首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A photosynthetically impaired strain of Rhodobacter sphaeroides containing reaction centres with an alanine to tryptophan mutation at residue 260 of the M-polypeptide (AM260W) was incubated under photosynthetic growth conditions. This incubation produced photosynthetically competent strains containing suppressor mutations that changed residue M260 to glycine or cysteine. Spectroscopic analysis demonstrated that the loss of the QA ubiquinone seen in the original AM260W mutant was reversed in the suppressor mutants. In the mutant where Trp M260 was replaced by Cys, the rate of reduction of the QA ubiquinone by the adjacent (HA) bacteriopheophytin was reduced by three-fold. The findings of the experiment are discussed in light of the X-ray crystal structures of the wild-type and AM260W reaction centres, and the possible implications for the evolution of reaction centres as bioenergetic complexes are considered.  相似文献   

2.
Three single-site mutations have been introduced at positions close to the QA ubiquinone in the reaction centre from Rhodobacter sphaeroides. Two of these mutations, Ala M260 to Trp and Ala M248 to Trp, result in a reaction centre that does not support photosynthetic growth of the bacterium, and in which electron transfer to the QA ubiquinone is abolished. In the reaction centre with an Ala to Trp mutation at the M260 residue, electron transfer from the primary donor to the acceptor bacteriopheophytin is not affected by the mutation, but electron transfer from the acceptor bacteriopheophytin to QA is not observed. The most likely basis for these effects is that the mutation produces a structural change that excludes binding of the QA ubiquinone. A third mutation, Leu M215 to Trp, produces a reaction centre that has an impaired capacity for supporting photosynthetic growth. The mutation changes the nature of ubiquinone binding at the QA site, and renders the site sensitive to quinone site inhibitors such as o- phenanthroline. Adopting a similar approach, in which a small residue located close to a cofactor is changed to a more bulky residue, we show that the reaction centre can be rendered carotenoid-less by the mutation Gly M71 to Leu.  相似文献   

3.
All of the membrane-embedded cofactors of the purple bacterial reaction centre have well-defined functional or structural roles, with the exception of the bacteriopheophytin (HB) located approximately half-way across the membrane on the so-called inactive- or B-branch of cofactors. Sequence alignments indicate that this bacteriochlorin cofactor is a conserved feature of purple bacterial reaction centres, and a pheophytin is also found at this position in the Photosystem-II reaction centre. Possible structural or functional consequences of replacing the HB bacteriopheophytin by bacteriochlorophyll were investigated in the Rhodobacter sphaeroides reaction centre through mutagenesis of residue Leu L185 to His (LL185H). Results from absorbance spectroscopy indicated that the LL185H mutant assembled with a bacteriochlorophyll at the HB position, but this did not affect the capacity of the reaction centre to support photosynthetic growth, or change the kinetics of charge separation along the A-branch of cofactors. It was also found that mutation of residue Ala M149 to Trp (AM149W) caused the reaction centre to assemble without an HB bacteriochlorin, demonstrating that this cofactor is not required for correct assembly of the reaction centre. The absence of a cofactor at this position did not affect the capacity of the reaction centre to support photosynthetic growth, or the kinetics of A-branch electron transfer. A combination of X-ray crystallography and FTIR difference spectroscopy confirmed that the HB cofactor was absent in the AM149W mutant, and that this had not produced any significant disturbance of the adjacent ubiquinol reductase (QB) site. The data are discussed with respect to possible functional roles of the HB bacteriopheophytin, and we conclude that the reason(s) for conservation of a bacteriopheophytin cofactor at this position in purple bacterial reaction centres are likely to be different from those underlying conservation of a pheophytin at the analogous position in Photosystem-II.  相似文献   

4.
Photo-excitation of membrane-bound Rhodobacter sphaeroides reaction centres containing the mutation Ala M260 to Trp (AM260W) resulted in the accumulation of a radical pair state involving the photo-oxidised primary electron donor (P). This state had a lifetime of hundreds of milliseconds and its formation was inhibited by stigmatellin. The absence of the QA ubiquinone in the AM260W reaction centre suggests that this long-lived radical pair state is P+QB, although the exact reduction/protonation state of the QB quinone remains to be confirmed. The blockage of active branch (A-branch) electron transfer by the AM260W mutation implies that this P+QB state is formed by electron transfer along the so-called inactive branch (B-branch) of reaction centre cofactors. We discuss how further mutations may affect the yield of the P+QB state, including a double alanine mutation (EL212A/DL213A) that probably has a direct effect on the efficiency of the low yield electron transfer step from the anion of the B-branch bacteriopheophytin (HB) to the QB ubiquinone.  相似文献   

5.
The X-ray crystal structure of a Rhodobacter sphaeroides reaction center with the mutation Ala M260 to Trp (AM260W) has been determined. Diffraction data were collected that were 97.6% complete between 30.0 and 2.1 A resolution. The electron density maps confirm the conclusions of a previous spectroscopic study, that the Q(A) ubiquinone is absent from the AM260W reaction center (Ridge, J. P., van Brederode, M. E., Goodwin, M. G., van Grondelle, R., and Jones, M. R. (1999) Photosynthesis Res. 59, 9-26). Exclusion of the Q(A) ubiquinone caused by the AM260W mutation is accompanied by a change in the packing of amino acids in the vicinity of the Q(A) site that form part of a loop that connects the DE and E helices of the M subunit. This repacking minimizes the volume of the cavity that results from the exclusion of the Q(A) ubiquinone, and further space is taken up by a feature in the electron density maps that has been modeled as a chloride ion. An unexpected finding is that the occupancy of the Q(B) site by ubiquinone appears to be high in the AM260W crystals, and as a result the position of the Q(B) ubiquinone is well-defined. The high quality of the electron density maps also reveals more precise information on the detailed conformation of the reaction center carotenoid, and we discuss the possibility of a bonding interaction between the methoxy group of the carotenoid and residue Trp M75. The conformation of the 2-acetyl carbonyl group in each of the reaction center bacteriochlorins is also discussed.  相似文献   

6.
Wakeham MC  Breton J  Nabedryk E  Jones MR 《Biochemistry》2004,43(16):4755-4763
In Rhodobacter sphaeroides reaction centers containing the mutation Ala M260 to Trp (AM260W), transmembrane electron transfer along the A-branch of cofactors is prevented by the loss of the QA ubiquinone. Reaction centers that contain this AM260W mutation are proposed to photoaccumulate the P(+)QB- radical pair following transmembrane electron transfer along the B-branch of cofactors (Wakeham, M. C., Goodwin, M. G., McKibbin, C., and Jones, M. R. (2003) Photoaccumulation of the P(+)QB- radical pair state in purple bacterial reaction centers that lack the QA ubiquinone. FEBS Lett. 540, 234-240). The yield of the P(+)QB- state appears to depend upon which additional mutations are present. In the present paper, Fourier transform infrared (FTIR) difference spectroscopy was used to demonstrate that photooxidation of the reaction center's primary donor in QA-deficient reaction centers results in formation of a semiquinone at the QB site by B-branch electron transfer. Reduction of QB by the B-branch pathway still occurs at 100 K, with a yield of approximately 10% relative to that at room temperature, in contrast to the QA- to QB reaction in the wild-type reaction center, which is not active at cryogenic temperatures. These FTIR results suggest that the conformational changes that "gate" the QA- to QB reaction do not necessarily have the same influence on QB reduction when the electron donor is the HB anion, at least in a minority of reaction centers.  相似文献   

7.
In Rhodobacter sphaeroides reaction centers (RCs) containing the mutation Ala M260 to Trp (AM260W), transmembrane electron transfer along the full-length of the A-branch of cofactors is prevented by the loss of the Q(A) ubiquinone, but it is possible to generate the radical pair P(+)H(A)(-) by A-branch electron transfer or the radical pair P(+)Q(B)(-) by B-branch electron transfer. In the present study, FTIR spectroscopy was used to provide direct evidence for the complete absence of the Q(A) ubiquinone in mutant RCs with the AM260W mutation. Light-induced FTIR difference spectroscopy of isolated RCs was also used to probe the neutral Q(B) and the semiquinone Q(B)(-) states in two B-branch active mutants, a double AM260W-LM214H mutant, denoted WH, and a quadruple mutant, denoted WAAH, in which the AM260W, LM214H, and EL212A-DL213A mutations were combined. The data were compared to those obtained with wild-type (Wt) RCs and the double EL212A-DL213A (denoted AA) mutant which exhibit the usual A-branch electron transfer to Q(B). The Q(B)(-)/Q(B) spectrum of the WH mutant is very close to that of Wt RCs indicating similar bonding interactions of Q(B) and Q(B)(-) with the protein in both RCs. The Q(B)(-)/Q(B) spectra of the AA and WAAH mutants are also closely related to one another, but are very different to that of the Wt complex. Isotope-edited IR fingerprint spectra were obtained for the AA and WAAH mutants reconstituted with site-specific (13)C-labeled ubiquinone. Whilst perturbations of the interactions of the semiquinone Q(B)(-) with the protein are observed in the AA and WAAH mutants, the FTIR data show that the bonding interaction of neutral Q(B) in these two mutants are essentially the same as those for Wt RCs. Therefore, it is concluded that Q(B) occupies the same binding position proximal to the non-heme iron prior to reduction by either A-branch or B-branch electron transfer.  相似文献   

8.
The dynamics of electron transfer in a membrane-bound Rhodobacter sphaeroides reaction centre containing a combination of four mutations were investigated by transient absorption spectroscopy. The reaction centre, named WAAH, has a mutation that causes the reaction centre to assemble without a Q(A) ubiquinone (Ala M260 to Trp), a mutation that causes the replacement of the H(A) bacteriopheophytin with a bacteriochlorophyll (Leu M214 to His) and two mutations that remove acidic groups close to the Q(B) ubiquinone (Glu L212 to Ala and Asp L213 to Ala). Previous work has shown that the Q(B) ubiquinone is reduced by electron transfer along the so-called inactive cofactor branch (B-branch) in the WAAH reaction centre (M.C. Wakeham, M.G. Goodwin, C. McKibbin, M.R. Jones, Photo-accumulation of the P(+)Q(B)(-) radical pair state in purple bacterial reaction centres that lack the Q(A) ubiquinone, FEBS Letters 540 (2003) 234-240). In the present study the dynamics of electron transfer in the membrane-bound WAAH reaction centre were studied by femtosecond transient absorption spectroscopy, and the data analysed using a compartmental model. The analysis indicates that the yield of Q(B) reduction via the B-branch is approximately 8% in the WAAH reaction centre, consistent with results from millisecond time-scale kinetic spectroscopy. Possible contributions to this yield of the constituent mutations in the WAAH reaction centre and the membrane environment of the complex are discussed.  相似文献   

9.
The role of the C-terminal region of Staphylococcal nuclease (SNase) was examined by deletion mutation. Deletions up to eight residues do not affect the structure and function. The structure and enzymatic activity were partially lost by deleting Ser141-Asn149 (Delta141-149), and deletion of Trp140-Asn149 (Delta140-149) resulted in further loss of structure and activity. A 13-residue deletion showed the same effect as the 10-residue deletion. Both Ser141Gln and Ser141Ala mutations for an eight-residue deletion mutant did not alter properties as well as Ser141A1a for full-length SNase. In contrast, Trp140Ala mutation for Delta141-149 shows the same effect as the deletion of Trp140. Trp140Ala mutation for full-length SNase causes the loss of native structure. These observations indicate the significance of the 140th and the 141st residues. The side-chain of the 140th residue is required to be tryptophan; however, the backbone of the 141st residue is solely critical for foldability, but the side-chain information is not crucial. All of the mutants that take a non-native conformation show enzymatic activity and inhibitor-induced folding, suggesting that foldability is required for the activity.  相似文献   

10.
A new reaction center (RC) quadruple mutant, called LDHW, of Rhodobacter sphaeroides is described. This mutant was constructed to obtain a high yield of B-branch electron transfer and to study P(+)Q(B)(-) formation via the B-branch. The A-branch of the mutant RC contains two monomer bacteriochlorophylls, B(A) and beta, as a result of the H mutation L(M214)H. The latter bacteriochlorophyll replaces bacteriopheophytin H(A) of wild-type RCs. As a result of the W mutation A(M260)W, the A-branch does not contain the ubiquinone Q(A); this facilitates the study of P(+)Q(B)(-) formation. Furthermore, the D mutation G(M203)D introduces an aspartic acid residue near B(A). Together these mutations impede electron transfer through the A-branch. The B-branch contains two bacteriopheophytins, Phi(B) and H(B), and a ubiquinone, Q(B.) Phi(B) replaces the monomer bacteriochlorophyll B(B) as a result of the L mutation H(M182)L. In the LDHW mutant we find 35-45% B-branch electron transfer, the highest yield reported so far. Transient absorption spectroscopy at 10 K, where the absorption bands due to the Q(X) transitions of Phi(B) and H(B) are well resolved, shows simultaneous bleachings of both absorption bands. Although photoreduction of the bacteriopheophytins occurs with a high yield, no significant (approximately 1%) P(+)Q(B)(-) formation was found.  相似文献   

11.
In an effort to explore the effects of local flexibility on the cold adaptation of enzymes, we designed point mutations aiming to modify side-chain flexibility at the active site of the psychrophilic alkaline phosphatase from the Antarctic strain TAB5. The mutagenesis targets were residues Trp260 and Ala219 of the catalytic site and His135 of the Mg2+ binding site. The replacement of Trp260 by Lys in mutant W260K, resulted in an enzyme less active than the wild-type in the temperature range 5-25 degrees C. The additional replacement of Ala219 by Asn in the double mutant W260K/A219N, resulted in a drastic increase in the energy of activation, which was reflected in a considerably decreased activity at temperatures of 5-15 degrees C and a significantly increased activity at 20-25 degrees C. Further substitution of His135 by Asp in the triple mutant W260K/A219N/H135D restored a low energy of activation. In addition, the His135-->Asp replacement in mutants H135D and W260K/A219N/H135D resulted in considerable stabilization. These results suggest that the psychrophilic character of mutants can be established or masked by very slight variations of the wild-type sequence, which may affect active site flexibility through changes in various conformational constraints.  相似文献   

12.
The relationship between membrane protein structure and thermal stability has been examined in the reaction centre from the bacterium Rhodobacter sphaeroides, a complex membrane protein comprising three polypeptide chains and 10 cofactors. The core of this protein exhibits an approximate twofold symmetry, the cofactors being held in two membrane-spanning branches by two polypeptides, termed L and M, that have very similar folds. In assays of the thermal stability of wild-type and mutant reaction centres embedded in the native bilayer membrane, replacement of a Phe at position 197 of the M polypeptide by His produced an increase in stability, whereas an opposing replacement of His by Phe at the symmetrical position 168 of the L-polypeptide produced a decrease in stability. In light of the known X-ray crystal structures of wild-type and mutant variants of this protein, and further mutagenesis, it is concluded that these stability changes result from the introduction or removal, respectively, of a hydrogen bond between the side-chain of the His and that of an Asn located two positions along the M or L polypeptide chain, in addition to a hydrogen bond between the His side-chain and an adjacent bacteriochlorophyll cofactor.  相似文献   

13.
In native reaction centers (RCs) from photosynthetic purple bacteria the primary quinone (QA) and the secondary quinone (QB) are interconnected via a specific His-Fe-His bridge. In Rhodobacter sphaeroides RCs the C4=O carbonyl of QA forms a very strong hydrogen bond with the protonated Npi of His M219, and the Ntau of this residue is in turn coordinated to the non-heme iron atom. The second carbonyl of QA is engaged in a much weaker hydrogen bond with the backbone N-H of Ala M260. In previous work, a Trp side chain was introduced by site-directed mutagenesis at the M260 position in the RC of Rb. sphaeroides, resulting in a complex that is completely devoid of QA and therefore nonfunctional. A photochemically competent derivative of the AM260W mutant was isolated that contains a Cys side chain at the M260 position (denoted AM260(W-->C)). In the present work, the interactions between the carbonyl groups of QA and the protein in the AM260(W-->C) suppressor mutant have been characterized by light-induced FTIR difference spectroscopy of the photoreduction of QA. The QA-/QA difference spectrum demonstrates that the strong interaction between the C4=O carbonyl of QA and His M219 is lost in the mutant, and the coupled CO and CC modes of the QA- semiquinone are also strongly perturbed. In parallel, a band assigned to the perturbation of the C5-Ntau mode of His M219 upon QA- formation in the native RC is lacking in the spectrum of the mutant. Furthermore, a positive band between 2900 and 2400 cm-1 that is related to protons fluctuating within a network of highly polarizable hydrogen bonds in the native RC is reduced in amplitude in the mutant. On the other hand, the QB-/QB FTIR difference spectrum is essentially the same as for the native RC. The kinetics of electron transfer from QA- to QB were measured by the flash-induced absorption changes at 780 nm. Compared to native RCs the absorption transients are slowed by a factor of about 2 for both the slow phase (in the hundreds of microseconds range) and fast phase (microseconds to tens of microseconds range) in AM260(W-->C) RCs. We conclude that the unusually strong hydrogen bond between the carbonyl of QA and His M219 in the Rb. sphaeroides RC is not obligatory for efficient electron transfer from QA- to QB.  相似文献   

14.
Woodyer R  van der Donk WA  Zhao H 《Biochemistry》2003,42(40):11604-11614
Homology modeling was used to identify two particular residues, Glu175 and Ala176, in Pseudomonas stutzeri phosphite dehydrogenase (PTDH) as the principal determinants of nicotinamide cofactor (NAD(+) and NADP(+)) specificity. Replacement of these two residues by site-directed mutagenesis with Ala175 and Arg176 both separately and in combination resulted in PTDH mutants with relaxed cofactor specificity. All three mutants exhibited significantly better catalytic efficiency for both cofactors, with the best kinetic parameters displayed by the double mutant, which had a 3.6-fold higher catalytic efficiency for NAD(+) and a 1000-fold higher efficiency for NADP(+). The cofactor specificity was changed from 100-fold in favor of NAD(+) for the wild-type enzyme to 3-fold in favor of NADP(+) for the double mutant. Isoelectric focusing of the proteins in a nondenaturing gel showed that the replacement with more basic residues indeed changed the effective pI of the protein. HPLC analysis of the enzymatic products of the double mutant verified that the reaction proceeded to completion using either substrate and produced only the corresponding reduced cofactor and phosphate. Thermal inactivation studies showed that the double mutant was protected from thermal inactivation by both cofactors, while the wild-type enzyme was protected by only NAD(+). The combined results provide clear evidence that Glu175 and Ala176 are both critical for nicotinamide cofactor specificity. The rationally designed double mutant might be useful for the development of an efficient in vitro NAD(P)H regeneration system for reductive biocatalysis.  相似文献   

15.
Packing interactions in bacteriophage T4 lysozyme were explored by determining the structural and thermodynamic effects of substitutions for Ala98 and neighboring residues. Ala98 is buried in the core of T4 lysozyme in the interface between two alpha-helices. The Ala98 to Val (A98V) replacement is a temperature-sensitive lesion that lowers the denaturation temperature of the protein by 15 degrees C (pH 3.0, delta delta G = -4.9 kcal/mol) and causes atoms within the two helices to move apart by up to 0.7 A. Additional structural shifts also occur throughout the C-terminal domain. In an attempt to compensate for the A98V replacement, substitutions were made for Val149 and Thr152, which make contact with residue 98. Site-directed mutagenesis was used to construct the multiple mutants A98V/T152S, A98V/V149C/T152S and the control mutants T152S, V149C and A98V/V149I/T152S. These proteins were crystallized, and their high-resolution X-ray crystal structures were determined. None of the second-site substitutions completely alleviates the destabilization or the structural changes caused by A98V. The changes in stability caused by the different mutations are not additive, reflecting both direct interactions between the sites and structural differences among the mutants. As an example, when Thr152 in wild-type lysozyme is replaced with serine, the protein is destabilized by 2.6 kcal/mol. Except for a small movement of Val94 toward the cavity created by removal of the methyl group, the structure of the T152S mutant is very similar to wild-type T4 lysozyme. In contrast, the same Thr152 to Ser replacement in the A98V background causes almost no change in stability. Although the structure of A98V/T152S remains similar to A98V, the combination of T152S with A98V allows relaxation of some of the strain introduced by the Ala98 to Val replacement. These studies show that removal of methyl groups by mutation can be stabilizing (Val98----Ala), neutral (Thr152----Ser in A98V) or destabilizing (Val149----Cys, Thr152----Ser). Such diverse thermodynamic effects are not accounted for by changes in buried surface area or free energies of transfer of wild-type and mutant side-chains. In general, the changes in protein stability caused by a mutation depend not only on changes in the free energy of transfer associated with the substitution, but also on the structural context within which the mutation occurs and on the ability of the surrounding structure to relax in response to the substitution.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Site-directed mutagenesis study was performed to elucidate the role of conserved tryptophan-101 present at the active site of phosphoserine aminotransferase from an enteric human parasite Entamoeba histolytica. Fluorescence resonance energy transfer and molecular dynamic simulation show that the indole ring of Trp101 stacks with the cofactor PLP. Loss of enzymatic activity and PLP polarization values suggest that Trp101 plays a major role in maintaining a defined PLP microenvironment essentially required for optimal enzymatic activity. Studies on W101F, W101H and W101A mutants show that only the indole ring of the conserved Trp101 forms most favorable stacking interaction with the pyridine ring of the cofactor PLP. Protein stability was compromised on substitution of Trp101 with Phe/His/Ala amino acids. A difference in conformational free energy of 1.65?kcal?mol(-1) was observed between WT-protein and W101A mutant.  相似文献   

17.
Wells TA  Takahashi E  Wraight CA 《Biochemistry》2003,42(14):4064-4074
In the primary quinone (Q(A)) binding site of Rb. sphaeroides reaction centers (RCs), isoleucine M265 is in extensive van der Waals contact with the ubiquinone headgroup. Substitution of threonine or serine for this residue (mutants M265IT and M265IS), but not valine (mutant M265IV), lowers the redox midpoint potential of Q(A) by about 100 mV (Takahashi et al. (2001) Biochemistry 40, 1020-1028). The unexpectedly large effect of the polar substitutions is not due to reorientation of the methoxy groups as similar redox potential changes are seen for these mutants with either ubiquinone or anthraquinone as Q(A). Using FTIR spectroscopy to compare Q(A)(-)/Q(A) IR difference spectra for wild type and the M265 mutant RCs, we found changes in the polar mutants (M265IT and M265IS) in the quinone C[double bond]O and C[double bond]C stretching region (1600-1660 cm(-1)) and in the semiquinone anion band (1440-1490 cm(-1)), as well as in protein modes. Modeling the mutations into the X-ray structure of the wild-type RC indicates that the hydroxyl group of the mutant polar residues, Thr and Ser, is hydrogen bonded to the peptide C[double bond]O of Thr(M261). It is suggested that the mutational effect is exerted through the extended backbone region that includes Ala(M260), the hydrogen bonding partner to the C1 carbonyl of the quinone headgroup. The resulting structural perturbations are likely to include lengthening of the hydrogen bond between the quinone C1[double bond]O and the peptide NH of Ala(M260). Possible origins of the IR spectroscopic and redox potential effects are discussed.  相似文献   

18.
The conformational analysis of W35A thioredoxin h from the eukaryotic green alga Chlamydomonas reinhardtii in the solid state has been carried out by x-ray diffraction, with the aim to clarify the role of Trp in the catalysis. Comparative analysis of W35A mutant with wild-type (WT) thioredoxin shows that, even if the structural motif of thioredoxin is not perturbed, the substitution of Trp35 by an Ala leads to significant changes in protein conformation near the active site. This rearrangement increases its solvent exposure and explains the change of the pKa values of the catalytic cysteines. The substitution of the Trp residue also influences the crystal packing as well as the recognition ability of thioredoxin. The solid state analysis suggests that the Trp residue has a structural function both to force the active site in the bioactive conformation, and to mediate the protein-protein recognition.  相似文献   

19.
The heme-containing catalase HPII of Escherichia coli consists of a homotetramer in which each subunit contains a core region with the highly conserved catalase tertiary structure, to which are appended N- and C-terminal extensions making it the largest known catalase. HPII does not bind NADPH, a cofactor often found in catalases. In HPII, residues 585-590 of the C-terminal extension protrude into the pocket corresponding to the NADPH binding site in the bovine liver catalase. Despite this difference, residues that define the NADPH pocket in the bovine enzyme appear to be well preserved in HPII. Only two residues that interact ionically with NADPH in the bovine enzyme (Asp212 and His304) differ in HPII (Glu270 and Glu362), but their mutation to the bovine sequence did not promote nucleotide binding. The active-site heme groups are deeply buried inside the molecular structure requiring the movement of substrate and products through long channels. One potential channel is about 30 A in length, approaches the heme active site laterally, and is structurally related to the branched channel associated with the NADPH binding pocket in catalases that bind the dinucleotide. In HPII, the upper branch of this channel is interrupted by the presence of Arg260 ionically bound to Glu270. When Arg260 is replaced by alanine, there is a threefold increase in the catalytic activity of the enzyme. Inhibitors of HPII, including azide, cyanide, various sulfhydryl reagents, and alkylhydroxylamine derivatives, are effective at lower concentration on the Ala260 mutant enzyme compared to the wild-type enzyme. The crystal structure of the Ala260 mutant variant of HPII, determined at 2.3 A resolution, revealed a number of local structural changes resulting in the opening of a second branch in the lateral channel, which appears to be used by inhibitors for access to the active site, either as an inlet channel for substrate or an exhaust channel for reaction products.  相似文献   

20.
We have refined the 1.9 A resolution crystal structures of two maltodextrin receptor mutants in which tryptophan residues 230 and 232 have been changed to alanine and compared these structures with the refined 1.7 A structure of the wild-type protein. In the wild-type structure, Trp230, which is located in the maltodextrin-binding groove, stacks against the B-face of the reducing sugar of the bound maltose. Trp232, which is located near the protein surface, does not participate directly in sugar binding. Relative to the wild-type structure, neither mutation caused a significant rearrangement in the overall protein structure or in the mode of binding maltose. Although the position once occupied by Trp230 remains empty, a new water molecule has moved near the void. In contrast, a new water molecule has entered into the space once occupied by Trp232. Whereas one hydrogen bond is formed with the water molecule near the Trp230 void, no hydrogen bond is associated with the water molecule occupying the space vacated by Trp232. The three van der Waals' contacts between Trp230 and maltose in the wild-type structure that are lost in the W230A mutation could contribute to the 12-fold decrease in ligand-binding activity of the mutant protein. The W232A mutation causes little change in binding activity. The structures of these mutant proteins also provide some insight into the complicated tryptophan fluorescence spectra of the maltodextrin binding-protein. The change in fluorescence due to the deletion of Trp230 can readily be explained as resulting directly from loss of Trp230 in the sugar-binding site. The change in fluorescence due to deletion of Trp232, however, is ascribed to the modification of local interactions mediated by the binding of maltodextrin since the tryptophan is not directly involved in any sugar-binding interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号