首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ADP-L-glycero-D-mannoheptose 6-epimerase is required for lipopolysaccharide inner core biosynthesis in several genera of Gram-negative bacteria. The enzyme contains both fingerprint sequences Gly-X-Gly-X-X-Gly and Gly-X-X-Gly-X-X-Gly near its N terminus, which is indicative of an ADP binding fold. Previous studies of this ADP-l-glycero-D-mannoheptose 6-epimerase (ADP-hep 6-epimerase) were consistent with an NAD(+) cofactor. However, the crystal structure of this ADP-hep 6-epimerase showed bound NADP (Deacon, A. M., Ni, Y. S., Coleman, W. G., Jr., and Ealick, S. E. (2000) Structure 5, 453-462). In present studies, apo-ADP-hep 6-epimerase was reconstituted with NAD(+), NADP(+), and FAD. In this report we provide data that shows NAD(+) and NADP(+) both restored enzymatic activity, but FAD could not. Furthermore, ADP-hep 6-epimerase exhibited a preference for binding of NADP(+) over NAD(+). The K(d) value for NADP(+) was 26 microm whereas that for NAD(+) was 45 microm. Ultraviolet circular dichroism spectra showed that apo-ADP-hep 6-epimerase reconstituted with NADP(+) had more secondary structure than apo-ADP-hep 6-epimerase reconstituted with NAD(+). Perchloric acid extracts of the purified enzyme were assayed with NAD(+)-specific alcohol dehydrogenase and NADP(+)-specific isocitric dehydrogenase. A sample of the same perchloric acid extract was analyzed in chromatographic studies, which demonstrated that ADP-hep 6-epimerase binds NADP(+) in vivo. A structural comparison of ADP-hep 6-epimerase with UDP-galactose 4-epimerase, which utilizes an NAD(+) cofactor, has identified the regions of ADP-hep 6-epimerase, which defines its specificity for NADP(+).  相似文献   

2.
Lipopolysaccharides constitute the outer leaflet of the outer membrane of Gram-negative bacteria and are therefore essential for cell growth and viability. The heptosyltransferase WaaC is a glycosyltransferase (GT) involved in the synthesis of the inner core region of LPS. It catalyzes the addition of the first L-glycero-D-manno-heptose (heptose) molecule to one 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residue of the Kdo2-lipid A molecule. Heptose is an essential component of the LPS core domain; its absence results in a truncated lipopolysaccharide associated with the deep-rough phenotype causing a greater susceptibility to antibiotic and an attenuated virulence for pathogenic Gram-negative bacteria. Thus, WaaC represents a promising target in antibacterial drug design. Here, we report the structure of WaaC from the Escherichia coli pathogenic strain RS218 alone at 1.9 A resolution, and in complex with either ADP or the non-cleavable analog ADP-2-deoxy-2-fluoro-heptose of the sugar donor at 2.4 A resolution. WaaC adopts the GT-B fold in two domains, characteristic of one glycosyltransferase structural superfamily. The comparison of the three different structures shows that WaaC does not undergo a domain rotation, characteristic of the GT-B family, upon substrate binding, but allows the substrate analog and the reaction product to adopt remarkably distinct conformations inside the active site. In addition, both binary complexes offer a close view of the donor subsite and, together with results from site-directed mutagenesis studies, provide evidence for a model of the catalytic mechanism.  相似文献   

3.
The first positive evidence for the utilization of a direct C-6' ' oxidation/reduction mechanism by ADP-l-glycero-d-manno-heptose 6-epimerase is reported here. The epimerase (HldD or AGME, formerly RfaD) operates in the biosynthetic pathway of l-glycero-d-manno-heptose, which is a conserved sugar in the core region of lipopolysaccharide (LPS) of Gram-negative bacteria. The stereochemical inversion catalyzed by the epimerase is interesting as it occurs at an "unactivated" stereocenter that lacks an acidic C-H bond, and therefore, a direct deprotonation/reprotonation mechanism cannot be employed. Instead, the epimerase employs a transient oxidation strategy involving a tightly bound NADP(+) cofactor. A recent study ruled out mechanisms involving transient oxidation at C-4' ' and C-7' ' and supported a mechanism that involves an initial oxidation directly at the C-6' ' position to generate a 6' '-keto intermediate (Read, J. A., Ahmed, R. A., Morrison, J. P., Coleman, W. G., Jr., Tanner, M. E. (2004) J. Am. Chem. Soc. 126, 8878-8879). A subsequent nonstereospecific reduction of the ketone intermediate can generate either epimer of the ADP-heptose. In this work, an intermediate analogue containing an aldehyde functionality at C-6' ', ADP-beta-d-manno-hexodialdose, is prepared in order to probe the ability of the enzyme to catalyze redox chemistry at this position. It is found that incubation of the aldehyde with a catalytic amount of the epimerase leads to a dismutation process in which one-half of the material is oxidized to ADP-beta-d-mannuronic acid and the other half is reduced to ADP-beta-d-mannose. Transient reduction of the enzyme-bound NADP(+) was monitored by UV spectroscopy and implicates the cofactor's involvement during catalysis.  相似文献   

4.
Folate co-enzymes play a pivotal role in one-carbon transfer cellular processes. Many eukaryotes encode the tri-functional tetrahydrofolate dehydrogenase/cyclohydrolase/synthetase (deh/cyc/syn) enzyme, which consists of a N-terminal bifunctional domain (deh/cyc) and a C-terminal monofunctional domain (syn). Here, we report the first analogous archeal enzyme structures, for the bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase from Thermoplasma acidophilum (TaMTHFDC) as the native protein and also as its NADP complex. The TaMTHFDC structure is a dimer with a polar interface, as well as a NADP binding site that shows minor conformational change. The orientations of the residues in the NADP binding site do not change on ligand binding, incorporating three water molecules which are hydrogen bonded with phosphate groups of NADP in the structure of the complex. Our structural information will contribute to an improved understanding of the basis of THF and one-carbon metabolism.  相似文献   

5.
Morrison JP  Tanner ME 《Biochemistry》2007,46(12):3916-3924
ADP-l-glycero-d-manno-heptose 6-epimerase (HldD or AGME, formerly RfaD) catalyzes the inversion of configuration at C-6' ' of the heptose moiety of ADP-d-glycero-d-manno-heptose and ADP-l-glycero-d-manno-heptose. The epimerase HldD operates in the biosynthetic pathway of l-glycero-d-manno-heptose, which is a conserved sugar in the core region of lipopolysaccharide (LPS) of Gram-negative bacteria. Previous studies support a mechanism in which HldD uses its tightly bound NADP+ cofactor to oxidize directly at C-6' ', generating a ketone intermediate. A reduction of the ketone from the opposite face then occurs, generating the epimeric product. How the epimerase is able access both faces of the ketone intermediate with correct alignment of the three required components, NADPH, the ketone carbonyl, and a catalytic acid/base residue, is addressed here. It is proposed that the epimerase active site contains two catalytic pockets, each of which bears a catalytic acid/base residue that facilitates reduction of the C-6' ' ketone but leads to a distinct epimeric product. The ketone carbonyl may access either pocket via rotation about the C-5' '-C-6' ' bond of the sugar nucleotide and in doing so presents opposing faces to the bound cofactor. Evidence in support of the two-base mechanism is found in studies of two single mutants of the Escherichia coli K-12 epimerase, Y140F and K178M, both of which have severely compromised epimerase activities that are more than 3 orders of magnitude lower than that of the wild type. The catalytic competency of these two mutants in promoting redox chemistry is demonstrated with an alternate catalytic activity that requires only one catalytic base: dismutation of a C-6' ' aldehyde substrate analogue (ADP-beta-d-manno-hexodialdose) to an acid and an alcohol (ADP-beta-d-mannuronic acid and ADP-beta-d-mannose). This study identifies the two catalytic bases as tyrosine 140 and lysine 178. A one-step enzymatic conversion of mannose into ADP-beta-mannose is also described and used to make C-6' '-substituted derivatives of this sugar nucleotide.  相似文献   

6.
The synthesis of deoxy-thymidine di-phosphate (dTDP)-L-rhamnose, an important component of the cell wall of many microorganisms, is a target for therapeutic intervention. The first enzyme in the dTDP-L-rhamnose biosynthetic pathway is glucose-1-phosphate thymidylyltransferase (RmlA). RmlA is inhibited by dTDP-L-rhamnose thereby regulating L-rhamnose production in bacteria. The structure of Pseudomonas aeruginosa RmlA has been solved to 1.66 A resolution. RmlA is a homotetramer, with the monomer consisting of three functional subdomains. The sugar binding and dimerization subdomains are unique to RmlA-like enzymes. The sequence of the core subdomain is found not only in sugar nucleotidyltransferases but also in other nucleotidyltransferases. The structures of five distinct enzyme substrate- product complexes reveal the enzyme mechanism that involves precise positioning of the nucleophile and activation of the electrophile. All the key residues are within the core subdomain, suggesting that the basic mechanism is found in many nucleotidyltransferases. The dTDP-L-rhamnose complex identifies how the protein is controlled by its natural inhibitor. This work provides a platform for the design of novel drugs against pathogenic bacteria.  相似文献   

7.
Zou Y  Li C  Brunzelle JS  Nair SK 《Biochemistry》2007,46(14):4294-4304
Diversity in the polysaccharide component of lipopolysaccharide (LPS) contributes to the persistence and pathogenesis of Gram-negative bacteria. The Nudix hydrolase GDP-mannose mannosyl hydrolase (Gmm) contributes to this diversity by regulating the concentration of mannose in LPS biosynthetic pathways. Here, we present seven high-resolution crystal structures of Gmm from the enteropathogenic E. coli strain O128: the structure of the apo enzyme, the cocrystal structure of Gmm bound to the product Mg2+-GDP, two cocrystal structures of precatalytic and turnover complexes of Gmm-Ca2+-GDP-alpha-d-mannose, and three cocrystal structures of an inactive mutant (His-124 --> Leu) Gmm bound to substrates GDP-alpha-d-mannose, GDP-alpha-d-glucose, and GDP-beta-l-fucose. These crystal structures help explain the molecular basis for substrate specificity and promiscuity and provide a structural framework for reconciling previously determined kinetic parameters. Unexpectedly, these structures reveal concerted changes in the enzyme structure that result in the formation of a catalytically competent active site only in the presence of the substrate/product. These structural views of the enzyme may provide a rationale for the design of inhibitors that target the biosynthesis of LPS by pathogenic bacteria.  相似文献   

8.
10-Formyltetrahydrofolate dehydrogenase (FDH) catalyzes an NADP+-dependent dehydrogenase reaction resulting in conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. This reaction is a result of the concerted action of two catalytic domains of FDH, the amino-terminal hydrolase domain and the carboxyl-terminal aldehyde dehydrogenase domain. In addition to participation in the overall FDH mechanism, the C-terminal domain is capable of NADP+-dependent oxidation of short chain aldehydes to their corresponding acids. We have determined the crystal structure of the C-terminal domain of FDH and its complexes with oxidized and reduced forms of NADP. Compared to other members of the ALDH family, FDH demonstrates a new mode of binding of the 2'-phosphate group of NADP via a water-mediated contact with Gln600 that may contribute to the specificity of the enzyme for NADP over NAD. The structures also suggest how Glu673 can act as a general base in both acylation and deacylation steps of the reaction. In the apo structure, the general base Glu673 is positioned optimally for proton abstraction from the sulfur atom of Cys707. Upon binding of NADP+, the side chain of Glu673 is displaced from the active site by the nicotinamide ring and contacts a chain of highly ordered water molecules that may represent a pathway for translocation of the abstracted proton from Glu673 to the solvent. When reduced, the nicotinamide ring of NADP is displaced from the active site, restoring the contact between Cys707 and Glu673 and allowing the latter to activate the hydrolytic water molecule in deacylation.  相似文献   

9.
The nicotinamide nucleotide transhydrogenases (TH) of mitochondria and bacteria are membrane-intercalated proton pumps that transduce substrate binding energy and protonmotive force via protein conformational changes. In mitochondria, TH utilizes protonmotive force to promote direct hydride ion transfer from NADH to NADP, which are bound at the distinct extramembranous domains I and III, respectively. Domain II is the membrane-intercalated domain and contains the enzyme's proton channel. This paper describes the crystal structure of the NADP(H) binding domain III of bovine TH at 1.2 A resolution. The structure reveals that NADP is bound in a manner inverted from that previously observed for nucleotide binding folds. The non-classical binding mode exposes the NADP(H) nicotinamide ring for direct contact with NAD(H) in domain I, in accord with biochemical data. The surface of domain III surrounding the exposed nicotinamide is comprised of conserved residues presumed to form the interface with domain I during hydride ion transfer. Further, an adjacent region contains a number of acidic residues, forming a surface with negative electrostatic potential which may interact with extramembranous loops of domain II. Together, the distinctive surface features allow mechanistic considerations regarding the NADP(H)-promoted conformation changes that are involved in the interactions of domain III with domains I and II for hydride ion transfer and proton translocation.  相似文献   

10.
The crystal structure of Methanococcus jannaschii shikimate 5-dehydrogenase (MjSDH) bound to the cofactor nicotinamide adenine dinucleotide phosphate (NADP) has been determined at 2.35 A resolution. Shikimate 5-dehydrogenase (SDH) is responsible for NADP-dependent catalysis of the fourth step in shikimate biosynthesis, which is essential for aromatic amino acid metabolism in bacteria, microbial eukaryotes, and plants. The structure of MjSDH is a compact alpha/beta sandwich with two distinct domains, responsible for binding substrate and the NADP cofactor, respectively. A phylogenetically conserved deep cleft on the protein surface corresponds to the enzyme active site. The structure reveals a topologically new domain fold within the N-terminal segment of the polypeptide chain, which binds substrate and supports dimerization. Insights gained from homology modeling and sequence/structure comparisons suggest that the SDHs represent a unique class of dehydrogenases. The structure provides a framework for further investigation to discover and develop novel inhibitors targeting this essential enzyme.  相似文献   

11.
Shikimate dehydrogenase (EC 1.1.1.25) catalyses the fourth step of the shikimate pathway which is required for the synthesis of the aromatic amino acids and other aromatic compounds in bacteria, microbial eukaryotes, and plants. The crystal structures of the shikimate dehydrogenase AroE from Thermus thermophilus HB8 in its ligand-free form, binary complexes with cofactor NADP+ or substrate shikimate, and the ternary complex with both NADP(H) and shikimate were determined by X-ray diffraction method at atomic resolutions. The crystals are nearly isomorphous with the asymmetric unit containing a dimer, each subunit of which has a bi-domain structure of compact alpha/beta sandwich folds. The two subunits of the enzyme display asymmetry in the crystals due to different relative orientations between the N- and C-terminal domains resulting in a slightly different closure of the interdomain clefts. NADP(H) is bound to the more closed form only. This closed conformation with apparent higher affinity to the cofactor is also observed in the unliganded crystal form, indicating that the NADP(H) binding to TtAroE may follow the selection mode where the cofactor binds to the subunit that happens to be in the closed conformation in solution. Crystal structures of the closed subunits with and without NADP(H) show no significant structural difference, suggesting that the cofactor binding to the closed subunit corresponds to the lock-and-key model in TtAroE. On the other hand, shikimate binds to both open and closed subunit conformers of both apo and NADP(H)-liganded holo enzyme forms. The ternary complex TtAroE:NADP(H):shikimate allows unambiguous visualization of the SDH permitting elucidation of the roles of conserved residues Lys64 and Asp100 in the hydride ion transfer between NADP(H) and shikimate.  相似文献   

12.
The small inorganic complex Cr(CN)6(3-) is a clean inhibitor of the ferredoxin: NADP+ reductase-catalysed oxidation of reduced spinach ferredoxin by NADP+. Independent spectrophotometric measurements show that millimolar additions of Cr(CN)6(3-) to mixtures of ferredoxin and ferredoxin NADP+ reductase give a marked attenuation of the difference spectrum characteristic of ferredoxin-ferredoxin: NADP+ reductase complex formation. Since there is no evidence, from NMR studies, for significant binding of Cr(CN)6(3-) to ferredoxin, these results indicate that Cr(CN)6(3-) binds to ferredoxin: NADP+ reductase at a site which is crucial to its interaction with the electron-transfer protein. The effective kinetic binding constant for Cr(CN)6(3-), measured at low ferredoxin concentration, is 445 M-1 (ie Kdiss congruent to 2 mM) at 25 degrees, pH7.5, I = 0.10 M. With assumption of a simple electrostatic interaction, an enzyme domain with an effective charge of 3+/4+ is proposed.  相似文献   

13.
Transhydrogenase couples the stereospecific and reversible transfer of hydride equivalents from NADH to NADP(+) to the translocation of proton across the inner membrane in mitochondria and the cytoplasmic membrane in bacteria. Like all transhydrogenases, the Escherichia coli enzyme is composed of three domains. Domains I and III protrude from the membrane and contain the binding site for NAD(H) and NADP(H), respectively. Domain II spans the membrane and constitutes at least partly the proton translocating pathway. Three-dimensional models of the hydrophilic domains I and III deduced from crystallographic and NMR data and a new topology of domain II are presented. The new information obtained from the structures and the numerous mutation studies strengthen the proposition of a binding change mechanism, as a way to couple the reduction of NADP(+) by NADH to proton translocation and occurring mainly at the level of the NADP(H) binding site.  相似文献   

14.
BACKGROUND: The biosynthesis of the essential amino acid lysine in higher fungi and cyanobacteria occurs via the alpha-aminoadipate pathway, which is completely different from the lysine biosynthetic pathway found in plants and bacteria. The penultimate reaction in the alpha-aminoadipate pathway is catalysed by NADPH-dependent saccharopine reductase. We set out to determine the structure of this enzyme as a first step in exploring the structural biology of fungal lysine biosynthesis. RESULTS: We have determined the three-dimensional structure of saccharopine reductase from the plant pathogen Magnaporthe grisea in its apo form to 2.0 A resolution and as a ternary complex with NADPH and saccharopine to 2.1 A resolution. Saccharopine reductase is a homodimer, and each subunit consists of three domains, which are not consecutive in amino acid sequence. Domain I contains a variant of the Rossmann fold that binds NADPH. Domain II folds into a mixed seven-stranded beta sheet flanked by alpha helices and is involved in substrate binding and dimer formation. Domain III is all-helical. The structure analysis of the ternary complex reveals a large movement of domain III upon ligand binding. The active site is positioned in a cleft between the NADPH-binding domain and the second alpha/beta domain. Saccharopine is tightly bound to the enzyme via a number of hydrogen bonds to invariant amino acid residues. CONCLUSIONS: On the basis of the structure of the ternary complex of saccharopine reductase, an enzymatic mechanism is proposed that includes the formation of a Schiff base as a key intermediate. Despite the lack of overall sequence homology, the fold of saccharopine reductase is similar to that observed in some enzymes of the diaminopimelate pathway of lysine biosynthesis in bacteria. These structural similarities suggest an evolutionary relationship between two different major families of amino acid biosynthetic pathway, the glutamate and aspartate families.  相似文献   

15.
Pyruvate:NADP+ oxidoreductase from Euglena gracilis, a homodimeric protein with a molecular weight of 309 kDa, is an iron-sulfur flavoenzyme that contains thiamin pyrophosphate (TPP). The functional structure of the enzyme was studied by a limited proteolysis experiment using trypsin. The evidence obtained shows that the enzyme consists of two functional domains, one of which contains an iron-sulfur cluster, which can be isolated as a homodimeric fragment of approximately 220 kDa by proteolysis. The other domain that contains FAD is released as a monomeric fragment of approximately 55 kDa. The pyruvate dehydrogenase reaction is still catalyzed by the large fragment when NADP+ is substituted by methyl viologen, while the small fragment retains a diaphorase-like electron-transfer activity from NADPH to MV. It is thus shown that pyruvate is oxidized in a CoA-dependent reaction to form CO2 and acetyl-CoA in the iron-sulfur domain, and that the two electrons formed are transferred to the FAD domain in which NADP+ is reduced. TPP is considered to be associated in the iron-sulfur domain. The NH2-terminal sequences of the enzyme and its proteolytic fragments reveal that the iron-sulfur domain occurs in the NH2-terminal side of the enzyme. For elucidation of the O2 instability of the enzyme, limited proteolysis was attempted in air. The tryptic fragment derived from the iron-sulfur domain, similar to the native enzyme, appears to be inactivated by direct contact with O2. In contrast, the FAD domain, when separated from the other domain, is quite stable in air, although the diaphorase activity decays when the native enzyme is exposed to O2.  相似文献   

16.
We generated a panel of mAb containing at least one specificity against each of the known chemotypes of the Salmonella LPS core domain and used them to investigate the accessibility of core determinants in smooth LPS. Most of the mAb were reactive with at the most three chemotypes of the core as determined by enzyme immunoassay and failed to bind smooth LPS or any of the complete cores of E. coli. One mAb, MASC1-MM3 (MM3), reacted with six different Salmonella core chemotypes, the R2 core of Escherichia coli and a variety of smooth LPS. This mAb reacted equally well with live and heat-killed bacteria. It bound to 123 of 126 clinical isolates of Salmonella and 11 of 73 E. coli strains in a dot-immunoblot assay. Typical ladder-like patterns of bands were observed after immunoblotting of this mAb against electrophoretically resolved smooth LPS from the five major serogroups of Salmonella species (A, B, C1, D1, and E). MM3 had no reactivity with BSA conjugates of O-Ag polysaccharides from the above serogroups confirming specificity for a core epitope. Polysaccharides derived from or synthetic saccharides representative of the various chemotypes of Salmonella LPS core were tested as competitive inhibitors of the binding of MM3 to LPS. The results led to a conclusion that MM3 recognizes the structure, L-alpha-D-Heptose1-->7-L-alpha-D-Heptose1-->disaccharide present as a branch in the Ra, Rb1, Rb2, Rb3 and Rc but lacking in the Rd1, Rd2, and Re chemotypes of the Salmonella LPS core. This disaccharide seems free and accessible on the basis of the previously calculated conformations of the Salmonella (Ra) and E. coli complete cores (R1, R2, R3, R4, and K12). It therefore defines or contains an epitope within the inner core subdomain of Salmonella LPS that is accessible to antibody in long-chained LPS and in intact bacteria with complete LPS.  相似文献   

17.
The core lipopolysaccharide (LPS) of Klebsiella pneumoniae is characterized by the presence of disaccharide alphaGlcN-(1,4)-alphaGalA attached by an alpha1,3 linkage to l-glycero-d-manno-heptopyranose II (ld-HeppII). Previously it has been shown that the WabH enzyme catalyzes the incorporation of GlcNAc from UDP-GlcNAc to outer core LPS. The presence of GlcNAc instead of GlcN and the lack of UDP-GlcN in bacteria indicate that an additional enzymatic step is required. In this work we identified a new gene (wabN) in the K. pneumoniae core LPS biosynthetic cluster. Chemical and structural analysis of K. pneumoniae non-polar wabN mutants showed truncated core LPS with GlcNAc instead of GlcN. In vitro assays using LPS truncated at the level of d-galacturonic acid (GalA) and cell-free extract containing WabH and WabN together led to the incorporation of GlcN, whereas none of them alone were able to do it. This result suggests that the later enzyme (WabN) catalyzes the deacetylation of the core LPS containing the GlcNAc residue. Thus, the incorporation of the GlcN residue to core LPS in K. pneumoniae requires two distinct enzymatic steps. WabN homologues are found in Serratia marcescens and some Proteus strains that show the same disaccharide alphaGlcN-(1,4)-alphaGalA attached by an alpha1,3 linkage to ld-HeppII.  相似文献   

18.
Maize ferredoxin-NADP(+) reductase (FNR) consists of flavin adenine dinucleotide (FAD) and NADP(+) binding domains with a FAD molecule bound noncovalently in the cleft between these domains. The structural changes of FNR induced by dissociation of FAD have been characterized by a combination of optical and biochemical methods. The CD spectrum of the FAD-depleted FNR (apo-FNR) suggested that removal of FAD from holo-FNR produced an intermediate conformational state with partially disrupted secondary and tertiary structures. Small angle x-ray scattering indicated that apo-FNR assumes a conformation that is less globular in comparison with holo-FNR but is not completely chain-like. Interestingly, the replacement of tyrosine 95 responsible for FAD binding with alanine resulted in a molecular form similar to apo-protein of the wild-type enzyme. Both apo- and Y95A-FNR species bound to Cibacron Blue affinity resin, indicating the presence of a native-like conformation for the NADP(+) binding domain. On the other hand, no evidence was found for the existence of folded conformations in the FAD binding domains of these proteins. These results suggested that FAD-depleted FNR assumes a partially folded structure with a residual NADP(+) binding domain but a disordered FAD binding domain.  相似文献   

19.
L-Aspartate-beta-semialdehyde dehydrogenase (ASADH) catalyzes the reductive dephosphorylation of beta-aspartyl phosphate to L-aspartate-beta-semialdehyde in the aspartate biosynthetic pathway of plants and micro-organisms. The aspartate pathway produces fully one-quarter of the naturally occurring amino acids, but is not found in humans or other eukaryotic organisms, making ASADH an attractive target for the development of new antibacterial, fungicidal, or herbicidal compounds. We have determined the structure of ASADH from Vibrio cholerae in two states; the apoenzyme and a complex with NADP, and a covalently bound active site inhibitor, S-methyl-L-cysteine sulfoxide. Upon binding the inhibitor undergoes an enzyme-catalyzed reductive demethylation leading to a covalently bound cysteine that is observed in the complex structure. The enzyme is a functional homodimer, with extensive intersubunit contacts and a symmetrical 4-amino acid bridge linking the active site residues in adjacent subunits that could serve as a communication channel. The active site is essentially preformed, with minimal differences in active site conformation in the apoenzyme relative to the ternary inhibitor complex. The conformational changes that do occur result primarily from NADP binding, and are localized to the repositioning of two surface loops located on the rim at opposite sides of the NADP cleft.  相似文献   

20.
l-Rhamnose is a 6-deoxyhexose that is found in a variety of different glycoconjugates in the cell walls of pathogenic bacteria. The precursor of l-rhamnose is dTDP-l-rhamnose, which is synthesised from glucose- 1-phosphate and deoxythymidine triphosphate (dTTP) via a pathway requiring four enzymes. Significantly this pathway does not exist in humans and all four enzymes therefore represent potential therapeutic targets. dTDP-D-glucose 4,6-dehydratase (RmlB; EC 4.2.1.46) is the second enzyme in the dTDP-L-rhamnose biosynthetic pathway. The structure of Salmonella enterica serovar Typhimurium RmlB had been determined to 2.47 A resolution with its cofactor NAD(+) bound. The structure has been refined to a crystallographic R-factor of 20.4 % and an R-free value of 24.9 % with good stereochemistry.RmlB functions as a homodimer with monomer association occurring principally through hydrophobic interactions via a four-helix bundle. Each monomer exhibits an alpha/beta structure that can be divided into two domains. The larger N-terminal domain binds the nucleotide cofactor NAD(+) and consists of a seven-stranded beta-sheet surrounded by alpha-helices. The smaller C-terminal domain is responsible for binding the sugar substrate dTDP-d-glucose and contains four beta-strands and six alpha-helices. The two domains meet to form a cavity in the enzyme. The highly conserved active site Tyr(167)XXXLys(171) catalytic couple and the GlyXGlyXXGly motif at the N terminus characterise RmlB as a member of the short-chain dehydrogenase/reductase extended family.The quaternary structure of RmlB and its similarity to a number of other closely related short-chain dehydrogenase/reductase enzymes have enabled us to propose a mechanism of catalysis for this important enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号