首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature is expected to modify the effects of ultraviolet radiation (UVR) on photosynthesis by affecting the rate of repair. We studied the effect of short‐term (1 h) and long‐term (days) acclimation to temperature on UVR photoinhibition in the diatom Thalassiosira pseudonana Hasle et Heimdal. Photosynthesis was measured during 1 h exposures to varying irradiances of PAR and UVR + PAR at 15, 20, and 25°C, the latter corresponding to the upper temperature limit for optimal growth in T. pseudonana. The exposures allowed the estimation of photosynthesis–irradiance (P–E) curves and biological weighting functions (BWFs) for photoinhibition. For the growth conditions used, temperature did not affect photosynthesis under PAR. However, photoinhibition by UVR was highly affected by temperature. For cultures preacclimated to 20°C, the extent of UVR photoinhibition increased with decreasing temperature, from 63% inhibition of PAR‐only photosynthesis at 25°C to 71% at 20°C and 85% at 15°C. These effects were slightly modified after several days of acclimation: UVR photoinhibition increased from 63% to 75% at 25°C and decreased from 85% to 80% at 15°C. Time courses of photochemical efficiency (ΦPSII) under UVR + PAR were also fitted to a model of UVR photoinhibition, allowing the estimation of the rates of damage (k) and repair (r). The r/k values obtained for each temperature treatment verified the responses observed with the BWF (R2 = 0.94). The results demonstrated the relevance of temperature in determining primary productivity under UVR exposures. However, the results suggested that temperature and UVR interact mainly over short (hours) rather than long (days) timescales.  相似文献   

2.
Ultraviolet radiation,ozone depletion,and marine photosynthesis   总被引:5,自引:0,他引:5  
Concerns about stratospheric ozone depletion have stimulated interest in the effects of UVB radiation (280–320 nm) on marine phytoplankton. Research has shown that phytoplankton photosynthesis can be severely inhibited by surface irradiance and that much of the effect is due to UV radiation. Quantitative generalization of these results requires a biological weighting function (BWF) to quantify UV exposure appropriately. Different methods have been employed to infer the general shape of the BWF for photoinhibition in natural phytoplankton, and recently, detailed BWFs have been determined for phytoplankton cultures and natural samples. Results show that although UVB photons are more damaging than UVA (320–400 nm), the greater fluxes of UVA in the ocean cause more UV inhibition. Models can be used to analyze the sensitivity of water column productivity to UVB and ozone depletion. Assumptions about linearity and time-dependence strongly influence the extrapolation of results. Laboratory measurements suggest that UV inhibition can reach a steady-state consistent with a balance between damage and recovery processes, leading to a non-linear relationship between weighted fluence rate and inhibition. More testing for natural phytoplankton is required, however. The relationship between photoinhibition of photosynthesis and decreases in growth rate is poorly understood, so long-term effects of ozone depletion are hard to predict. However, the wide variety of sensitivities between species suggests that some changes in species composition are likely. Predicted effects of ozone depletion on marine photosynthesis cannot be equated to changes in carbon flux between the atmosphere and ocean. Nonetheless, properly designed studies on the effects of UVB can help identify which physiological and ecological processes are most likely to dominate the responses of marine ecosystems to ozone depletion.Abbreviations BWF biological weighting function - BWF/P-I photosynthesis versus photosynthetically available irradiance as influenced by biologically-weighted UV - Chl chlorophyll a - DOM dissolved organic matter - E PAR irradiance in energy units (PAR) - E s saturation parameter for PAR in the BWF/P-I model - E inh * biologically-weighted dimensionless fluence rate for photoinhibition of photosynthesis by UV and PAR - biological weighting coefficient - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae% baaaa!37AC!\[\bar \varepsilon \]PAR biological weighting coefficient for damage to photosynthesis by E PAR - k() diffuse attenuation coefficient for wavelength - MAAs mycosporine-like amino acids - PAR photosynthetically available radiation - P B rate of photosynthesis normalized to Chl - P s B maximum attainable rate of photosynthesis in the absence of photoinhibition - UVA ultraviolet A (320–400 nm) - UVB ultraviolet B (280–320 nm)  相似文献   

3.
Seasonal changes in incident irradiance and underwater light penetration at Loch Leven from 1968 to 1971 are discussed in relation to the photosynthetic behaviour and crop density of phytoplankton. Light extinction was highest in the blue and lowest in the orange spectral regions, a pattern typical of other turbid waters. Euphotic depth varied between 1·2 and 7·4 m and was on average c. three times the Secchi disc transparency. Underwater light extinction depended chiefly on phytoplankton crop density (estimated as chlorophyll a). Despite the shallowness and wind-exposed situation of the loch there was no evidence of appreciable light extinction due to sediment disturbance. Possible causes of variability in the relationship between the minimum vertical extinction coefficient (k min) and the concentration of chlorophyll a are discussed. The value of ks, the increment in kmin per unit increment in algal concentration, was estimated from field data as 0·0086 In units per mg chl a/m2 and from laboratory spectroradiometer data as 0·0079 In units per mg chl a/m2. These ks values imply theoretical upper limits for the amount of chlorophyll a in the euphotic zone (Σn max) of 430 and 468 mg chl a/m2, respectively. Observed euphotic chlorophyll a contents (Σn) were sometimes close to these upper limits. Typical photosynthesis/depth profiles are described. Profile area is shown to be related to the logarithm of the ratio between surface-penetrating irradiance (Io') and the irradiance (Ik) defining the onset of light-saturation of photosynthesis. Standardized profiles, plotted on a common scale of ‘optical depth’, are used to illustrate the relatively minor influence of variations in Io' and Ik on hourly rates of photosynthesis per unit area. The saturation parameter (Ik) generally increased as photosynthetic capacity (Pmax) increased; the temperature-dependence of Ik is explained by the temperature-dependence of the enzyme-controlled (dark) reactions of photosynthesis, which control Pmax. A spring peak in the ratio between surface penetrating irradiance (Io') and Ik is interpreted as a result of a lag in the seasonal increase in water temperature with increase in surface irradiance. The gradient (K') of the linear light-limited region of the photosynthesis-irradiance curve showed little variation and had an average value of 0·31 mg O2/mg chl a.h per 1 W/m2 (PAR). Interactions between mixed depth, underwater light extinction and phytoplankton productivity are discussed; comparisons are made with other shallow, optically deep lakes.  相似文献   

4.
Net productivity and biomass night losses in outdoor chemostat cultures ofPhaeodactylum tricornutum were analyzed in two tubular airlift photobioreactors at different dilution rates, photobioreactor surface/volume ratios and incident solar irradiance. In addition, an approximate model for the estimation of light profile and average irradiance inside outdoor tubular photobioreactors was proposed. In both photobioreactors, biomass productivity increased with dilution rate and daily incident solar radiation except at the highest incident solar irradiances and dilution rates, when photoinhibition effect was observed in the middle of the day. Variation of estimated average irradiance vs mean incident irradiance showed two effects: first, the outdoor cultures are adapted to average irradiance, and second, simultaneous photolimitation and photoinhibition took place at all assayed culture conditions, the extent of this phenomena being a function of the (incident)1 irradiance and light regime inside the culture. Productivity ranged between 0.50 and 2.04 g L–1 d–1 in the tubular photobioreactor with the lower surface/volume ratio (S/V = 77.5 m–1) and between 1.08 and 2.76 g L–1 d–1 in the other (S/V = 122.0 m–1). The optimum dilution rate was 0.040 h–1 in both reactors. Night-time biomass losses were a function of the average irradiance inside the culture, being lower in TPB0.03 than TPB0.06, due to a better light regime in the first. In both photobioreactors, biomass night losses strongly decreased when the photoinhibition effect was pronounced. However, net biomass productivity also decreased due to lower biomass generation during the day. Thus, optimum culture conditions were obtained when photolimitation and photoinhibition were balanced.  相似文献   

5.
Observations of photosynthetically active radiation (PAR) and global solar radiation (G) at Wuhan, Central China during 2005–2012 were first reported to investigate PAR variability at different time scales and its PAR fraction (F p) under different sky conditions. Both G irradiances (I g) and PAR irradiances (I p) showed similar seasonal features that peaked in values at noon during summer and reached their lower values in winter. F p reached higher values during either sunrise or sunset; lower values of F p appeared at local noon because of the absorption effects of water vapor and clouds on long-wave radiation. There was an inverse relationship between clearness index (K t) and F p; the maximum I p decreased by 22.3 % (39.7 %) when sky conditions changed from overcast to cloudless in summer (winter); solar radiation was more affected by cloudiness than the seasonal variation in cloudy skies when compared with that in clear skies. The maximum daily PAR irradiation (R p) was 11.89 MJ m?2 day?1 with an annual average of 4.85 MJ m?2 day?1. F p was in the range of 29–61.5 % with annual daily average value being about 42 %. Meanwhile, hourly, daily, and monthly relationships between R p and G irradiation (R g) under different sky conditions were investigated. It was discovered that cloudy skies were the dominated sky condition in this region. Finally, a clear-sky PAR model was developed by analyzing the dependence of PAR irradiances on optical air mass under various sky conditions for the whole study period in Central China, which will lay foundations for ecological process study in the near future.  相似文献   

6.
To assess the short- and long-term impacts of Ultraviolet radiation (UVR, 280–400 nm) on the red tide alga Chaetoceros curvisetus, we exposed cells to three different solar radiation treatments–PAB:280–700 nm, PA:320–700 nm, and P:400–700 nm under 20°C incubated temperature. Short-term exposures were investigated: the photochemical efficiency (ΦPSII) versus irradiance curves under six levels of solar radiation by covering the incubators with a variable number of neutral density screens (the irradiance thus varied from 100 to 3%) lasting 1 h, and long-term exposures were designed to assess how the cells acclimate to solar radiation (the growth, UVabc and ratio of repair to damage rates of D1 protein were detected). A significant decrease in the photochemical efficiency (ΦPSII) at high irradiance (100% of incident solar radiation, 261.6 Wm−2) was observed in short-term exposure (1 h). UVR-induced photoinhibition was reduced to 7% in 3% solar radiation (4.08 Wm−2), compared with 66% in 100% solar radiation (261.6 Wm−2). In long-term experiments (11 days) using batch cultures, cell densities during the first 6 days were relatively constant for treatment P, and decreased slightly under PA and PAB treaments, reflecting a change in the irradiance experienced in the laboratory to that of incident solar irradiance. Thereafter, cell density increased and UV-induced photoinhibition decreased with the following days, indicating acclimation to solar UV. At the end of experiment, cells were found to exhibit both higher ratios of repair to UV-related damage and increased concentrations of UV-absorbing compounds, whose maximum absorption was found to be at 329 nm. Our data indicate that C. curvisetus is sensitive to ultraviolet radiation, but was able to acclimate relatively rapidly (ca. 6 days) by synthesizing UV-absorbing compounds and by increasing the rates of repair processes of D1 protein in PSII.  相似文献   

7.
To assess the short- and long-term impacts of UV radiation (UVR, 280–400 nm) on the microalga Scrippsiella trochoidea, we exposed cells to three different radiation treatments (PAB: 280–700 nm, PA: 320–700 nm, and P: 400–700 nm). A significant decrease in the photochemical efficiency (ΦPSII) at high irradiance (100% of incident solar radiation, 216.0 W m−2) was observed. Photoinhibition was reduced from 62.7 to 10.9% when the cells were placed in 12% solar radiation (26.1 W m−2). In long-term experiments (11 days) using batch cultures, cell densities during the first 5 days were decreased under treaments P, PA, and PAB, reflecting a change in the irradiance experienced in the laboratory to that of incident solar irradiance. Thereafter, specific growth rates increased and UV-induced photoinhibition decreased, indicating acclimation to solar UV. Cells were found to exhibit both higher ratios of repair to UV-related damage, shorter period for recovery and increased concentrations of UV-absorbing compounds (UVabc), whose maximum absorption was found to be at 336 nm. Our data indicate that S. trochoidea is sensitive to ultraviolet radiation, but was able to acclimate relatively rapidly (ca. 6 days) by synthesizing UVabc and by increasing the rates of repair processes of D1 protein in PSII.  相似文献   

8.
Photosynthetic organisms live in a dynamic environment where light typically fluctuates around a mean level that is slowly drifting during the solar day. We show that the far-from-equilibrium photosynthesis occurring in a rapidly fluctuating light differs vastly from the stationary-flux photosynthesis attained in a constant or slowly drifting light. Photosynthetic organisms in a static or slowly drifting light can be characterized by a steady-state quantum yield of chlorophyll fluorescence emission F′ that is changing linearly with small and slow variations of the incident irradiance II(t): F′(II(t))≈ Fmean(dF)/(dI)·ΔI(t). In Synechocystis sp. PCC 6803, the linear approximation holds for an extended interval covering largely the static irradiance range experienced by the cyanobacteria in nature. The photosynthetic dynamism and, consequently, the dynamism of the chlorophyll fluorescence emission change dramatically when exposing the organism to a fluctuating irradiance. Harmonically-modulated irradiance II · sin(2πt/T), T ≈ 1–25 s induces perpetual, far-from-equilibrium forced oscillations that are strongly non-linear, exhibiting significant hysteresis with multiple fluorescence levels corresponding to a single instantaneous level of the incident irradiance. We propose that, in nature, the far-from-equilibrium dynamic phenomena represent a significant correction to the steady-state photosynthetic activity that is typically investigated in laboratory. Analysis of the forced oscillations by the tools of systems biology suggests that the dynamism of photosynthesis observed in fluctuating light can be explained by a delayed action of regulatory agents.  相似文献   

9.
Terrestrial green plants absorb photosynthetically active radiation (PAR; 400–700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (<520 nm), which contains much of the surplus energy that is not used for photosynthesis and is dissipated as heat. The PAR absorptance of a whole leaf shows no substantial difference based on the spectra of direct or diffuse solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.  相似文献   

10.
Abstract Stress physiology on the reproductive cells of Antarctic macroalgae remained unstudied. Ascoseira mirabilis is endemic to the Antarctic region, an isolated ecosystem exposed to extreme environmental conditions. Moreover, stratospheric ozone depletion leads to increasing ultraviolet radiation (280–400 nm) at the earth's surface, thus it is necessary to investigate the capacity of reproductive cells to cope with different UV irradiances. This study is aimed to investigate the impact of exposure to different spectral irradiance on the photosynthetic performance, DNA damage and gamete morphology of the A. mirabilis. Gametangia, gametes and zygotes of the upper sublittoral brown alga A. mirabilis were exposed to photosynthetically active radiation (PAR = P; 400–700 nm), P + UV‐A radiation (UV‐A, 320–400 nm) and P + UV‐A + UV‐B radiation (UV‐B, 280–320 nm). Rapid photosynthesis versus irradiance curves of freshly released propagules were measured. Photosynthetic efficiencies and DNA damage (in terms of cyclobutane pyrimidine dimers) were determined after 1, 2, 4 and 8 h exposure as well as after 2 days of recovery in dim white light. Saturation irradiance (Ik) in freshly released propagules was 52 μmol photons m−2 s−1. Exposure for 1 h under 22 μmol photons m−2 s−1 of PAR significantly reduced the optimum quantum yield (Fv/Fm), suggesting that propagules are low light adapted. Furthermore, UVR significantly contributed to the photoinhibition of photosynthesis. Increasing dose as a function of exposure time additionally exacerbated the effects of different light treatments. The amount of DNA damage increased with the UV‐B dose but an efficient repair mechanism was observed in gametes pre‐exposed to a dose lower than 5.8 × 103 J m−2 of UV‐B. The results of this study demonstrate the negative impact of UV‐B radiation. However, gametes of A. mirabilis are capable of photosynthetic recovery and DNA repair when the stress factor is removed. This capacity was observed to be dependent on the fitness of the parental sporophyte.  相似文献   

11.
SUMMARY The effects of photosynthetically active radiation (PAR) and temperature on the photosynthesis of two Vietnamese brown algae, Sargassum mcclurei and S. oligocystum (Fucales), were determined by field and laboratory measurements. Dissolved oxygen sensors and pulse‐amplitude modulated (PAM) fluorometry were used for the measurements of photosynthetic efficiency. A Diving‐PAM revealed that underwater measurements of the effective quantum yield (Φ PSII ) of both species declined with increasing incident PAR, with minimum Φ PSII occurring during noon to early afternoon. Φ PSII recovered in the evening, indicating photo‐adaptation to excessive PAR. In laboratory experiments, Φ PSII also decreased under continuous exposure to 1000 μmol photons m?2 s?1; and full recovery occurred after 12 h of dark acclimatization. The net photosynthesis – PAR experiments of S. mcclurei and S. oligocystum conducted at 28°C revealed that the net photosynthetic rate quickly increased at PAR below the saturation irradiance of 361 and 301 μmol photons m?2 s?1 and nearly saturated to maximum net photosynthetic rates of 385 and 292 μg O2 gww ? 1 min?1 without photoinhibition, respectively. Gross photosynthesis and dark respiration experiments determined over a range of temperatures (12–40°C), revealed that the maximum gross photosynthetic rates of 201 and 147 μg O2 gww ? 1 min?1 occurred at 32.9 and 30.7°C for S. mcclurei and S. oligocystum, respectively. The dark respiration rates increased exponentially over the temperature ranges examined. The estimated maximum value of the maximum quantum yield occurred at 19.3 and 20.0°C and was 0.76 and 0.74, respectively. Similar to the natural habitat of the study site, these two species tolerated the relatively high temperatures and broad range of PAR. The ability of these species to recover from exposure to high PAR is one of the mechanisms that allow them to flourish in the shallow water environment.  相似文献   

12.
We analyzed a model of phytoplankton competition for light in a well-mixed water column. The model, proposed by Gerla et al. (Oikos 120:519–527, 2011), assumed inhibition of photosynthesis at high irradiance (photoinhibition). We described the global behavior through mathematical analyses, providing a general solution to the multi-species competition for light with photoinhibition. We classified outcomes of 2- and 3-species competitions as examples, and evaluated feasibility of the theoretical predictions using empirical relationships between photosynthetic production and irradiance. Numerical simulations with published pI curves indicate that photoinhibition may often lead to strong Allee effects and competitive facilitation among species. Hence, our results suggest that photoinhibition may play a major role in organizing phytoplankton communities.  相似文献   

13.
Different wavelengths of sunlight either drive or inhibit macroalgal production. Ultraviolet radiation (UVR) effectively disrupts photosynthesis, but since UVR is rapidly absorbed in coastal waters, macroalgal photoinhibition and tolerance to UVR depend on the depth of attachment and acclimation state of the individual. The inhibition response to UVR is quantified with a biological weighting function (BWF), a spectrum of empirically derived weights that link irradiance at a specific wavelength to overall biological effect. We determined BWFs for shallow (0 m, mean low water [MLW]) and deep (10 m) Laminaria hyperborea (Gunnerus) Foslie collected off the island of Finnøy, Norway. For each replicate sporophyte, we concurrently measured both O2 evolution and 13C uptake in 48 different light treatments, which varied in UV spectral composition and irradiance. The relative shape of the kelp BWF was most similar to that of a land plant, and the absolute spectral weightings and sensitivity were typically less than phytoplankton, particularly in the ultraviolet radiation A (UVA) region. Differences in BWFs between O2 and 13C photosynthesis and between shallow (high light) and deep (low light) kelp were also most significant in the UVA. Because of its greater contribution to total incident irradiance, UVA was more important to daily loss of production in kelp than ultraviolet radiation B (UVB). Photosynthetic quotient (PQ) also decreased with increased UVR stress, and the magnitude of PQ decline was greater in deepwater kelp. Significantly, BWFs assist in the comparison of biological responses to experimental light sources versus in situ sunlight and are critical to quantifying kelp production in a changing irradiance environment.  相似文献   

14.
The respective ratio of photosynthetically active to ultraviolet radiation is of crucial importance to results obtained in ultraviolet (UV)‐research on photoautotrophic organisms. Specimens of the green macroalga Ulva lactuca L. were exposed to a constant irradiance of UV‐radiation at increasing irradiances of photosynthetically active radiation (PAR). The effects of experimental irradiance and spectral composition on photoinhibition of photosynthesis and its recovery were monitored by chlorophyll fluorescence measurements and the activity of the xanthophyll cycle was assessed by high performance liquid chromatography‐(HPLC) based pigment analysis. Results indicate a UV‐induced delay in recovery from PAR‐induced photoinhibition and a deceleration of violaxanthin conversion within the xanthophyll cycle due to the presence of UV‐radiation. Also the concentration of the protective pigment lutein increased considerably and could be indicative of the existence of an additional light‐protective mechanism, as, for example, the lutein‐epoxid cycle in Ulva. In total, results clearly show that the extent of UV‐induced inhibition of photosynthesis to be found in UV‐exposure experiments is highly dependent on the irradiance of background photosynthetically active radiation: with increasing irradiance of PAR the UV‐effects were diminished. Exemplified by the green algae Ulva lactuca this study demonstrates the crucial importance of the ratios of PAR:UV applied in UV‐research, particularly when conducting laboratory experiments in an ecological context.  相似文献   

15.
Danilov  Roman A.  Ekelund  Nils G. A. 《Hydrobiologia》2001,444(1-3):203-212
Impacts of solar radiation, humic substances and nutrients on phytoplankton abundance at different depths were investigated in a temperate dimictic lake, Lake Solumsjö. Penetration of solar radiation profiles at different depths, represented as light attenuation coefficient (K d) were examined. Water sampling and downward irradiance of photosynthetically active radiation (PAR), ultraviolet-A (UV-A, 320–400 nm) and ultraviolet-B (UV-B, 280–320 nm) radiation were performed once a week and at three different times of the day (08.00, 12.00 and 16.00 hrs, local time) between September 13 and November 1, 1999. During the period of investigation, solar radiation above the water surface declined from 474 to 94 mol m–2 s–1 for PAR, from 1380 to 3.57 W m–2 for UV-A and from 13.1 to 0.026 W m–2 for UV-B, respectively. The attenuation coefficient (K d) for UV-B radiation ranged from 3.7 to 31 m–1 and UV-B radiation could not be detected at depths greater than 0.25 m. Humic substances measured at 440 nm ranged from 35.5 to 57.7 Pt mg l–1. Mean values of biomass, estimated from chlorophyll a, in the whole water column (0–10 m) varied between 2.3 and 5.6 g l–1 and a diel fluctuation was observed. During stratified conditions, high levels of iron (1.36 mg l–1) and manganese (4.32 mg l–1) were recorded in the hypolimnion, suggesting that the thermocline played a major role in the vertical distribution of phytoplankton communities in Lake Solumsjö. The high levels of iron and manganese stimulated the growth of Trachelomonas volvocinopsis in the hypolimnion at a depth of 10 m. Negative impacts of UV-B radiation on phytoplankton in lake Solumsjö are reduced due to the high levels of humic substances and the high degree of solar zenith angle at the latitude studied.  相似文献   

16.
The biomass and primary production of phytoplankton in Lake Awasa, Ethiopia was measured over a 14 month period, November 1983 to March 1985. The lake had a mean phytoplankton biomass of 34 mg chl a m–3 (n = 14). The seasonal variation in phytoplankton biomass of the euphotic zone (mg chl a m–2 h–1) was muted with a CV (standard deviation/mean) of 31%. The vertical distribution of photosynthetic activity was of a typical pattern for phytoplankton with light inhibition on all but overcast days. The maximum specific rates of photosynthesis or photosynthetic capacity (Ømax) for the lake approached 19 mg O2 (mg chl a)–1 h–1, with high values during periods of low phytoplankton biomass. Areal rates of photosynthesis ranged between 0.30 to 0.73 g O2 m–2 h–1 and 3.3 to 7.8 g O2 m–2 d–1. The efficiency of utilisation of PhAR incident on the lake surface varied from 2.4 to 4.1 mmol E–1 with the highest efficiency observed corresponding to the lowest surface radiation. Calculated on a caloric basis, the efficiency ranged between 1.7 and 2.9%. The temporal pattern of primary production by phytoplankton showed limited variability (CV = 21 %).  相似文献   

17.
  • 1 We investigated photosynthesis‐irradiance relationships (P‐I curves; P = oxygen production rate due to photosynthesis, I = light irradiance rate at the water surface) and ecosystem respiration in a 9 km long reach of a river that is characterised by light conditions favouring primary production, high ambient nutrient concentrations, a high re‐aeration rate, and frequent spates. We addressed the question of how disturbances (spates) and season influence photosynthesis and ecosystem respiration.
  • 2 We used an oxygen mass‐balance model of the river to identify ecosystem respiration rates and the two parameters of a hyperbolic P‐I function (Pmax = maximum oxygen production rate due to photosynthesis, α = the initial slope of the P‐I function). The model was fitted to dissolved oxygen concentrations quasi‐continuously recorded at the end of the reach. We estimated parameters for 137 three‐day periods (during the years 1992–97) and subsequently explored the potential influence of season and disturbances (spates) on Pmax, α and ecosystem respiration using stepwise regression analysis.
  • 3 Photosynthesis‐irradiance relationships and ecosystem respiration were subject to distinct seasonal variation. Only a minor portion of the variability of P‐I curves could be attributed to disturbance (spates), while ecosystem respiration did not correlate with disturbance related parameters. Regular seasonal variation in photosynthesis and ecosystem respiration apparently prevailed due to the absence of severe disturbances (a lack of significant bedload transport during high flow).
  相似文献   

18.
De Lange  H.J.  Arts  M.T. 《Aquatic Ecology》1999,33(4):387-398
A field survey was conducted to study the relationships amongst the composition of the seston, the nutritional value of the seston for herbivorous zooplankton (Daphnia), and selected water clarity parameters. Sixteen ponds in a wetland area and seven larger lakes, all located in south central Saskatchewan, Canada, were sampled for seston. The phytoplankton species were identified, and various biochemical seston variables were measured. A biotest using the zooplankter Daphnia magna, was employed to assess the nutritional value of the seston. The best seston variable to explain Daphnia growth was the phospholipid content (simple linear regression analysis: R 2 adj = 0.50). The water absorbance ratio A250/A365 was a good predictor of lipid content of the seston. Both the absorbance ratio A250/A365 and the dissolved organic carbon (DOC) concentration were negatively correlated with Daphnia growth. We hypothesize that the penetration of visible and ultraviolet radiation is an important determinant of seston quality, especially the phospholipid content, and that this has important implications for determining ultimate growth rates of herbivorous zooplankton.  相似文献   

19.
Orlando Necchi Jr 《Hydrobiologia》2004,525(1-3):139-155
Photosynthetic characteristics in response to irradiance were analysed in 42 populations of 33 macroalgal species by two distinct techniques (chlorophyll fluorescence and oxygen evolution). Photosynthesis–irradiance (PI) curves based on the two techniques indicated adaptations to low irradiance reflected by low saturation values, high to moderate values of photosynthetic efficiency (α) and photoinhibition (β), for Bacillariophyta and Rhodophyta, which suggests they are typically shade-adapted algae. In contrast, most species of Chlorophyta were reported as sun adapted algae, characterized by high values of I k and low of α, and lack of or low photoinhibition. Cyanophyta and Xanthophyta were intermediate groups in terms of light adaptations. Photoinhibition was observed in variable degrees in all algal groups, under field and laboratory conditions, which confirms that it is not artificially induced by experimental conditions, but is rather a common and natural phenomenon of the lotic macroalgae. Low values of compensation irradiance (I c) were found, which indicate that these algae can keep an autotrophic metabolism even under very low irradiances. High ratios (>2) of photosynthesis/respiration were found in most algae, which indicates a considerable net gain. These two physiological characteristics suggest that macroalgae may be important primary producers in lotic ecosystems. Saturation parameters (I k and I s) occurred in a relatively narrow range of irradiances (100–400 μmol photons m?2s?1), with some exceptions (higher in some filamentous green algae or lower in red algae). These parameters were way below the irradiances measured at collecting sites for most algae, which means that most of the available light energy was not photochemically converted via photosynthesis. Acclimation to ambient PAR was observed, as revealed by lower values of I k and I cand higher values of α and quantum yield in algae from shaded streams, and vice versa. Forms living within the boundary layer (crusts) showed responses of shade-adapted species and had the highest values of P max, α and quantum yield, whereas the opposite trend was observed in gelatinous forms (colonies and filaments). These results suggests adaptation to the light regime rather than functional attributes related to the growth form.  相似文献   

20.
Thalli of the intertidal Phaeophyte Fucus spiralis L. and the subtidal Chlorophyte Ulva olivascens Dangeard were exposed to artificial UV-A, UV-B and photosynthetically active radiation (PAR) by combination of PAR + UV-A + UV-B (PAB), PAR + UV-A (PA) and PAR (P) treatments. UV-A enhanced photosynthesis and stimulated carbonic anhydrase (CA) and nitrate reductase (NR) in F. spiralis whilst PAR only had an inhibitory effect in this species. U. olivascens suffered chronic photoinhibition in all the treatments as evidenced by reduced maxima photosynthesis (Pmax) and photosynthetic efficiency (α). Non stimulatory effect was observed upon CA and NR in this species. Our results showed that artificial UV radiation triggered opposite responses in both species. We suggest that differences shown by both species might be related to their location in the rocky shore and their ability to sense UV. We propose that the ratio UV:PAR acts as an environmental signal involved in the control of photosynthesis as shown by pronounced inhibition in samples exposed to only PAR. We also suggest that UV-regulated photosynthesis would be related to carbon (C) and nitrogen (N) cycles, regulating feedback processes that control C and N assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号