首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tritrpticin, a Trp-rich cationic antimicrobial peptide with a unique amino acid sequence (VRRFPWWWPFLRR), is found in porcine cathelicidin cDNA. Tritrpticin has a broad spectrum of antibacterial and antifungal activities and hemolytic activity comparable to that of indolicidin. To investigate the mechanism of the bacterial killing action of tritrpticin and to identify structural features important for bacterial cell selectivity, we designed several tritrpticin analogs with amino acid substitutions of the Pro and Trp residues. Circular dichroism studies revealed that the substitution of Pro-->Ala (TPA) or Trp-->Phe (TWF) leads to significant conformational changes in SDS micelles, converting the beta-turn to alpha-helix or to poly-L-proline II helix, respectively. Compared to tritrpticin, TPA retained most of its antimicrobial activity, but showed enhanced hemolytic and membrane-disrupting activities. In contrast, TWF showed a 2-4-fold increase in antimicrobial activity against Gram-negative bacteria, but a marked decrease in both hemolytic and membrane-disrupting activities. Taken together, our findings suggest that compared with the beta-turn and alpha-helical structures, the poly-L-proline II helix is crucial for effective bacterial cell selectivity in tritrpticin and its analogs.  相似文献   

2.
Tyrocidine A, one of the first antibiotics ever to be discovered, is a cyclic decapeptide that binds to membranes of target bacteria, disrupting their integrity. It is active against a broad spectrum of Gram-positive organisms, and has recently engendered interest as a potential scaffold for the development of new drugs to combat antibiotic-resistant pathogens. We present here the X-ray crystal structure of tyrocidine A at a resolution of 0.95 Å. The structure reveals that tyrocidine forms an intimate and highly amphipathic homodimer made up of four beta strands that associate into a single, highly curved antiparallel beta sheet. We used surface plasmon resonance and potassium efflux assays to demonstrate that tyrocidine binds tightly to mimetics of bacterial membranes with an apparent dissociation constant (KD) of 10 μM, and efficiently permeabilizes bacterial cells at concentrations equal to and below the KD. Using variant forms of tyrocidine in which the fluorescent probe p-cyano-phenylalanine had been inserted on either the polar or apolar face of the molecule, we performed fluorescence quenching experiments, using both water-soluble and membrane-embedded quenchers. The quenching results, together with the structure, strongly support a membrane association model in which the convex, apolar face of tyrocidine's beta sheet is oriented toward the membrane interior, while the concave, polar face is presented to the aqueous phase.  相似文献   

3.
Wang KR  Zhang BZ  Zhang W  Yan JX  Li J  Wang R 《Peptides》2008,29(6):963-968
A novel antimicrobial peptide, polybia-MPI, was purified from the venom of the social wasp Polybia paulista. It has potent antimicrobial activity against both Gram-positive and Gram-negative bacteria, but causing no hemolysis to rat erythrocytes. To date, there is no report about its antitumor effects on any tumor cell lines. In this study we synthesized polybia-MPI and studied its antitumor efficacy and cell selectivity. Our results revealed that polybia-MPI exerts cytotoxic and antiproliferative efficacy by pore formation. It can selectively inhibit the proliferation of prostate and bladder cancer cells, but has lower cytotoxicity to normal murine fibroblasts. In addition, to investigate the structure–activity relationship of polybia-MPI, three analogs in which Leu7, Ala8 or Asp9 replaced by l-Pro were designed and synthesized. l-Pro substitution of Leu7 or Asp9 significantly reduces the content of -helix conformation, and l-Pro substitution of Ala8 can disrupt the -helix conformation thoroughly. The l-Pro substitution induces a significant reduction of antitumor activity, indicating that the -helix conformation of polybia-MPI is important for its antitumor activity. In summary, polybia-MPI may offer a novel therapeutic strategy in the treatment of prostate cancer and bladder cancer, considering its relatively lower cytoxicity to normal cells.  相似文献   

4.
Wang C  Li HB  Li S  Tian LL  Shang DJ 《Biochimie》2012,94(2):434-441
Many antimicrobial peptides from amphibian exhibit additional anticancer properties due to a similar mechanism of action at both bacterial and cancer cells. We have previously reported the cDNA sequence of the antimicrobial peptide temporin-1CEa precursor cloned from the Chinese brown frog Rana chensinensis. In this study, we purified, synthesized and structurally characterized temporin-1CEa from the skin secretions of R. chensinensis. The cytotoxicity and cell selectivity of temporin-1CEa were further examined on twelve human carcinoma cell lines and on normal human umbilical vein smooth muscle cells (HUVSMCs). Our results indicated that temporin-1CEa has the amino acid sequence of FVDLKKIANIINSIF-NH2, and exhibits 50–56% identity with temporin family peptides from other frog species. The CD spectra for temporin-1CEa adopted a well-defined α-helical structure in 50% TFE/water solution. The results of MTT assay showed that temporin-1CEa exhibits cytotoxicity to all tested cancer cell lines in a concentration-dependent manner, being MCF-7 cells the most sensitive. Moreover, temporin-1CEa had lower hemolytic effect to human erythrocytes and had no significant cytotoxicity to normal HUVSMCs at concentrations showed potent antitumor activity. In summary, temporin-1CEa, an amphiphilic α-helical cationic peptide, may represent a novel anticancer agent for breast cancer therapy, considering its cancer cell selectivity and relatively lower cytotoxicity to normal cells.  相似文献   

5.
Here, we report the successful design of a novel bacteria-selective antimicrobial peptide, Pep-1-K (KKTWWKTWWTKWSQPKKKRKV). Pep-1-K was designed by replacing Glu-2, Glu-6, and Glu-11 in the cell-penetrating peptide Pep-1 with Lys. Pep-1-K showed strong antibacterial activity against reference strains (MIC = 1-2 microM) of Gram-positive and Gram-negative bacteria as well as against clinical isolates (MIC = 1-8 microM) of methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. In contrast, Pep-1-K did not cause hemolysis of human erythrocytes even at 200 microM. These results indicate that Pep-1-K may be a good candidate for antimicrobial drug development, especially as a topical agent against antibiotic-resistant microorganisms. Tryptophan fluorescence studies indicated that the lack of hemolytic activity of Pep-1-K correlated with its weak ability to penetrate zwitterionic phosphatidylcholine/cholesterol (10:1, w/w) vesicles, which mimic eukaryotic membranes. Furthermore, Pep-1-K caused little or no dye leakage from negatively charged phosphatidylethanolamine/phosphatidylglycerol (7:3, w/w) vesicles, which mimic bacterial membranes but had a potent ability to cause depolarization of the cytoplasmic membrane potential of intact S. aureus cells. These results suggested that Pep-1-K kills microorganisms by not the membrane-disrupting mode but the formation of small channels that permit transit of ions or protons but not molecules as large as calcein.  相似文献   

6.
The cRGD-conjugated Aib-containing amphipathic helical peptide, MAP(Aib) derivative (PI), has been reported to be a useful carrier for siRNA delivery into cells. We have conducted a series of structure-activity relationship studies of the influence of the balance between hydrophobicity and basicity on the amphipathicity of PI, and synthesized peptides having a larger number of Lys residues than PI. Increasing the number of basic residues in the amphipathic helix suppressed the ability to deliver siRNA into cells. It was concluded that the balance between hydrophobicity and basicity in the PI helix was important for siRNA delivery into cells. Furthermore, the siRNA delivering ability of PI was specific to cancer cells, such as A549, U-87 MG, and WiDr cells, and was low in normal cells, namely, NIH3T3 cells. Next, we examined the potential of PI as a carrier for the delivery of microRNA-133b (miR-133b), which is known to be an anti-oncomiR. PI enhanced the delivery of miR-133b into WiDr cells, which resulted in the suppression of endogenous protein expression.  相似文献   

7.
Abstract

Antimicrobial peptides (AMPs) like tritrpticins, exhibit non-specific membrane lysis of gram-negative bacteria and can replace antibiotics, combating multi-drug resistance observed in UTI patients. Tritrpticins designated – NT, T1, T2, T3, T5, T7 and T8, were computationally investigated by interaction with Escherichia coli membrane model, mammalian cell toxicity and structural stability to identify a potential drug scaffold for UTI. Initially T3 was eliminated due to low interaction with Escherichia coli membrane model, based on its computed solvation energy. Further, negative support vector machine (SVM) scores revealed non-toxicity of T1, T2, T5, T7 and T8. Finally, at 310?K and varying pH 4.5–9.0, T5 exhibited highest structural stability based on its highest consistency of hydrogen bonds (H-bonds), root mean square deviation (RMSD) and secondary structure profiles along with its lowest conformational free energy. Overall, T5 could be considered a promising peptide drug scaffold to combat UTI.

ABBREVIATIONS AMP antimicrobial peptide

PBEQ Poisson Boltzmann equation

H-bonds hydrogen bonds

MIC minimum inhibitory concentration

LD50 lethal dose, 50%

RMSD root mean square deviation

SVM support vector machine

UTI urinary tract infection

Communicated by Ramaswamy H. Sarma  相似文献   

8.
Baek JH  Ji Y  Shin JS  Lee S  Lee SH 《Peptides》2011,32(3):568-572
The cell lytic activity and toxicity against lepidopteran larvae of 13 venom peptides (4 OdVPs and 9 EpVPs) from two solitary hunting wasps, Orancistrocerus drewseni and Eumenes pomiformis, were examined with mastoparan as a reference peptide. Of the 13 peptides, 7 were predicted to have α-helical structures that exhibit the typical character of amphipathic α-helical antimicrobial peptides. The remaining peptides exhibited coil structures; among these, EpVP5 possesses two Cys residues that form an internal disulfide bridge. All the helical peptides including mastoparan showed antimicrobial and insect cell lytic activities, whereas only two of them were hemolytic against human erythrocytes. The helical peptides induced a feeding disorder when injected into the vicinity of the head and thorax of Spodoptera exigua larvae, perhaps because their non-specific neurotoxic or myotoxic action induced cell lysis. At low concentrations, however, these helical peptides increased cell permeability without inducing cell lysis. These findings suggest that the helical venom peptides may function as non-specific neurotoxins or myotoxins and venom-spreading factors at low concentrations, as well as preservatives for long-term storage of the prey via antimicrobial, particularly antifungal, activities.  相似文献   

9.
Summary The 21-amino acid peptides siamycin II (BMY-29303) and siamycin I (BMY-29304), derived from Streptomyces strains AA3891 and AA6532, respectively, have been found to inhibit HIV-1 fusion and viral replication in cell culture. The primary sequence of siamycin II is CLGIGSCNDFAGCGYAIVCFW. Siamycin I differs by only one amino acid; it has a valine residue at position 4. In both peptides, disulfide bonds link Cys1 with Cys13 and Cys7 with Cys19, and the side chain of Asp9 forms an amide bond with the N-terminus. Siamycin II, when dissolved in a 50:50 mixture of DMSO and H2O, yields NOESY spectra with exceptional numbers of cross peaks for a peptide of this size. We have used 335 NOE distance constraints and 13 dihedral angle constraints to generate an ensemble of 30 siamycin II structures; these have average backbone atom and all heavy atom rmsd values to the mean coordinates of 0.24 and 0.52 Å, respectively. The peptide displays an unusual wedge-shaped structure, with one face being predominantly hydrophobic and the other being predominantly hydrophilic. Chemical shift and NOE data show that the siamycin I structure is essentially identical to siamycin II. These peptides may act by preventing oligomerization of the HIV transmembrane glycoprotein gp41, or by interfering with interactions between gp41 and the envelope glycoprotein gp120, the cell membrane or membrane-bound proteins [Frèchet, D. et al. (1994) Biochemistry, 33, 42–50]. The amphipathic nature of siamycin II and siamycin I suggests that a polar (or apolar) site on the target protein may be masked by the apolar (or polar) face of the peptide upon peptide/protein complexation.Abbreviations ABNR adopted basis Newton Raphson - AIDS acquired immunodeficiency syndrome - CW continuous wave - DMSO dimethylsulfoxide - DQF-COSY two-dimensional double-quantum-filtered correlation spectroscopy - HIV human immunodeficiency virus - HSQC heteronuclear single-quantum coherence - NOE nuclear Overhauser enhancement - NOESY two-dimensional nuclear Overhauser enhancement spectroscopy - ppm parts per million - P.E.-COSY two-dimensional primitive exclusive correlation spectroscopy - REDAC redundant dihedral angle constraint - rf radio frequency - rmsd root-mean-square difference - SIV simian immunodeficiency virus - sw spectral width - m mixing time - TOCSY two-dimensional total correlation spectroscopy - TSP trimethylsilyl-2,2,3,3-2H4-propionate - 2D two-dimensional  相似文献   

10.
A synthetic amphipathic alpha-helical model peptide, KLW, displays non-cell selective cytotoxicity. To investigate the effects of L- or D-Pro kink incorporation into hydrophobic or hydrophilic helix face of KLW on structure, cell selectivity, and membrane-binding affinity, we designed a series of four peptides, in which Leu(9) and Lys(11) in the hydrophobic and hydrophilic helix face of KLW, respectively, are substituted with L- or D-Pro. A L- or D-Pro substitution (KLW-L9P or KLW-L9p) of Leu(9) at the hydrophobic helix face of KLW induced a more significant reduction in hemolytic activity with improved antibacterial activity than that (KLW-K11P or KLW-K11p) of Lys(11) in the hydrophilic helix face. In addition, D-Pro-containing peptides (KLW-L9p and KLW-K11p) displayed less hemolytic activity than L-Pro-containing peptides (KLW-L9P and KLW-K11P). Tryptophan fluorescence studies revealed that bacterial cell selectivity of KLW-L9P, KLW-L9p, and KLW-K11p is closely related to selective interactions with negatively charged phospholipids. CD analysis revealed that L- or D-Pro incorporation into KLW reduces the alpha-helicity of the peptide and D-Pro incorporation induces more significant disruption in alpha-helical structure than L-Pro incorporation. Our results collectively suggest that D-Pro incorporation into the hydrophobic helix face of non-cell selective amphipathic alpha-helical peptides may be useful for the design of novel antimicrobial peptides possessing high bacterial cell selectivity without hemolytic activity.  相似文献   

11.
Song J  Kai M  Zhang W  Zhang J  Liu L  Zhang B  Liu X  Wang R 《Peptides》2011,32(9):1934-1941
Transportan 10 (TP10) is an amphipathic cell-penetrating peptide with high translocation ability. In order to obtain more details of structure-activity relationship of TP10, we evaluated the effects of structure and charge on its translocation ability. Our results demonstrated that disrupting the helical structure or Arg substitution could remarkably decrease the cellular uptake of TP10. However, increasing the number of positive charge was an effective strategy to enhance translocation ability of TP10. Furthermore, the molecular dynamics simulation supported the results derived from experiments, suggesting that higher membrane disturbance leads to higher cellular uptake of peptides. In addition, our study also demonstrated TP10 and its analogs preferentially entered cancer cells rather than normal cells. The uptake selectivity toward cancer cells makes TP10 and its analogs as potent CPPs for drug delivery.  相似文献   

12.
We investigated the effect of synthetic antimicrobial decapeptide KSL-W (KKVVFWVKFK) on normal human gingival fibroblast growth, migration, collagen gel contraction, and α-smooth muscle actin protein expression. Results show that in addition to promoting fibroblast adhesion by increasing F-actin production, peptide KSL-W promoted cell growth by increasing the S and G2/M cell cycle phases, and enhanced the secretion of metalloproteinase (MMP)-1 and MMP-2 by upregulating MMP inhibitors, such as tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in fibroblasts. An in vitro wound healing assay confirmed that peptide KSL-W promoted fibroblast migration and contraction of a collagen gel matrix. We also demonstrated a high expression of α-smooth muscle actin by gingival fibroblasts being exposed to KSL-W. This work shows that peptide KSL-W enhances gingival fibroblast growth, migration, and metalloproteinase secretion, and the expression of α-smooth muscle actin, thus promoting wound healing.  相似文献   

13.
Early activation of the innate immune response is important for protection against infection with Francisella tularensis live vaccine strain (LVS) in mice. The human cathelicidin antimicrobial peptide LL-37 is known to have immunomodulatory properties, and therefore exogenously administered LL-37 may be suitable as an early post-exposure therapy to protect against LVS infection. LL-37 has been evaluated for immunostimulatory activity in uninfected mice and for activity against LVS in macrophage assays and protective efficacy when administered post-challenge in a mouse model of respiratory tularemia. Increased levels of pro-inflammatory cytokine IL-6, chemokines monocyte chemoattractant protein 1 (MCP-1) and CXCL1 with increased neutrophil influx into the lungs were observed in uninfected mice after intranasal administration of LL-37. Following LVS challenge, LL-37 administration resulted in increased IL-6, IL-12 p70, IFNγ and MCP-1 production, a slowing of LVS growth in the lung, and a significant extension of mean time to death compared to control mice. However, protection was transient, with the LL-37 treated mice eventually succumbing to infection. As this short course of nasally delivered LL-37 was moderately effective at overcoming the immunosuppressive effects of LVS infection this suggests that a more sustained treatment regimen may be an effective therapy against this pathogen.  相似文献   

14.
The presence of non-native kinetic traps in the free energy landscape of a protein may significantly lengthen the overall folding time so that the folding process becomes unreliable. We use a computational model alpha-helical hairpin peptide to calculate structural free energy landscapes and relate them to the kinetics of folding. We show how protein engineering through strategic changes in only a few amino acid residues along the primary sequence can greatly increase the speed and reliability of the folding process, as seen experimentally. These strategic substitutions also prevent the formation of long-lived misfolded configurations that can cause unwanted aggregations of peptides. These results support arguments that removal of kinetic traps, obligatory or nonobligatory, is crucial for fast folding.  相似文献   

15.
Wu G  Wang S  Wang X  Li X  Deng X  Shen Z  Xi T 《Peptides》2011,32(7):1484-1487
In this study, antimicrobial peptide S-thanatin (Ts) was chemically synthesized and linked to keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA) by carbodiimide reagent. Rabbits were immunized with Ts-KLH and polyclonal antibody against Ts was purified by fractional precipitation of ammonium sulfate, coupled with anion-exchange chromatography. The purified antibody specifically binding to Ts residues but not BSA molecules was observed by Western-Blot analysis. Ts-BSA was selected as immobilized antigen and reacted with the residual antibody after the excess of anti-Ts antibody was combined with Ts in the sample. The binding antibody was recognized by HRP-conjugated secondary antibody. Finally, the horseradish peroxidase in the complex could catalyze the TMB substrate, resulting in color development. The method was evaluated by analysis of linearity, precision and accuracy and successfully applied in determination of Ts in rat plasma. The data of the pharmacokinetic parameters were also obtained. The proposed ELISA has a great value in routine analysis of Ts for its therapeutic monitoring and pharmacokinetic studies.  相似文献   

16.
Dai XL  Sun YX  Jiang ZF 《FEBS letters》2007,581(7):1269-1274
Amyloid-beta peptide (Abeta), the major constituent of senile plaques in the Alzheimer's disease (AD) brain, is the main source of oxidative stress leading to neurodegeneration. The methionine residue in this peptide is reported to be responsible for neurotoxicity. Structurally similar substitution with methionine 35 replaced by cysteine in Abeta(40) was synthesized, and this result in enhanced beta-sheet structures according to both circular dichroism (CD) spectra and beta-fibril specific fluorescence assay but attenuated cytotoxicity whether in the presence of copper or not. These findings may provide further evidence on disclosing the connection between amyloid beta-aggregation and Abeta-induced neurotoxicity.  相似文献   

17.
Arndt PF 《Gene》2007,390(1-2):75-83
Maximum likelihood phylogeny reconstruction methods are widely used in uncovering and assessing the evolutionary history and relationships of natural systems. However, several simplifying assumptions commonly made in this analysis limit the explanatory power of the results obtained. We present an algorithm that performs the phylogenetic analysis without making the common assumptions for sequence data from at least three leaf nodes in a star phylogeny. In particular, the underlying nucleotide substitution model does not have to be reversible and may include neighbor-dependent processes like the CpG methylation deamination process (CpG-effect). The base composition of the sequences at the external nodes and the one of the ancestral sequence may be different from each other and they do not have to be stationary state distributions of the corresponding substitution model. The algorithm is able to reconstruct the ancestral base composition and accurately estimate substitution frequencies in the branches of the star phylogeny. Extensive tests on simulated data validate the very favorable performance of the algorithm. As an application we present the analysis of aligned genomic sequences from human, mouse, and dog. Different substitution pattern can be observed in the three lineages.  相似文献   

18.
Solid-state NMR spectroscopy is used to determine the membrane-bound topological structure of a cationic β-hairpin antimicrobial peptide in which the number of Arg residues has been halved. The parent peptide, PG-1, was previously found to form transmembrane β-barrels in anionic membranes where the Arg residues complex with the lipid phosphate groups to cause toroidal pore defects in the membrane. In comparison, the charge-attenuated and less active mutant studied here forms β-sheets that lie on the surface of the zwitterionic membrane and only partially insert into the anionic membrane. The mutant also exhibits much looser contact with the lipid headgroups. These results indicate that transmembrane insertion and tight Arg-phosphate association are two important elements for strong antimicrobial activities of this class of peptides. Comparison with other β-hairpin antimicrobial peptides studied so far further suggests a relative potency scale for the various mechanisms of action for the β-sheet family of antimicrobial peptides. The transmembrane insertion-toroidal pore mechanism is the most potent in disrupting the lipid bilayer, followed by the large-amplitude in-plane motional mechanism. The carpet model, where peptides aggregate on the membrane surface to cause lateral expansion and eventual micellization of the membrane, is a weaker mechanism of action.  相似文献   

19.
Rensing KH  Samuels AL  Savidge RA 《Protoplasma》2002,220(1-2):0039-0049
Summary.  Trees depend on the secondary vascular cambium to produce cells for new xylem and phloem. The fusiform cells of this lateral meristem are long and narrow, presenting special challenges for arranging the mitotic spindle and phragmoplast. Fusiform cambial cells of Pinus ponderosa and Pinus contorta were studied by cryofixation and cryosubstitution which preserved ultrastructure and phases of cytokinesis with a resolution not previously attained. Membranous structures including the plasma membrane, tonoplast, and those of other organelles were smooth and unbroken, indicating that they were preserved while the protoplasm was in a fully turgid state. Mitotic spindles separated daughter chromosomes diagonally across the radial width of the cells. The cell plate was initiated at an angle to the cell axis between the anaphase chromosomes by a microtubule array which organized vesicles at the phragmoplast midline. Within the phragmoplast, vesicles initially joined across thin tubular projections and then amalgamated into a tubulo-vesicular network. Axial expansion of the cell plate generated two opposing phragmoplasts connected by a thin, extended bridge of cell plate and cytoplasm that was oriented along the cell axis. In the cytoplasmic bridge trailing each phragmoplast, the callose-rich tubular network gradually consolidated into a fenestrated plate and then a complete cell wall. Where new membrane merged with old, the parent plasmalemma appeared to be loosened from the cell wall and the membranes joined via a short tubulo-vesicular network. These results have not been previously reported in cambial tissue, but the same phases of cytokinesis have been observed in cryofixed root tips and suspension-cultured cells of tobacco. Received February 11, 2002; accepted May 31, 2002; published online October 31, 2002 RID="*" ID="*" Correspondence and reprints: Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada. Abbreviations: CFS cryofixation and cryosubstitution; ER endoplasmic reticulum; HPF high-pressure freezing; PPB preprophase band.  相似文献   

20.
The effects of intracellular Na(+) were studied on K(+) and Rb(+) currents through single KcsA channels. At low voltage, Na(+) produces voltage-dependent block, which becomes relieved at high voltage by a "punchthrough" mechanism representing Na(+) escaping from its blocking site through the selectivity filter. The Na(+) blocking site is located in the wide, hydrated vestibule, and it displays unexpected selectivity for K(+) and Rb(+) against Na(+). The voltage dependence of Na(+) block reflects coordinated movements of the blocker with permeant ions in the selectivity filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号