首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vesicular monoamine transporters (VMATs) are involved in chemical transduction in monoaminergic neurons and various endocrine cells through the storage of monoamines in secretory vesicles. Mammalian pinealocytes contain more 5-hydroxytryptamine (5-HT) than any other cells and are expected to contain VMAT, although no information is available so far. Upon the addition of ATP, radiolabeled 5-HT was taken up by a particulate fraction prepared from cultured rat pinealocytes. The 5-HT uptake was inhibited significantly by bafilomycin A1 (an inhibitor of vacuolar H+-ATPase), 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (a proton conductor), or reserpine (an inhibitor of VMAT). RT-PCR analysis suggested that VMAT type 1 (VMAT1), but not type 2, is expressed. Antibodies against VMAT1 recognized a single polypeptide with an apparent molecular mass of approximately 55 kDa, and specifically immunostained pinealocytes. VMAT1 immunoreactivity was high in the vesicular structures in the varicosities of long branching processes and was associated with 5-HT, but not with synaptophysin, a marker protein for microvesicles. The 5-HT immunoreactivity in the long branching processes disappeared upon incubation with reserpine. These results indicate that 5-HT, at least in part, is stored in vesicles other than microvesicles in pinealocytes through a mechanism similar to that of various secretory vesicles.  相似文献   

2.
Synaptic transmission depends on the efficient loading of transmitters into synaptic vesicles by vesicular neurotransmitter transporters. The vesicular monoamine transporter-2 (VMAT2) is essential for loading monoamines into vesicles and maintaining normal neurotransmission. In an effort to understand the regulatory mechanisms associated with VMAT2, we have embarked upon a systematic search for interacting proteins. Glutathione-S-transferase pull-down assays combined with mass spectrometry led to the identification of the 70-kDa heat shock cognate protein (Hsc70) as a VMAT2 interacting protein. Co-immunoprecipitation experiments in brain tissue and heterologous cells confirmed this interaction. A direct binding was observed between the amino terminus and the third cytoplasmic loop of VMAT2, as well as, a region containing the substrate binding and the carboxy-terminal domains of Hsc70. Furthermore, VMAT2 and Hsc70 co-fractionated with purified synaptic vesicles obtained from a sucrose gradient, suggesting that this interaction occurs at the synaptic vesicle membrane. The functional significance of this novel VMAT2/Hsc70 interaction was examined by performing vesicular uptake assays in heterologous cells and purified synaptic vesicles from brain tissue. Recombinant Hsc70 produced a dose-dependent inhibition of VMAT2 activity. This effect was mimicked by the closely related Hsp70 protein. In contrast, VMAT2 activity was not altered in the presence of previously denatured Hsc70 or Hsp70, as well as the unrelated Hsp60 protein; confirming the specificity of the Hsc70 effect. Finally, a purified Hsc70 fragment that binds VMAT2 was sufficient to inhibit VMAT2 activity in synaptic vesicles. Our results suggest an important role for Hsc70 in VMAT2 function and regulation.  相似文献   

3.
Inhibition of vesicular uptake of monoamines by hyperforin   总被引:5,自引:0,他引:5  
Roz N  Mazur Y  Hirshfeld A  Rehavi M 《Life sciences》2002,71(19):2227-2237
Hyperforin is the major active ingredient of Hypericum perforatum (St John's Wort), a traditional antidepressant medication. This study evaluated its inhibitory effects on the synaptic uptake of monoamines in rat forebrain homogenates, comparing the nature of the inhibition at synaptic and vesicular monoamine transporters. A hyperforin-rich extract inhibited with equal potencies the sodium-dependent uptake of the monoamine neurotransmitters serotonin [5-HT], dopamine [DA] and norepinephrine [NE] into rat brain synaptosomes. Hyperforin inhibited the uptake of all three monoamines noncompetitively, in marked contrast with the competitive inhibition exerted by fluoxetine, GBR12909 or desipramine on the uptake of these monoamines. Hyperforin had no inhibitory effect on the binding of [3H]paroxetine, [3H]GBR12935 and [3H]nisoxetine to membrane presynaptic transporters for 5-HT, DA and NE, respectively. The apparent presynaptic inhibition of monoamine uptake could reflect a "reserpine-like mechanism" by which hyperforin induced release of neurotransmitters from synaptic vesicles into the cytoplasm. Thus, we assessed the effects of hyperforin on the vesicular monoamine transporter. Hyperforin inhibited with equal potencies the uptake of the three tritiated monoamines to rat brain synaptic vesicles. Similarly to the synaptosomal uptake, the vesicular uptake was also noncompetitively inhibited by hyperforin. Notably, hyperforin did not affect the direct binding on [3H]dihydrotetrabenazine, a selective vesicular monoamine transporter ligand, to rat forebrain membranes. Our results support the notion that hyperforin interferes with the storage of monoamines in synaptic vesicles, rather than being a selective inhibitor of either synaptic membrane or vesicular monoamine transporters.  相似文献   

4.
《The Journal of cell biology》1994,127(5):1419-1433
Neurons and endocrine cells have two types of secretory vesicle that undergo regulated exocytosis. Large dense core vesicles (LDCVs) store neural peptides whereas small clear synaptic vesicles store classical neurotransmitters such as acetylcholine, gamma-aminobutyric acid (GABA), glycine, and glutamate. However, monoamines differ from other classical transmitters and have been reported to appear in both LDCVs and smaller vesicles. To localize the transporter that packages monoamines into secretory vesicles, we have raised antibodies to a COOH- terminal sequence from the vesicular amine transporter expressed in the adrenal gland (VMAT1). Like synaptic vesicle proteins, the transporter occurs in endosomes of transfected CHO cells, accounting for the observed vesicular transport activity. In rat pheochromocytoma PC12 cells, the transporter occurs principally in LDCVs by both immunofluorescence and density gradient centrifugation. Synaptic-like microvesicles in PC12 cells contain relatively little VMAT1. The results appear to account for the storage of monoamines by LDCVs in the adrenal medulla and indicate that VMAT1 provides a novel membrane protein marker unique to LDCVs.  相似文献   

5.
Previous studies have indicated that neuro-endocrine cells store monoamines and acetylcholine (ACh) in different secretory vesicles, suggesting that the transport proteins responsible for packaging these neurotransmitters sort to distinct vesicular compartments. Molecular cloning has recently demonstrated that the vesicular transporters for monoamines and ACh show strong sequence similarity, and studies of the vesicular monoamine transporters (VMATs) indicate preferential localization to large dense core vesicles (LDCVs) rather than synaptic-like microvesicles (SLMVs) in rat pheochromocytoma PC12 cells. We now report the localization of the closely related vesicular ACh transporter (VAChT). In PC12 cells, VAChT differs from the VMATs by immunofluorescence and fractionates almost exclusively to SLMVs and endosomes by equilibrium sedimentation. Immunoisolation further demonstrates colocalization with synaptophysin on SLMVs as well as other compartments. However, small amounts of VAChT also occur on LDCVs. Thus, VAChT differs in localization from the VMATs, which sort predominantly to LDCVs. In addition, we demonstrate ACh transport activity in stable PC12 transformants overexpressing VAChT. Since previous work has suggested that VAChT expression confers little if any transport activity in non-neural cells, we also determined its localization in transfected CHO fibroblasts. In CHO cells, VAChT localizes to the same endosomal compartment as the VMATs by immunofluorescence, density gradient fractionation, and immunoisolation with an antibody to the transferrin receptor. We have also detected ACh transport activity in the transfected CHO cells, indicating that localization to SLMVs is not required for function. In summary, VAChT differs in localization from the VMATs in PC12 cells but not CHO cells.  相似文献   

6.
The neuronal isoform of vesicular monoamine transporter, VMAT2, is responsible for packaging dopamine and other monoamines into synaptic vesicles and thereby plays an essential role in dopamine neurotransmission. Dopamine neurons in mice lacking VMAT2 are unable to store or release dopamine from their synaptic vesicles. To determine how VMAT2-mediated filling influences synaptic vesicle morphology and function, we examined dopamine terminals from VMAT2 knockout mice. In contrast to the abnormalities reported in glutamatergic terminals of mice lacking VGLUT1, the corresponding vesicular transporter for glutamate, we found that the ultrastructure of dopamine terminals and synaptic vesicles in VMAT2 knockout mice were indistinguishable from wild type. Using the activity-dependent dyes FM1-43 and FM2-10, we also found that synaptic vesicles in dopamine neurons lacking VMAT2 undergo endocytosis and exocytosis with kinetics identical to those seen in wild-type neurons. Together, these results demonstrate that dopamine synaptic vesicle biogenesis and cycling are independent of vesicle filling with transmitter. By demonstrating that such empty synaptic vesicles can cycle at the nerve terminal, our study suggests that physiological changes in VMAT2 levels or trafficking at the synapse may regulate dopamine release by altering the ratio of fillable-to-empty synaptic vesicles, as both continue to cycle in response to neural activity.  相似文献   

7.
《Fly》2013,7(4):302-305
During exocytosis, classical and amino acid neurotransmitters are released from the lumen of synaptic vesicles to allow signaling at the synapse. The storage of neurotransmitters in synaptic vesicles and other types of secretory vesicles requires the activity of specific vesicular transporters. Glutamate and monoamines such as dopamine are packaged by VGLUTs and VMATs respectively. Changes in the localization of either protein have the potential to up- or down regulate neurotransmitter release, and some of the mechanisms for sorting these proteins to secretory vesicles have been investigated in cultured cells in vitro. We have used Drosophila molecular genetic techniques to study vesicular transporter trafficking in an intact organism and have identified a motif required for localizing Drosophila VMAT (DVMAT) to synaptic vesicles in vivo. In contrast to DVMAT, large deletions of Drosophila VGLUT (DVGLUT) show relatively modest deficits in localizing to synaptic vesicles, suggesting that DVMAT and DVGLUT may undergo different modes of trafficking at the synapse. Further in vivo studies of DVMAT trafficking mutants will allow us to determine how changes in the localization of vesicular transporters affect the nervous system as a whole and complex behaviors mediated by aminergic circuits.  相似文献   

8.
Variations in the neurotransmitter content of secretory vesicles enable neurons to adapt to network changes. Vesicular content may be modulated by vesicle-associated Go(2), which down-regulates the activity of the vesicular monoamine transmitter transporters VMAT1 in neuroendocrine cells and VMAT2 in neurons. Blood platelets resemble serotonergic neurons with respect to transmitter storage and release. In streptolysin O-permeabilized platelets, VMAT2 activity is also down-regulated by the G protein activator guanosine 5'-(beta(i)gamma-imido)triphosphate (GMppNp). Using serotonin-depleted platelets from peripheral tryptophan hydroxylase knockout (Tph1-/-) mice, we show here that the vesicular filling initiates the G protein-mediated down-regulation of VMAT2 activity. GMppNp did not influence VMAT2 activity in naive platelets from Tph1-/- mice. GMppNp-mediated inhibition could be reconstituted, however, when preloading Tph1-/- platelets with serotonin or noradrenaline. Galpha(q) mediates the down-regulation of VMAT2 activity as revealed from uptake studies performed with platelets from Galpha(q) deletion mutants. Serotonergic, noradrenergic, as well as thromboxane A(2) receptors are not directly involved in the down-regulation of VMAT2 activity. It is concluded that in platelets the vesicle itself regulates transmitter transporter activity via its content and vesicle-associated Galpha(q).  相似文献   

9.
Vesicular monoamine transporters (VMATs) are responsible for the packaging of neurotransmitters such as dopamine, serotonin, norepinephrine, and epinephrine into synaptic vesicles. These proteins evolved from precursors in the major facilitator superfamily of transporters and are among the members of the toxin extruding antiporter family. While the primary function of VMATs is to sequester neurotransmitters within vesicles, they can also translocate toxicants away from cytosolic sites of action. In the case of dopamine, this dual role of VMAT2 is combined—dopamine is more readily oxidized in the cytosol where it can cause oxidative stress so packaging into vesicles serves two purposes: neurotransmission and neuroprotection. Furthermore, the deleterious effects of exogenous toxicants on dopamine neurons, such as MPTP, can be attenuated by VMAT2 activity. The active metabolite of MPTP can be kept within vesicles and prevented from disrupting mitochondrial function thereby sparing the dopamine neuron. The highly addictive drug methamphetamine is also neurotoxic to dopamine neurons by using dopamine itself to destroy the axon terminals. Methamphetamine interferes with vesicular sequestration and increases the production of dopamine, escalating the amount in the cytosol and leading to oxidative damage of terminal components. Vesicular transport seems to resist this process by sequestering much of the excess dopamine, which is illustrated by the enhanced methamphetamine neurotoxicity in VMAT2-deficient mice. It is increasingly evident that VMAT2 provides neuroprotection from both endogenous and exogenous toxicants and that while VMAT2 has been adapted by eukaryotes for synaptic transmission, it is derived from phylogenetically ancient proteins that originally evolved for the purpose of cellular protection.  相似文献   

10.
Unlike other monoamine neurotransmitters, the mechanism by which the brain's histamine content is regulated remains unclear. In mammals, vesicular monoamine transporters (VMATs) are expressed exclusively in neurons and mediate the storage of histamine and other monoamines. We have studied the visual system of Drosophila melanogaster in which histamine is the primary neurotransmitter released from photoreceptor cells. We report here that a novel mRNA splice variant of Drosophila VMAT (DVMAT-B) is expressed not in neurons but rather in a small subset of glia in the lamina of the fly's optic lobe. Histamine contents are reduced by mutation of dVMAT, but can be partially restored by specifically expressing DVMAT-B in glia. Our results suggest a novel role for a monoamine transporter in glia that may be relevant to histamine homeostasis in other systems.  相似文献   

11.
Uptake of monoamines into secretory granules is mediated by the vesicular monoamine transporters VMAT1 and VMAT2. In this study, we analyzed their expression in inflammatory and hematopoietic cells and in patients suffering from systemic mastocytosis (SM) and chronic myelogenous leukemia (CML). Normal human and monkey tissue specimens and tissues from patients suffering from SM and CML were analyzed by means of immunohistochemistry, radioactive in situ hybridization, real time RT-PCR, double fluorescence confocal laser scanning microscopy, and immunoelectron microscopy. In normal tissue specimens, VMAT2, but not VMAT1, was expressed in mast cells, megakaryocytes, thrombocytes, basophil granulocytes, and cutaneous Langerhans cells. Further hematopoietic and lymphoid cells showed no expression of VMATs. VMAT2 was expressed in all types of SM, as indicated by coexpression with the mast cell marker tryptase. In CML, VMAT2 expression was retained in neoplastic megakaryocytes and basophil granulocytes. In conclusion, the identification of VMAT2 in mast cells, megakaryocytes, thrombocytes, basophil granulocytes, and cutaneous Langerhans cells provides evidence that these cells possess molecular mechanisms for monoamine storage and handling. VMAT2 identifies normal and neoplastic mast cells, megakaryocytes, and basophil granulocytes and may therefore become a valuable tool for the diagnosis of mastocytosis and malignant systemic diseases involving megakaryocytes and basophil granulocytes.  相似文献   

12.
Vesicular monoamine transporters (VMATs) mediate the transport of dopamine (DA), serotonin (5HT), and other monoamines into secretory vesicles. The regulation of mammalian VMAT and the related vesicular acetylcholine transporter (VAChT) has been proposed to involve membrane trafficking, but the mechanisms remain unclear. To facilitate a genetic analysis of vesicular transporter function and regulation, we have cloned the Drosophila homolog of the vesicular monoamine transporter (dVMAT). We identify two mRNA splice variants (DVMAT-A and B) that differ at their C-terminus, the domain responsible for endocytosis of mammalian VMAT and VAChT. DVMAT-A contains trafficking motifs conserved in mammals but not C. elegans, and internalization assays indicate that the DVMAT-A C-terminus is involved in endocytosis. DVMAT-B contains a divergent C-terminal domain and is less efficiently internalized from the cell surface. Using in vitro transport assays, we show that DVMAT-A recognizes DA, 5HT, octopamine, tyramine, and histamine as substrates, and similar to mammalian VMAT homologs, is inhibited by the drug reserpine and the environmental toxins 2,2,4,5,6-pentachlorobiphenyl and heptachlor. We have developed a specific antiserum to DVMAT-A, and find that it localizes to dopaminergic and serotonergic neurons as well as octopaminergic, type II terminals at the neuromuscular junction. Surprisingly, DVMAT-A is co-expressed at type II terminals with the Drosophila vesicular glutamate transporter. Our data suggest that DVMAT-A functions as a vesicular transporter for DA, 5HT, and octopamine in vivo, and will provide a powerful invertebrate model for the study of transporter trafficking and regulation.  相似文献   

13.
Neurotransmitters are key molecules of neurotransmission. They are concentrated first in the cytosol and then in small synaptic vesicles of presynaptic terminals by the activity of specific neurotransmitter transporters of the plasma and the vesicular membrane, respectively. It has been shown that postsynaptic responses to single neurotransmitter packets vary over a wide range, which may be due to a regulation of vesicular neurotransmitter filling. Vesicular filling depends on the availability of transmitter molecules in the cytoplasm and the active transport into secretory vesicles relying on a proton gradient. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Go2 and Gq, which regulate VMAT activities in brain and platelets, respectively, and may also be involved in the regulation of VGLUTs. It appears that the vesicular content activates the G protein, suggesting a signal transduction form the luminal site which might be mediated by a vesicular G-protein coupled receptor or, as an alternative, possibly by the transporter itself. These novel functions of G proteins in the control of transmitter storage may link regulation of the vesicular content to intracellular signal cascades.  相似文献   

14.
The uptake of monoamines into the secretory granules of monoamine-storing neuroendocrine cells is mediated by vesicular monoamine transporter protein 1 or 2 (VMAT1 or VMAT2). This study analyzed the expression of VMAT1 and VMAT2 in endocrine cells of normal human and monkey pancreas. The expression of VMAT1 and VMAT2 was also examined in infants with hyperinsulinemic hypoglycemia and in adults with pancreatic endocrine tumors (PETs). Using immunohistochemistry (IHC) and in situ hybridization (ISH), we demonstrated the mutually exclusive expression of VMAT1 in endocrine cells of the duct system and of VMAT2 in many cells of the islets of Langerhans. By confocal laser scanning microscopy, VMAT1-positive cells were identified as enterochromaffin (EC) cells and VMAT2-positive cells as beta-cells. In PETs, VMAT1 was found exclusively in all serotonin-containing tumors. In contrast, VMAT2 expression was lost in many insulinomas, independent of their biological behavior. VMAT2 was expressed by some non-insulin-producing tumors. The mutually exclusive expression of VMAT1 in EC cells and of VMAT2 in beta-cells suggests that both cell types store monoamines. Monoamine storage mediated by VMAT1 in EC cells is apparently maintained in EC cell tumors. In contrast, many insulinomas appear to lose their ability to accumulate monoamines via VMAT2.  相似文献   

15.
Gasnier B 《Biochimie》2000,82(4):327-337
Classical (non-peptide) transmitters are stored into secretory vesicles by a secondary active transporter driven by a V-type H(+)-ATPase. Five vesicular neurotransmitter uptake activities have been characterized in vitro and, for three of them, the transporters involved have been identified at the molecular level using cDNA cloning and/or Caenorhabditis elegans genetics. These transporters belong to two protein families, which are both unrelated to the Na(+)-coupled neurotransmitter transporters operating at the plasma membrane. The two isoforms of the mammalian vesicular monoamine transporter, VMAT1 and VMAT2, are related to the vesicular acetylcholine transporter (VACHT), while a novel, unrelated vesicular inhibitory amino acid transporter (VIAAT), also designated vesicular GABA transporter (VGAT), is responsible for the storage of GABA, glycine or, at some synapses, both amino acids into synaptic vesicles. The observed effects of experimentally altered levels of VACHT or VMAT2 on synaptic transmission and behavior, as well as the recent awareness that GABAergic or glutamatergic receptors are not always saturated at central synapses, suggest a potential role of vesicular loading in synaptic plasticity.  相似文献   

16.
The vesicular acetylcholine transporter (VAChT) and the vesicular monoamine transporter (VMAT) belong to the same transporter family that packages acetylcholine into synaptic vesicles (SVs) and biogenic amines into large dense core vesicles (LDCVs) and/or SVs, respectively. These transporters share similarities in sequence and structure with their N- and C-terminal domains located in the cytoplasm. When expressed in PC12 cells, VMAT2 localizes to LDCV, whereas VAChT is found mainly on synaptic-like microvesicles. Previous studies have shown that the cytoplasmic C-terminal domain of VAChT contains signals targeting this transporter to SVs. However, the targeting signals for VMAT have not been completely elucidated. To identify signals targeting VMAT2 to LDCV, the subcellular localization of VMAT2-VAChT chimeras was analyzed in PC12 cells. Chimeras having either the N-terminal region through transmembrane domain 2 of VMAT2 or the C-terminal domain of VMAT2 do not traffic to LDCV efficiently. In contrast, chimeras having both of these regions, or the luminal glycosylated loop in conjunction with transmembrane domains 1 and 2 and the C-terminal domain of VMAT2, traffic to LDCV. Treatment of PC12 cells with 1-deoxymannojirimycin, a specific alpha-mannosidase I inhibitor, causes VMAT2 to localize to synaptic-like microvesicles. The results indicate that both mature N-linked glycosylation and the C-terminus are important for proper trafficking of VMAT2 and that the locations of trafficking signals in VMAT2 and VAChT are surprisingly different.  相似文献   

17.
Vesicular monoamine transporters (VMATs) mediate transmitter uptake into neurosecretory vesicles. There are two VMAT isoforms, VMAT1 and VMAT2, encoded by separate genes and displaying different cellular distributions and pharmacological properties. We examined the effect of immobilization stress (IMO) on expression of VMATs in the rat adrenal medulla. Under basal conditions, VMAT1 is widely expressed in all adrenal chromaffin cells, while VMAT2 is co-localized with tyrosine hydroxylase (TH) but not phenylethanolamine N-methyltransferase (PNMT), indicating its expression in norepinephrine (NE)-, but not epinephrine (Epi)-synthesizing chromaffin cells. After exposure to IMO, there was no change in levels of VMAT1 mRNA. However, VMAT2 mRNA was elevated after exposure of rats to 2 h IMO once (1× IMO) or daily for 6 days (6× IMO). The changes in VMAT2 mRNA were reflected by increased VMAT2 protein after the repeated IMO. Immunofluorescence revealed an increased number of cells expressing VMAT2 following repeated IMO and its colocalization with PNMT in many chromaffin cells. The findings suggest an adaptive mechanism in chromaffin cells whereby enhanced catecholamine storage capacity facilitates more efficient utilization of the well-characterized heightened catecholamine biosynthesis with repeated IMO stress.  相似文献   

18.
The vesicular monoamine transporter 2 (VMAT2) sequesters monoamines into synaptic vesicles in preparation for neurotransmission. Samples of cerebellum, cortex, hippocampus, substantia nigra and striatum from VMAT2-deficient mice were compared to age-matched control mice. Multivariate statistical analyses of 1H NMR spectral profiles separated VMAT2-deficient mice from controls for all five brain regions. Although the data show that metabolic alterations are region- and age-specific, in general, analyses indicated decreases in the concentrations of taurine and creatine/phosphocreatine and increases in glutamate and N-acetyl aspartate in VMAT2-deficient mouse brain tissues. This study demonstrates the efficacy of metabolomics as a functional genomics phenotyping tool for mouse models of neurological disorders, and indicates that mild reductions in the expression of VMAT2 affect normal brain metabolism. Special issue article in honor of Dr. Frode Fonnum.  相似文献   

19.
Studies of synapsin-deficient mice have shown decreases in the number of synaptic vesicles but knowledge about the consequences of this decrease, and which classes of vesicles are being affected, has been lacking. In this study, glutamatergic, GABAergic and dopaminergic transport has been analysed in animals where the genes encoding synapsin I and II were inactivated. The levels of the vesicular glutamate transporter (VGLUT) 1, VGLUT2 and the vesicular GABA transporter (VGAT) were decreased by approximately 40% in adult forebrain from mice devoid of synapsin I and II, while vesicular monoamine transporter (VMAT) 2 and VGLUT3 were present in unchanged amounts compared with wild-type mice. Functional studies on synaptic vesicles showed that the vesicular uptake of glutamate and GABA was decreased by 41 and 23%, respectively, while uptake of dopamine was unaffected by the lack of synapsin I and II. Double-labelling studies showed that VGLUT1 and VGLUT2 colocalized fully with synapsin I and/or II in the hippocampus and neostriatum, respectively. VGAT showed partial colocalization, while VGLUT3 and VMAT2 did not colocalize with either synapsin I or II in the brain areas studied. In conclusion, distinct vesicular transporters show a variable degree of colocalization with synapsin proteins and, hence, distinct sensitivities to inactivation of the genes encoding synapsin I and II.  相似文献   

20.
Transmitter uptake and exocytosis of secretory vesicles are two essential aspects of neurotransmission. Here we show that transient overexpression of plasma membrane monoamine transporters in rat pheochromocytoma PC12 cells induced an approximate 20-fold enhancement of cellular uptake of monoamines. Intravesicular amine concentration was greatly increased, as demonstrated directly by carbon fibre amperometry. However, the amount of stored monoamines diminished over a 5-h period, unless monoamine oxidase was inhibited, indicating that monoamines leak out from secretory vesicles. This efflux of monoamines accounts for the reported dependence of vesicular monoamine content (the quantal size) on the kinetics of vesicular monoamine uptake. Measuring radiolabelled monoamines release from the cell population provided accurate determination of the secretory activity of the subpopulation (10-20%) of cells transfected with monoamine transporters, since they contained about 95% of the radiolabel. Accordingly, significant modification of the secretory responses was observed, at the cell population level, upon transient expression of the serotonin transporter and of proteins known to interfere with exocytosis, such as botulinum neurotoxin C1, GTPase-deficient Rab3 proteins, truncated Rabphilin constructs or Rim. The co-transfection assay described here, based on transient expression of monoamine transporters, should prove useful in functional studies of the secretory machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号