首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The reassignment of codon AUA from isoleucine to methionine during mitochondrial evolution may be explained by the codon reassignment (capture) hypothesis without assuming direct replacement of isoleucine by methionine in mitochondrial proteins. According to this hypothesis, codon AUA would have disappeared from the reading frames of messenger RNA. AUA codons would have mutated mainly to AUU isoleucine codons because of constraints resulting from elimination of tRNA Ile with anticodon *CAU (in which *C is lysidine). Later, tRNA Met (CAU) would have undergone structural changes enabling it to pair with both AUG and AUA. AUA codons, formed by mutations of other codons, including AUG, would have reappeared and would have been translated as methionine.  相似文献   

2.
Six archaeal proteins containing a high number of Escherichia coli rare codons in their genes were not well expressed in E. coli. These genes showed a five to twenty-fold increase in production when expressed in the presence of a plasmid harboring and expressing the argU and ileX genes encoding rare tRNAs (tRNA arg(de)AGA/AGG and tRNA ile(de)AUA. © Rapid Science Ltd. 1998  相似文献   

3.
4.
To analyse the mechanism by which rare codons near the initiation codon inhibit cell growth and protein synthesis, we used the bacteriophage lambda int gene or early codon substitution derivatives. The lambda int gene has a high frequency of rare ATA, AGA and AGG codons; two of them (AGA AGG) located at positions 3 and 4 of the int open reading frame (ORF). Escherichia coli pth (rap) cells, which are defective in peptidyl-tRNA hydrolase (Pth) activity, are more susceptible to the inhibitory effects of int expression as compared with wild-type cells. Cell growth and Int protein synthesis were enhanced by overexpression of Pth and tRNAArg4 cognate to AGG and AGA but not of tRNAIle2a specific for ATA. The increase of Int protein synthesis also takes place when the rare arginine codons AGA and AGG at positions 3 and 4 are changed to common arginine CGT or lysine AAA codons but not to rare isoleucine ATA codons. In addition, overexpression of int in Pth defective cells provokes accumulation of peptidyl-tRNAArg4 in the soluble fraction. Therefore, cell growth and Int synthesis inhibition may be due to ribosome stalling and premature release of peptidyl-tRNAArg4 from the ribosome at the rare arginine codons of the first tandem, which leads to cell starvation for the specific tRNA.  相似文献   

5.
6.
V D?ring  P Marlière 《Genetics》1998,150(2):543-551
We investigated directed deviations from the universal genetic code. Mutant tRNAs that incorporate cysteine at positions corresponding to the isoleucine AUU, AUC, and AUA and methionine AUG codons were introduced in Escherichia coli K12. Missense mutations at the cysteine catalytic site of thymidylate synthase were systematically crossed with synthetic suppressor tRNACys genes coexpressed from compatible plasmids. Strains harboring complementary codon/anticodon associations could be stably propagated as thymidine prototrophs. A plasmid-encoded tRNACys reading the codon AUA persisted for more than 500 generations in a strain requiring its suppressor activity for thymidylate biosynthesis, but was eliminated from a strain not requiring it. Cysteine miscoding at the codon AUA was also enforced in the active site of amidase, an enzyme found in Helicobacter pylori and not present in wild-type E. coli. Propagating the amidase missense mutation in E. coli with an aliphatic amide as nitrogen source required the overproduction of Cys-tRNA synthetase together with the complementary suppressor tRNACys. The toxicity of cysteine miscoding was low in all our strains. The small size and amphiphilic character of this amino acid may render it acceptable as a replacement at most protein positions and thus apt to overcome the steric and polar constraints that limit evolution of the genetic code.  相似文献   

7.
Ribosome bypassing refers to the ability of the ribosome::peptidyl-tRNA complex to slide down the message without translation to a site several or dozens of nucleotides downstream and resume protein chain elongation there. The product is an isoform of a protein with a 'coding' gap corresponding to the region of the message which was bypassed. Previous work showed that ribosome bypassing was strongly stimulated at 'hungry' codons calling for a tRNA whose aminoacylation was limited. We have now used the 'minigene' phenomenon to ascertain whether depletion of the pool of specific isoacceptors has a similar effect. High level expression of plasmid-borne minigenes results in the sequestration as peptidyl-tRNA of tRNA cognate to the last triplet of the minigene, thereby limiting protein synthesis for lack of the tRNA in question. We find that induction of a minigene ending in AUA stimulates bypassing at an AUA codon, but not in a control sequence with AGA at the test position; induction of a minigene ending in AGA stimulates bypassing at the latter but not the former. Induction of the AUA minigene also stimulates both leftward and rightward frameshifting at 'shifty' sequences containing an AUA codon. The normal, background frequency of bypassing at an AUA codon is markedly reduced by increasing the cellular level of the tRNA which reads the codon. Thus, the frequency of bypassing can be increased or decreased by lowering or raising the concentration of a relevant tRNA isoacceptor. These observations suggest that the occurrence of ribosome bypassing reflects the length of the pause at a given codon.  相似文献   

8.
9.
Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.  相似文献   

10.
The fidelity of codon reading was examined in amino acid starved Escherichia coli. In one case the level of misincorporation of methionine was measured at an isoleucine residue encoded by either the commonly used AUU codon or the rarely used AUA codon. In this situation we found the frequency of methionine misincorporation to be very low and to be unaffected by the identity of the isoleucine codon. In other experiments histidine misincorporation for glutamine was measured in glutamine starved cells with normal levels of histidine-specific tRNA and cells overproducing this tRNA. Cells overproducing the tRNA had higher levels of misincorporation.  相似文献   

11.
Overexpression of the Sulfolobus solfataricus L12 ribosomal protein gene in E.coli cells yielded two products of different size. If the E.coli cells carrying the overexpression plasmid were induced in the early stage of bacterial growth, the smaller of the two products was almost exclusively produced. However, induction in a late stage of bacterial growth yielded the larger product in significant excess. The larger protein was identified as the translation product of the entire SsoL12 gene, while the smaller product was a N-terminally shortened version of the L12 protein (sh-SsoL12), starting with a N-terminal methionine at position 22 of the coded protein and continuing with the predicted protein sequence. Position 22 is an isoleucine in the complete SsoL12 protein sequence, coded by an AUA codon. A subclone (SsoL12**) of the SsoL12 gene containing overexpression plasmid, lacking the regular AUG start codon and the putative Shine Dalgarno sequence, was constructed to determine if E.coli ribosomes could initiate at this AUA codon. During overexpression the SsoL12** construct yielded exclusively the sh-SsoL12 product in significant amounts. An AUA start codon has never been found before in a natural message. However, experiments utilizing site directed mutagenesis to generate AUA start codons showed that this codon can be functional for initiation in prokaryotes and eukaryotes. The findings presented in this paper show that AUA acts as an initiation codon in a natural message expressed in a heterologous organism.  相似文献   

12.
Initiation of translation at AUC, AUA and AUU codons in Escherichia coli   总被引:6,自引:0,他引:6  
A truncated form of the HBL murein hydrolase, encoded by the temperate bacteriophage HB-3, was cloned in a pUC-derivative and translated in Escherichia coli using AUC as start codon, as confirmed by biochemical, immunological, and N-terminal analyses. Using site-directed mutagenesis, we have changed this AUC codon into AUA, AUU and AUG codons. The relative translation efficiencies for these triplets were about 5% for AUC and AUU and 7.5% for AUA compared to that of AUG codon. In the same gene arrangement E. coli beta-galactosidase was also translated at moderate efficiency using AUC as initiator.  相似文献   

13.
The hpt gene from the archaeon Methanobacterium thermoautotrophicum, encoding hypoxanthine (guanine) phosphoribosyltransferase, was cloned by functional complementation into Escherichia coli. The hpt-encoded amino acid sequence is most similar to adenine phosphoribosyltransferases, but the encoded enzyme has activity only with hypoxanthine and guanine. The synthesis of the recombinant enzyme is apparently limited by the presence of the rare arginine codons AGA and AGG and the rare isoleucine AUA codon on the hpt gene. The recombinant enzyme was purified to apparent homogeneity.  相似文献   

14.
Many clostridial proteins are poorly produced in Escherichia coli. It has been suggested that this phenomena is due to the fact that several types of codons common in clostridial coding sequences are rarely used in E. coli and the quantities of the corresponding tRNAs in E. coli are not sufficient to ensure efficient translation of the corresponding clostridial sequences. To address this issue, we amplified three E. coli genes, ileX, argU, and leuW, in E. coli; these genes encode tRNAs that are rarely used in E. coli (the tRNAs for the ATA, AGA, and CTA codons, respectively). Our data demonstrate that amplification of ileX dramatically increased the level of production of most of the clostridial proteins tested, while amplification of argU had a moderate effect and amplification of leuW had no effect. Thus, amplification of certain tRNA genes for rare codons in E. coli improves the expression of clostridial genes in E. coli, while amplification of other tRNAs for rare codons might not be needed for improved expression. We also show that amplification of a particular tRNA gene might have different effects on the level of protein production depending on the prevalence and relative positions of the corresponding codons in the coding sequence. Finally, we describe a novel approach for improving expression of recombinant clostridial proteins that are usually expressed at a very low level in E. coli.  相似文献   

15.
An extreme codon preference strategy: codon reassignment   总被引:8,自引:1,他引:7  
We argue that in animal mitochondria codon reassignments, such as those for AGA and AGG from arginine to serine or of AUA from isoleucine to methionine, are the result of an interplay between biased mutational forces and selective ones. In particular, there is a marked tendency for animal mitochondria to have very small genomes and to minimize their investment in components required for gene expression. These tendencies are expressed as a reduction in the diversity of tRNA isoacceptor species. In our view, the pressure to simplify tRNA populations, together with mutational bias against certain codons, will account for the codon reassignments observed in animal mitochondria. A parallel to the major codon bias in microorganisms, which likewise tends to reduce the diversity of the tRNA isoacceptor populations under fast growth conditions, may be drawn. Therefore, we suggest that codon reassignments are usefully viewed as an extreme form of codon bias.  相似文献   

16.
Codon usage and gene expression.   总被引:36,自引:16,他引:20       下载免费PDF全文
L Holm 《Nucleic acids research》1986,14(7):3075-3087
The hypothesis that codon usage regulates gene expression at the level of translation is tested. Codon usage of Escherichia coli and phage lambda is compared by correspondence analysis, and the basis of this hypothesis is examined by connecting codon and tRNA distributions to polypeptide elongation kinetics. Both approaches indicate that if codon usage was random tRNA limitation would only affect the rarest tRNA species. General discrimination against their cognate codons indicates that polypeptide elongation rates are maintained constant. Thus, differences in expression of E. coli genes are not a consequence of their variable codon usage. The preference of codons recognized by the most abundant tRNAs in E. coli genes encoding abundant proteins is explained by a constraint on the cost of proof-reading.  相似文献   

17.
As an approach to inducible suppression of nonsense mutations in mammalian cells, we described recently an amber suppression system in mammalian cells dependent on coexpression of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) along with the E. coli glutamine-inserting amber suppressor tRNA. Here, we report on tetracycline-regulated expression of the E. coli GlnRS gene and, thereby, tetracycline-regulated suppression of amber codons in mammalian HeLa and COS-1 cells. The E. coli GlnRS coding sequence attached to a minimal mammalian cell promoter was placed downstream of seven tandem tetracycline operator sequences. Cotransfection of HeLa cell lines expressing a tetracycline transactivator protein, carrying a tetracycline repressor domain linked to part of a herpesvirus VP16 activation domain, with the E. coli GlnRS gene and the E. coli glutamine-inserting amber suppressor tRNA gene resulted in suppression of the amber codon in a reporter chloramphenicol acetyltransferase gene. The tetracycline transactivator-mediated expression of E. coli GlnRS was essentially completely blocked in HeLa or COS-1 cells grown in the presence of tetracycline. Concomitantly, both aminoacylation of the suppressor tRNA and suppression of the amber codon were reduced significantly in the presence of tetracycline.  相似文献   

18.
Growth rate dependence of transfer RNA abundance in Escherichia coli.   总被引:13,自引:1,他引:13       下载免费PDF全文
We have tested the predictions of a model that accounts for the codon preferences of bacteria in terms of a growth maximization strategy. According to this model the tRNA species cognate to minor and major codons should be regulated differently under different growth conditions: the isoacceptors cognate to major codons should increase at fast growth rates while those cognate to minor codons should decrease at fast growth rates. We have used a quantitative Northern blotting technique to measure the abundance of the methionine and the leucine isoacceptor families over growth rates ranging from 0.5 to 2.1 doublings per hour. Five tRNA species that are cognate to major codons (tRNA(eMet), tRNA(1fMet), tRNA(2fMet), tRNA(1Leu) and tRNA(3Leu) increase both as a relative fraction of total tRNA and in absolute concentration with increasing growth rates. Three tRNA species that are cognate to minor codons (tRNA(2Leu), tRNA(4Leu) and tRNA(5Leu) decrease as a relative fraction of total RNA and in absolute concentration with increasing growth rates. These data suggest that the abundances of groups of tRNA species are regulated in different ways, and that they are not regulated simply according to isoacceptor specificity. In particular, the data support the growth optimization model for codon bias.  相似文献   

19.
20.
Translation initiation factor IF3, one of three factors specifically required for translation initiation in Escherichia coli, inhibits initiation on any codon other than the three canonical initiation codons, AUG, GUG, or UUG. This discrimination against initiation on non-canonical codons could be due to either direct recognition of the two last bases of the codon and their cognate bases on the anticodon or to some ability to "feel" codon-anticodon complementarity. To investigate the importance of codon-anticodon complementarity in the discriminatory role of IF3, we constructed a derivative of tRNALeuthat has all the known characteristics of an initiator tRNA except the CAU anticodon. This tRNA is efficiently formylated by methionyl-tRNAfMettransformylase and charged by leucyl-tRNA synthetase irrespective of the sequence of its anticodon. These initiator tRNALeuderivatives (called tRNALI) allow initiation at all the non-canonical codons tested, provided that the complementarity between the codon and the anticodon of the initiator tRNALeuis respected. More remarkably, the discrimination by IF3, normally observed with non-canonical codons, is neutralised if a tRNALIcarrying a complementary anticodon is used for initiation. This suggests that IF3 somehow recognises codon-anticodon complementarity, at least at the second and third position of the codon, rather than some specific bases in either the codon or the anticodon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号