首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of retroviral DNA and RNA synthesis are parameters vital to understanding viral growth, especially for human immunodeficiency virus (HIV), which encodes several of its own regulatory genes. We have established a single-cycle growth condition for HIV in H9 cells, a human CD4+ lymphocyte line. The full-length viral linear DNA is first detectable by 4 h postinfection. During a one-step growth of HIV, amounts of viral DNA gradually increase until 8 to 12 h postinfection and then decrease. The copy number of unintegrated viral DNA is not extraordinarily high even at its peak. Most strikingly, there is a temporal program of RNA accumulation: the earliest RNA is greatly enriched in the 2-kilobase subgenomic mRNA species, while the level of 9.2-kilobase RNA which is both genomic RNA and mRNA remains low until after 24 h of infection. Virus production begins at about 24 h postinfection. Thus, viral DNA synthesis is as rapid as for other retroviruses, but viral RNA synthesis involves temporal alteration in the species that accumulate, presumably as a consequence of viral regulatory genes.  相似文献   

2.
Cytoplasmic viral DNA synthesis can be followed efficiently by [3H]thymidine labeling of cells exogenously infected with Moloney murine leukemia virus. Both the negative and the positive strands of viral DNA reached their maximal level in the cytoplasm at 3.5 h postinfection. Interferon treatment before infection markedly reduced the amount of viral DNA formed during the first 3.5 h, but led to a second major wave of viral DNA synthesis, peaking at 7.5 h postinfection. No such late cytoplasmic DNA synthesis occurred in the untreated control. Inhibition of protein synthesis by cycloheximide, on the other hand, stimulated cytoplasmic viral DNA synthesis during the first 3.5 h.  相似文献   

3.
Bunyamwera virus replication was examined in Aedes albopictus (mosquito) cell cultures in which a persistent infection is established and in cytopathically infected BHK cells. During primary infection of A. albopictus cells, Bunyamwera virus reached relatively high titers (107 PFU/ml), and autointerference was not observed. Three virus-specific RNAs (L, M, and S) and two virion proteins (N and G1) were detected in infected cells. Maximum rates of viral RNA synthesis and viral protein synthesis were extremely low, corresponding to <2% of the synthetic capacities of uninfected control cells. Viral protein synthesis was maximal at 12 h postinfection and was shut down to barely detectable levels at 24 h postinfection. Virus-specific RNA and nucleocapsid syntheses showed similar patterns of change, but later in infection. The proportions of cells able to release a single PFU at 3, 6, and 54 days postinfection were 100, 50, and 1.5%, respectively. Titers fell to 103 to 105 PFU/ml in carrier cultures. Persistently infected cultures were resistant to superinfection with homologous virus but not with heterologous virus. No changes in host cell protein synthesis or other cytopathic effects were observed at any stage of infection. Small-plaque variants of Bunyamwera virus appeared at approximately 7 days postinfection and increased gradually until they were 75 to 95% of the total infectious virus at 66 days postinfection. Temperature-sensitive mutants appeared between 23 and 49 days postinfection. No antiviral activity similar to that reported in A. albopictus cell cultures persistently infected with Sindbis virus (R. Riedel and D. T. Brown, J. Virol. 29: 51-60, 1979) was detected in culture fluids by 3 months after infection. Bunyamwera virus replicated more rapidly in BHK cells than in mosquito cells but reached lower titers. Autointerference occurred at multiplicities of infection of 10. Virus-specific RNA and protein syntheses were at least 20% of the levels in uninfected control cells. Host cell protein synthesis was completely shut down, and nucleocapsid protein accumulated until it was 4% of the total cell protein. We discuss these results in relation to possible mechanisms involved in determining the outcome of arbovirus infection of vertebrate and mosquito cells.  相似文献   

4.
Monolayers of CV-1 cells were synchronized at the G1/S boundary of the cell cycle by a 24-h 2 mM thymidine blockade. Uptake of tritiated thymidine indicated that the peak DNA synthesis occurred 6-8 h after release from the block and that cell cycle time was 18-20 h. The fatty acid composition of phospholipids extracted from cells at 0, 7, and 18 h postblockade was measured by gas chromatography. The results indicate cyclic changes in membrane fatty acids with a significant increase in long-chain polyunsaturated fatty acids during the DNA synthesis phase (S phase) of the cell cycle.  相似文献   

5.
6.
7.
8.
Pretreatment of human lymphocytes for 2 days in 2 X 10(-6)M ouabain caused irreversible loss of their subsequent capacity to stimulate in the mixed lymphocyte reaction (MLR). Pretreatment for the same period with 10(-7)M ouabain resulted in an enhanced incorporation of thymidine into DNA of the responding cells in the MLR; this effect was also on the stimulating cells, as previously reported by Christen et al. (Cell, Immunol. 19, 137-142 (1975)). Pretreatment of stimulating lymphocytes with 10(-7)M ouabain caused a persistent but reversible inhibition of the synthesis of RNA and protein in the MLR; peak incorporation of labelled uridine or alanine reached the same level as that of the control cultures, but 24 h later. Exactly the same persistent but reversible inhibition was found in the case of DNA syntheis of cells pretreated with 10(-7)M ouabain and then stimulated by antigens (streptolysin-O and varidase) or by mitogens (phytohemagglutinin and concanavalin A); the same level of incorporation of labelled thymidine occurred but 24-48 h later than in the case of the controls. Pretreatment with the cardiotonic steroid under these conditions also resulted in a pronounced inhibition of the basal, unstimulated levels of RNA and protein synthesis in the case of both control lymphocytes and those which had been treated with mitomycin C. The effects of ouabain pretreatment on basal RNA and protein synthesis were identical for both 2 X 10(-6)M and for 10(-7)M; the effect of pretreatment of stimulating cells with these two concentrations was completely opposite: irreversible inhibition of the proliferative response of allogeneic responding cells at the former concentration and delayed activation at the latter.  相似文献   

9.
Infection of baby hamster kidney cells (BHK-21/13) with Saint Louis encephalitis (SLE) virus depressed the rate of protein and ribonucleic acid (RNA) synthesis until viral RNA synthesis began 6 hr postinfection (PI). Virus-directed RNA synthesis was subsequently inhibited until 12 hr PI when virion maturation began. The rate of protein synthesis reached a peak 6 hr PI and was subsequently depressed until just before the onset of virion maturation. Density gradient analysis of phenol-extracted RNA from actinomycin-treated infected cells indicated that, at 6 to 8 hr and again at 12 to 20 hr PI, three species of viral-specific RNA were synthesized. The most rapid sedimenting form (43S) was ribonuclease-sensitive and had a base composition similar to the RNA isolated from mature virions. The 20S RNA species was ribonuclease-resistant and had a sedimentation coefficient and base composition similar to the replicative form associated with other arbovirus infections. The 26S RNA was ribonuclease-resistant (0.2 mug/ml, 0.1 m NaCl, 25 C, 30 min) and had a nucleotide base composition closer to the 20S form than to the values for 43S RNA. Five-minute pulse labeling of infected cultures during the period viral RNA synthesis was maximal resulted in labeling of only the 20S to 22S RNA fractions. With pulse-labeling periods of 10 min, both the 20S and 26S RNA species were radioactive. Periods of radioactive labeling of as long as 15 min were required before the 43S form was radioactively labeled. These results suggest that the 20S and 26S RNA may be intermediate forms in the synthesis of 43S viral RNA.  相似文献   

10.
The genomes of the rotaviruses consist of 11 segments of double-stranded RNA. During RNA replication, the viral plus-strand RNA serves as the template for minus-strand RNA synthesis. To characterize the kinetics of RNA replication, the synthesis and steady-state levels of viral plus- and minus-strand RNA and double-stranded RNA in simian rotavirus SA11-infected MA104 cells were analyzed by electrophoresis on 1.75% agarose gels containing 6 M urea (pH 3.0). Synthesis of viral plus-strand and minus-strand RNAs was detected initially at 3 h postinfection. The steady-state levels of plus- and minus-strand RNAs increased from this time until 9 to 12 h postinfection, at which time the levels were maximal. Pulse-labeling of infected cells with [3H]uridine showed that the ratio of plus- to minus-strand RNA synthesis changed during infection and that the maximal level of minus-strand RNA synthesis occurred several hours prior to the peak of plus-strand RNA synthesis. No direct correlation was found between the levels of plus-strand and minus-strand RNA synthesis in the infected cell. Pulse-labelling studies indicated that both newly synthesized and preexisting plus-strand RNA can act as templates for minus-strand RNA synthesis throughout infection. Studies also showed that less than 1 h was required between the synthesis of minus-strand RNA in vivo and its release from the cell within virions.  相似文献   

11.
The temporal sequence of coronavirus plus-strand and minus-strand RNA synthesis was determined in 17CL1 cells infected with the A59 strain of mouse hepatitis virus (MHV). MHV-induced fusion was prevented by keeping the pH of the medium below pH 6.8. This had no effect on the MHV replication cycle, but gave 5- to 10-fold-greater titers of infectious virus and delayed the detachment of cells from the monolayer which permitted viral RNA synthesis to be studied conveniently until at least 10 h postinfection. Seven species of poly(A)-containing viral RNAs were synthesized at early and late times after infection, in nonequal but constant ratios. MHV minus-strand RNA synthesis was first detected at about 3 h after infection and was found exclusively in the viral replicative intermediates and was not detected in 60S single-stranded form in infected cells. Early in the replication cycle, from 45 to 65% of the [3H]uridine pulse-labeled RF core of purified MHV replicative intermediates was in minus-strand RNA. The rate of minus-strand synthesis peaked at 5 to 6 h postinfection and then declined to about 20% of the maximum rate. The addition of cycloheximide before 3 h postinfection prevented viral RNA synthesis, whereas the addition of cycloheximide after viral RNA synthesis had begun resulted in the inhibition of viral RNA synthesis. The synthesis of both genome and subgenomic mRNAs and of viral minus strands required continued protein synthesis, and minus-strand RNA synthesis was three- to fourfold more sensitive to inhibition by cycloheximide than was plus-strand synthesis.  相似文献   

12.
H Iida  K Oda 《Journal of virology》1975,15(3):471-478
The pattern of synthesis of non-histone chromosomal proteins in simian virus (SV) 40-infected African green monkey kidney cells was analyzed by polyacryl-amide gel electrophoresis to see whether the changes in chromosomal protein metabolism are involved in the viral-induced synthesis of cellular DNA and mRNA. During the prereplicative phase of infection, the rate of histone synthesis was decreased until 15 h postinfection, whereas that of non-histone protein synthesis was increased after 5 h postinfection and reached a maximum at 10 to 15 h postinfection when viral-induced synthesis of cellular DNA and mRNA began to be observed. Stimulation of non-histone protein synthesis was also observed in the infected cells treated with cytosine arabinoside and was dependent on the multiplicity of infection. Stimulation occurred in almost all species of non-histone proteins. These results suggest that the stimulation of non-histone protein synthesis is caused by an early SV40 function and occurs prior to the viral-induced synthesis of cellular DNA and mRNA. During the replicative phase of infection, a marked increase in the rate of synthesis was observed in the non-histone proteins with molecular weights of about 48,000, 35,000, and 23,000, which were subsequently found to be SV40 capsid proteins.  相似文献   

13.
14.
15.
RNA species, extracted at the time of peak synthesis of the alpha, beta, and gamma classes of herpes simplex virus polypeptides from lytically infected Vero cells, were examined for homology to the BglII-N fragment (map units 0.58 to 0.63) of herpes simplex virus type 2 DNA. By using northern blot analysis, two major and several minor polyadenylated RNA species showed homology to the BglII-N fragment at times corresponding to the maximum synthesis of the beta (7 h postinfection) and gamma (12 h postinfection) herpes simplex virus polypeptides. No alpha RNA homologous to the BglII-N fragment was detected.  相似文献   

16.
17.
18.
19.
Inhibition of cellular DNA synthesis began 6 to 8 h after reovirus infection at a multiplicity of infection of 10 PFU per cell. However, as the multiplicity of infection was increased to a maximum of 103 PFU/cell, inhibition of DNA synthesis began earlier after infection (2-4 h postinfection), and the initial rate of inhibition increased. The enhanced inhibition of DNA replication at high virus multiplicities appeared to be selective since RNA synthesis was not detectably altered as late as 9 h postinfection and inhibition of protein synthesis did not begin until 7 to 9 h after infection. Early inhibition of DNA synthesis did not appear to be related to changes in thymidine pool characteristics, thymidine kinase activity, or detectable degradation of cellular DNA. Even though the particle-to-PFU ratio was increased by ultraviolet light inactivation of virus, the ability to induce early inhibition of DNA synthesis was not diminished.  相似文献   

20.
Characterization of the mRNA of influenza virus.   总被引:14,自引:7,他引:7  
S E Glass  D McGeoch    R D Barry 《Journal of virology》1975,16(6):1435-1443
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号