cells were able to completely remove the formaldehyde present in both waters. Moreover, they biodegraded phenols completely at a rate of 0.5 kg phenol m(-3) day(-1) in the case of WW1 and partially (but at concentrations lower than 50 mg l(-1)) at 0.1 and 1.0 kg phenol m(-3) day(-1) in the cases of WW2 and WW1, respectively.  相似文献   

2.
Biodegradation of phenol has been investigated using a bacterial consortium consisting of two bacterial isolates; one of them used for the first time in phenol biodegradation. This consortium was isolated from activated sludge and identified as Providencia stuartii PL4 and Pseudomonas aeruginosa PDM (accession numbers KY848366 and MF445102, respectively). The degradation of phenol by this consortium was optimal at pH 7 with using 1500?mg?l?1 ammonium chloride as a nitrogen source. Interestingly, after optimizing the biodegradation conditions, this consortium was able to degrade phenol completely up to 1500?mg?l?1 within 58?h. The immobilization of this consortium on various supporting materials indicated that polyvinyl alcohol (PVA)-alginate beads and polyurethane foam (PUF) were more suitable for biodegradation process. The freely suspended cells could degrade only 6% (150?mg?l?1) of 2500?mg?l?1 phenol, whereas, the immobilized PVA-alginate beads and the immobilized PUF degraded this concentration completely within 120?h of incubation with degradation rates (q) 0.4839 and 0.5368 (1/h) respectively. Thus, the immobilized consortium of P. stuartii PL4 and P. aeruginosa PDM can be considered very promising in the treatment of effluents containing phenol.  相似文献   

3.
Covalently immobilized biotin was used as a biospecific adsorbant to investigate the application of streptavidin as an affinity domain for simultaneous purification and immobilization of recombinant proteins. A streptavidin-beta-galactosidase fusion protein was constructed and tested as a model system. The gene for streptavidin from Streptomyces avidinii was modified by polymerase chain reaction to mutate the stop codon and to facilitate cloning into an Escherichia coli expression vector yielding a versatile plasmid with 37 unique restriction enzyme sites at the 3' end. E. coli beta-galactosidase was cloned in-frame to the streptavidin gene. Analysis of lysates of induced recombinant E. coli cells by SDS-PAGE and Western blots indicated that the 133.6-kDa fusion protein was expressed. Sulfosuccinimidyl-6-(biotinamido) hexanoate was covalently immobilized on 3-aminopropyl-controled-pore glass beads. Exposure of recombinant cell lysates to this support indicated that streptavidin-beta-galactosidase was bioselectively adsorbed. The resulting biocatalyst contained 300 mg protein per gram of beads and exhibited a specific activity of 306 betamol/min per milligram protein with o-nitrophenyl-beta-D-galactopyranoside as substrate corresponding to approximately 50% of that observed for commercially pure E. coli beta-galactosidase. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
Cyanide or metal cyanide contaminations have become serious environmental and food-health problems. A fungal mutant of Trichoderma koningii, TkA8, constructed by restriction enzyme-mediated integration, has been verified to have a high cyanide degradation ability in our previous study. In this study, the mutant cells were entrapped in sodium-alginate (Na-alginate) immobilization beads to degrade cyanide and ferrocyanide in a liquid mineral medium. The results showed that the fungus in immobilization beads consisting of 3% Na-alginate and 3% CaCl2 could degrade cyanide more efficiently than a nonimmobilized fungal culture. For maximum degradation efficiency, the optimal ratio of Na-alginate and wet fungal biomass was 20:1 (m/m) and the initial pH was 6.5. In comparison, cell immobilization took at least 3 and 8 days earlier, respectively, to completely degrade cyanide and ferrocyanide. In addition, we showed that the immobilized beads could be easily recovered from the medium and reused for up to 5 batches without significant losses of fungal remediation abilities. The results of this study provide a promising alternative method for the large-scale remediation of soil or water systems from cyanide contamination.  相似文献   

5.
A locally isolated Acinetobacter sp. Strain AQ5NOL 1 was encapsulated in gellan gum and its ability to degrade phenol was compared with the free cells. Optimal phenol degradation was achieved at gellan gum concentration of 0.75% (w/v), bead size of 3 mm diameter (estimated surface area of 28.26 mm2) and bead number of 300 per 100 ml medium. At phenol concentration of 100 mg l−1, both free and immobilized bacteria exhibited similar rates of phenol degradation but at higher phenol concentrations, the immobilized bacteria exhibited a higher rate of degradation of phenol. The immobilized cells completely degrade phenol within 108, 216 and 240 h at 1,100, 1,500 and 1,900 mg l−1 phenol, respectively, whereas free cells took 240 h to completely degrade phenol at 1,100 mg l−1. However, the free cells were unable to completely degrade phenol at higher concentrations. Overall, the rates of phenol degradation by both immobilized and free bacteria decreased gradually as the phenol concentration was increased. The immobilized cells showed no loss in phenol degrading activity after being used repeatedly for 45 cycles of 18 h cycle. However, phenol degrading activity of the immobilized bacteria experienced 10 and 38% losses after the 46 and 47th cycles, respectively. The study has shown an increased efficiency of phenol degradation when the cells are encapsulated in gellan gum.  相似文献   

6.
Summary An anaerobic mixed culture from sewage sludge was enriched in a yeast extract and peptone-containing medium; it was able to degrade 2-cholorophenol completely to methane and CO2. Degradation rates of 2-chlorophenol of up to 0.18 g/l per day were observed in suspended cultures without biomass retention and of 0.375 g/l per day in cultures immobilized on Liapor clay beads. Attempts to isolate the dechlorinating organism failed. The mixed culture was reduced to three morphologically distinctive microorganisms using a medium with limited amounts of yeast extract and peptone and n-butyrate as a co-substrate. Under these conditions the phenol-degrading bacterium was lost and phenol accumulated in the medium. No growth and no dehalogenation of 2-chlorophenol was obtained when yeast extract and peptone were omitted completely. Besides serving as a source of supplementary components, yeast extract and peptone were apparently required as the main source of carbon, wereas reducing equivalents for reductive dehalogenation were obtained by oxidation of n-butyrate. A spirochaete-like organism was presumably the dechlorinating bacterium. The mixed culture lost its dehalogenation capability if this organism was lost. n-Butyrate could be replaced by n-valerate, hexanoate, heptanoate, octanoate, pelargonic acid, n-decanoic acid or palmitate as co-substrates for dehalogenation of either 2-chlorophenol, 2-bromophenol or complete dechlorination of 2,6-dichlorophenol, whereas from 2,4-dichlorophenol only the substituent in the ortho-position could be eliminated.Dedicated to Professor O. Kandler on the occassion of his 70th birthdayOffprint requests to: J. Winter  相似文献   

7.
Screening of mutant libraries for in vitro enzyme evolution is carried out primarily by physical separation of the cells, followed by growth of individual clones and screening of biocatalytic activity on the basis of color or fluorescence signal development. Currently, most frequently employed methods are labor-intensive or require robotic equipment, resulting in screening limited to a relatively small fraction of the potential inherent in a given library. In this study we present a design, development, and feasibility demonstration of a new screening approach, providing convenient handling of large libraries consisting of 106 to 107 clones and screening based on a simultaneous enzymatic assay with commercially available substrates. This new screening method is based on the "cell immobilized on adsorbed bead" approach: the cell population to be screened is mixed with an excess of medium pre-equilibrated polyacrylamide beads, chemically derivatized to affect quantitative cell immobilization by adsorption. The resulting bead population, comprising of single cell on a bead or blank beads, is then immobilized on a solid glass support. After removal of the freely flowing liquid, the cells immobilized on the adsorbed beads are allowed to grow into microcolonies, utilizing the medium retained within the supporting hydrogel matrix. These colonies are subsequently equilibrated with chromogenic or fluorogenic substrate and screening is affected under a stereomicroscope, resulting in readily retrieved of the most active colonies. This technique may be particularly useful when the screened mutants are expressed and displayed on the cell surface, providing an active and homogeneous "naturally immobilized" enzyme population with minimal substrate diffusion limitations.  相似文献   

8.
This work is focused on the evaluation of a beta-cyclodextrin polymer as a carrier medium in a fluidized bed bioreactor treating aqueous phenol as a model pollutant. The insoluble polymer support was obtained in the shape of spherical beads by crosslinking beta-cyclodextrin with epichlorohydrin. A batch of swollen polymer particles was loaded into the reactor and inoculated with a mixed bacterial culture. Bacterial growth on the polymer beads was initially stimulated by glucose addition to the medium, and then gradually replaced with phenol. The operational variables studied after the acclimation period included phenol load, hydraulic residence time and recirculation flow rate. Low hydraulic residence times and moderate phenol loads were applied. The elimination capacity was usually about 1.0 kg-phenol/m(3)d, although a maximum of 2.8 kg-phenol/m(3)d was achieved with a retention time of only 0.55 h. The depuration efficiency was not affected by the recirculation flow rate in the range studied. Neither operational nor support stability problems were detected during the operation. A high degree of expansion was achieved in the bioreactor due to the hydrogel nature of the cyclodextrin polymer and, consequently, a low energy requirement was necessary to fluidize the bed.  相似文献   

9.
Tyrosinase was immobilized on glutaraldehyde crosslinked chitosan-clay composite beads and used for phenol removal. Immobilization yield, loading efficiency and activity of tyrosinase immobilized beads were found as 67%, 25% and 1400 U/g beads respectively. Optimum pH of the free and immobilized enzyme was found as pH 7.0. Optimum temperature of the free and immobilized enzyme was determined as 25-30 °C and 25 °C respectively. The kinetic parameters of free and immobilized tyrosinase were calculated using l-catechol as a substrate and K(m) value for free and immobilized tyrosinase were found as 0.93 mM and 1.7 mM respectively. After seven times of repeated tests, each over 150 min, the efficiency of phenol removal using same immobilized tyrosinase beads were decreased to 43%.  相似文献   

10.
Summary Spores of Fusarium flocciferum were inserted in porous celite beads. The effects of bead size, adsorption time course, washing cycle and spore concentration on spore loading were investigated. Cell loadings up to 50% (dry weight/beads) were obtained. The degradation of phenol using adsorbed cells was studied in batch experiments. The immobilized cell system was shown to efficiently degrade high concentrations of the substrate (up to 2.0 g/l) and to remain active for more than 2 motths. The oxygen uptake rate of free and immobilized cells was determined at various concentrations of phenol. The kinetic constants K s=85 mg/l, K i=345 mg/l and SMI=170 mg/l were estimated from the experimental data by linearization of the Haldane function for the free cells. The uptake rates exhibited by the confined cells were lower (30%) than those obtained for free cells and no significant differences were found for phenol concentrations between 150 and 1200 mg/l.  相似文献   

11.
Summary Citric acid was produced using Aspergillus niger immobilized on polyurethane foam in a bubble column reactor. Most of the adsorbed cells remained on the support and, as a result, high oxygen tension was maintained during the reactor operation. However, uncontrolled growth of the pellets made continuous reactor operation difficult. The citric acid productivity obtained from 15 vol.% foam particles containing immobilized cells was 0.135 g/l per hour. This productivity of immobilized cells was almost the same as that of free cells. The oxygen level dropped to half saturation in 5 days in the immobilized cell culture in contrast to 2 days in the free cell culture.  相似文献   

12.
A composite gel system has been developed combining the chemical and physical properties of calcium alginate and agarose gels. The results of growing composite gel immobilized hybridoma SPO1 cells in a protein-free medium within a fluidized-bed perfusion bioreactor are presented in this paper. During the continuous operation of this system, the total cell density reached 3.9×107 cells per ml of beads (viability 79.6%). The specific productivity of monoclonal antibody of the immobilized hybridoma cells reached more than 1.5 g per 106 viable cells per hour, compared with 0.5 for non-immobilized viable cells grown in a one liter agitated bioreactor with the same medium. Significant increases in cell metabolic activities, including substrate utilization and byproduct formation, were also observed. Leaching of materials from the beads was evident and the major fraction of released materials was alginate.  相似文献   

13.
Bioprocesses using filamentous fungi immobilized in inert supports present many advantages when compared to conventional free cell processes. However, assessment of the real advantages of the unconventional process demands a rigorous study of the limitations to diffusional mass transfer of the reagents, especially concerning oxygen. In this work, a comparative study was carried out on the cephalosporin C production process in defined medium containing glucose and sucrose as main carbon and energy sources, by free and immobilized cells of Cephalosporium acremonium ATCC 48272 in calcium alginate gel beads containing alumina. The effective diffusivity of oxygen through the gel beads and the effectiveness factors related to the respiration rate of the microorganism were determined experimentally. By applying Monod kinetics, the respiration kinetics parameters were experimentally determined in independent experiments in a complete production medium. The effectiveness factor experimental values presented good agreement with the theoretical values of the approximated zero‐order effectiveness factor, considering the dead core model. Furthermore, experimental results obtained with immobilized cells in a 1.7‐L tower bioreactor were compared with those obtained in 5‐L conventional fermentor with free cells. It could be concluded that it is possible to attain rather high production rates working with relatively large diameter gel beads (ca. 2.5 mm) and sucrose consumption‐based productivity was remarkably higher with immobilized cells, i.e., 0.33 gCPC/kg sucrose/h against 0.24 gCPC/kg sucrose/h in the aerated stirred tank bioreactor process. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 63: 593–600, 1999.  相似文献   

14.
Tse SW  Yu J 《Biofouling》2003,19(4):223-233
Pseudomonas GM3, a highly efficient strain in cleavage of azo bonds of synthetic dyes under anoxic conditions, was immobilized via adsorption on two types of carriers, porous glass beads and solid PVA particles. The cells were cultivated in a nutrient medium, adsorbed on sterile carriers, stabilized as biofilms in repeated batch cultures, and introduced into a chemostat activated sludge reactor for augmented decolourization. The microbial cells were quickly adsorbed and fixed on the PVA surface, compared to a slow and linear immobilization on the glass surface. The porous structure of glass beads provided shelter for the embedded cells, giving a high biomass loading or thick biofilm (13.3 mg VS ml-1 carrier) in comparison with PVA particles (4.8 mg VS ml-1 carrier), but the mass transfer of substrate in the biofilm became a significant limiting factorin the thicker biofilms (effectiveness factor eta = 0.31). The microbial decolourization rate per volume of carriers was 0.15 and 0.17 mg dye ml-1 of glass beads and PVA particles, respectively. In augmented decomposition of a recalcitrant azo dye (60 mg l-1), the immobilized Pseudomonas cells in porous glass beads gave a stable decolourization efficiency (80-81%), but cells fixed on solid PVA particles showed an initial high colour removal of 90% which then declined to a stable removal efficiency of 81%. In both cases, the colour removal efficiency of the chemostat bioreactor was increased from < 10% by an activated sludge to approximately 80% by the augmented system.  相似文献   

15.
Laccase was produced from Streptomyces psammoticus under solid-state fermentation. The enzyme was partially purified by ammonium sulphate precipitation and was immobilized in alginate beads by entrapment method. Calcium alginate beads retained 42.5% laccase activity, while copper alginate beads proved a better support for laccase immobilization by retaining 61% of the activity. Phenol and colour removal from a phenol model solution was carried out using immobilized laccase. Batch experiments were performed using packed bed bioreactor, containing immobilized beads. Reusability of the immobilized matrix was studied for up to 8 successive runs, each run with duration of 6 h. The system removed 72% of the colour and 69.9% of total phenolics from the phenol model solution after the initial run. The immobilized system maintained 50% of its efficiency after eight successive runs. The degradation of phenolic compounds by immobilized laccase was evaluated and confirmed by Thin layer chromatography and nuclear magnetic resonance spectroscopy.  相似文献   

16.
Phenol bioconversion by Pseudomonas stutzeri OX1 using either free or immobilized cells was investigated with the aim of searching for optimal operating conditions of a continuous bioconversion process. The study was developed by analyzing: (a) free-cell growth and products of phenol bioconversion by batch cultures of P. stutzeri; (b) growth of P. stutzeri cells immobilized on carrier particles; (c) bioconversion of phenol-bearing liquid streams and the establishment and growth of an active bacterial biofilm during continuous operation of an internal-loop airlift bioreactor. We have confirmed that free Pseudomonas cultures are able to transform phenol through the classical meta pathway for the degradation of aromatic molecules. Data indicate that bacterial growth is substrate-inhibited, with a limiting phenol concentration of about 600 mg/L. Immobilization tests revealed that a stable bacterial biofilm can be formed on various types of solid carriers (silica sand, tuff, and activated carbon), but not on alumina. Entrapment in alginate beads also proved to be effective for P. stutzeri immobilization. Continuous bioconversion of phenol-bearing liquid streams was successfully obtained in a biofilm reactor operated in the internal-circulation airlift mode. Phenol conversion exceeded 95%. Biofilm formation and growth during continuous operation of the airlift bioreactor were quantitatively and qualitatively assessed.  相似文献   

17.
Conditions were established for optimizing the surfactant (SDS)-degrading activity of Pseudomonas C12B immobilized in polyacrylamide gel beads. Optimum activity was obtained by using immobilized cells derived from stationary phase of batch cultures and incubating with SDS at 30°C at pH 6.5. Half-saturation of the degradation system was achieved at an SDS concentration of 0.23 m . Biocatalyst stability was highest for beads maintained in basal salts medium, retaining 91% of initial activity after 161 d. In Tris/HCl buffer or distilled water, the stability was much lower, although in all cases the stability of immobilized cells was higher than that of free cells under equivalent conditions. Biocatalyst beads “inactivated” by sequential incubation in three batches of distilled water containing only SDS could be reactivated by transferring beads to nutrient medium. Beads packed in a glass column and operated in a continuous up-flow mode using SDS/basal salts eluant produced 100% hydrolysis when run at retention times above 60 min. The system was highly stable in the continuous flow mode; when operated at a residence time of 55 min (initially giving 98% degradation), the extent of degradation decreased only slightly to 93% over a continuous operation period of 3 weeks.  相似文献   

18.
Degradation of phenol by polymer entrapped microorganisms   总被引:10,自引:0,他引:10  
Summary A Pseudomonas sp. which was isolated from phenol-containing soil was immobilized in alginate and polyacrylamide-hydrazide (PAAH) and cultivated in a special airlift fermenter.The immobilized Pseudomonas sp. was able to degrade phenol at initial concentrations up to 2 g/l in less than 2 days, although the free cells did not grow at this concentration.The immobilization materials act as a protective cover against phenol, PAAH being more effective than alginate. The degradation activity as well as the outgrowth of bacteria can be manipulated by the concentration of the immobilization material, the temperature and the nitrogen content in the medium.The cells grew predominantly in microcolonies in the outer area of the beads when nitrogen was available as 1.0g NH4NO3/l and 0.5g (NH4)2SO4/l.Prof. Dr. A. Fiechter dedicated to his 60th birthday  相似文献   

19.
Summary The degradation of phenol by cells ofFusarium flocciferum immobilized by entrapment in agar, K — carrageenan, alginate and polyurethane, and by adsorption on preformed polyurethane foams was investigated. Entrapped and adsorbed cells in polyure —thane were able to degrade phenol up to 4g/l and 2.5g/l respectively with no loss of their activity under repetead use for more than two months.  相似文献   

20.
To preserve the characteristics of the marine diatom Haslea ostrearia during long term storage, particularly size and shape, the algal cells were immobilized in alginate beads and stored at 4 C at reduced irradiance up to 4 months. Two clones of different size (Ho34, 63 μm and Ho40, 78 μm) were studied. With Ho34, a 10.4% decrease of the size was shown after 120 days, by using the conventional storage management, while it did not exceed 2.2% with immobilized cells. Consequently, H. ostrearia would have auxosporulated after 9 months compared to 52 months. At the same time, the rate of distortion (aberrant valve structure) free Ho34 cells reached 86% while no distorted immobilized cells were observed. Chorophyll content in cells showed that all the cells were alive up to 60 days and after this time cells immobilized in the core of the beads most probably suffered from the poor light diffusion. Culturability of the immobilized cells was tested immediately after their immobilization and after 60 and 120 days of storage. The delay (at least 5) before immobilized cells released from the beads decreased with the time of storage, because of the embrittlement of the beads during the storage. Once in fresh medium, the cells actively multiplied. We concluded that immobilization strongly slowed down the decrease in frustule size with time and allowed the storage of concentrated and calibrated inocula which could be inoculated directly in liquid culture medium without needing to dissolve the beads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号