首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The virulence of the malaria parasite Plasmodium falciparum is related to its ability to express a family of adhesive proteins known as P. falciparum erythrocyte membrane protein 1 (PfEMP1) at the infected red blood cell surface. The mechanism for the transport and delivery of these adhesins to the erythrocyte membrane is only poorly understood. In this work, we have used specific immune reagents in a flow cytometric assay to monitor the effects of serum components on the surface presentation of PfEMP1. We show that efficient presentation of the A4 and VAR2CSA variants of PfEMP1 is dependent on the presence of serum in the bathing medium during parasite maturation. Lipid-loaded albumin supports parasite growth but allows much less efficient presentation of PfEMP1 at the red blood cell surface. Analysis of the serum components reveals that lipoproteins, especially those of the low-density lipoprotein fraction, promote PfEMP1 presentation. Cytoadhesion of infected erythrocytes to the host cell receptors CD36 and ICAM-1 is also decreased in infected erythrocytes cultured in the absence of serum. The defect appears to be in the transfer of PfEMP1 from parasite-derived structures known as the Maurer's clefts to the erythrocyte membrane or in surface conformation rather than a down-regulation or switching of particular PfEMP1 variants.  相似文献   

2.
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant surface antigen expressed on mature forms of infected erythrocytes. It is considered an important target of naturally acquired immunity. Despite its extreme sequence heterogeneity, variants of PfEMP1 can be stratified into distinct groups. Group A PfEMP1 have been independently associated with low host immunity and severe disease in several studies and are now of potential interest as vaccine candidates. Although antigen-specific antibodies are considered the main effector mechanism in immunity to malaria, the induction of efficient and long-lasting antibody responses requires CD4+ T-cell help. To date, very little is known about CD4+ T-cell responses to PfEMP1 expressed on clinical isolates. The DBLα-tag is a small region from the DBLα-domain of PfEMP1 that can be amplified with universal primers and is accessible in clinical parasite isolates. We identified the dominant expressed PfEMP1 in 41 individual clinical parasite isolates and expressed the corresponding DBLα-tag as recombinant antigen. Individual DBLα-tags were then used to activate CD4+ T-cells from acute and convalescent blood samples in children who were infected with the respective clinical parasite isolate. Here we show that CD4+ T-cell responses to the homologous DBLα-tag were induced in almost all children during acute malaria and maintained in some for 4 months. Children infected with parasites that dominantly expressed group A-like PfEMP1 were more likely to maintain antigen-specific IFNγ-producing CD4+ T-cells than children infected with parasites dominantly expressing other PfEMP1. These results suggest that group A-like PfEMP1 may induce long-lasting effector memory T-cells that might be able to provide rapid help to variant-specific B cells. Furthermore, a number of children induced CD4+ T-cell responses to heterologous DBLα-tags, suggesting that CD4+ T-cells may recognise shared epitopes between several DBLα-tags.  相似文献   

3.
The binding of nonspecific human IgM to the surface of infected erythrocytes is important in rosetting, a major virulence factor in the pathogenesis of severe malaria due to Plasmodium falciparum, and IgM binding has also been implicated in placental malaria. Herein we have identified the IgM-binding parasite ligand from a virulent P. falciparum strain as PfEMP1 (TM284var1 variant), and localized the region within this PfEMP1 variant that binds IgM (DBL4beta domain). We have used this parasite IgM-binding protein to investigate the interaction with human IgM. Interaction studies with domain-swapped Abs, IgM mutants, and anti-IgM mAbs showed that PfEMP1 binds to the Fc portion of the human IgM H chain and requires the IgM Cmu4 domain. Polymerization of IgM was shown to be crucial for the interaction because PfEMP1 binding did not occur with mutant monomeric IgM molecules. These results with PfEMP1 protein have physiological relevance because infected erythrocytes from strain TM284 and four other IgM-binding P. falciparum strains showed analogous results to those seen with the DBL4beta domain. Detailed investigation of the PfEMP1 binding site on IgM showed that some of the critical amino acids in the IgM Cmu4 domain are equivalent to those regions of IgG and IgA recognized by Fc-binding proteins from bacteria, suggesting that this region of Ig molecules may be of major functional significance in host-microbe interactions. We have therefore shown that PfEMP1 is an Fc-binding protein of malaria parasites specific for polymeric human IgM, and that it shows functional similarities with Fc-binding proteins from pathogenic bacteria.  相似文献   

4.
A recently proposed mechanism of protection for haemoglobin C (HbC; beta6Glu-->Lys) links an abnormal display of PfEMP1, an antigen involved in malaria pathogenesis, on the surface of HbC infected erythrocytes together with the observation of reduced cytoadhesion of parasitized erythrocytes and impaired rosetting in vitro. We investigated the impact of this hypothesis on the development of acquired immunity against Plasmodium falciparum variant surface antigens (VSA) encoding PfEMP1 in HbC in comparison with HbA and HbS carriers of Burkina Faso. We measured: i) total IgG against a single VSA, A4U, and against a panel of VSA from severe malaria cases in human sera from urban and rural areas of Burkina Faso of different haemoglobin genotypes (CC, AC, AS, SC, SS); ii) total IgG against recombinant proteins of P. falciparum asexual sporozoite, blood stage antigens, and parasite schizont extract; iii) total IgG against tetanus toxoid. Results showed that the reported abnormal cell-surface display of PfEMP1 on HbC infected erythrocytes observed in vitro is not associated to lower anti- PfEMP1 response in vivo. Higher immune response against the VSA panel and malaria antigens were observed in all adaptive genotypes containing at least one allelic variant HbC or HbS in the low transmission urban area whereas no differences were detected in the high transmission rural area. In both contexts the response against tetanus toxoid was not influenced by the beta-globin genotype. These findings suggest that both HbC and HbS affect the early development of naturally acquired immunity against malaria. The enhanced immune reactivity in both HbC and HbS carriers supports the hypothesis that the protection against malaria of these adaptive genotypes might be at least partially mediated by acquired immunity against malaria.  相似文献   

5.
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family of antigenically diverse proteins is expressed on the surface of human erythrocytes infected with the malaria parasite P. falciparum, and mediates cytoadherence to the host vascular endothelium. In this report, we show that export of PfEMP1 is slow and inefficient as it takes several hours to traffic newly synthesized proteins to the erythrocyte membrane. Upon removal by trypsin treatment, the surface-exposed population of PfEMP1 is not replenished during subsequent culture indicating that there is no cycling of PfEMP1 between the erythrocyte surface and an intracellular compartment. The role of Maurer's clefts as an intermediate sorting compartment in trafficking of PfEMP1 was investigated using immunoelectron microscopy and proteolytic digestion of streptolysin O-permeabilized parasitized erythrocytes. We show that PfEMP1 is inserted into the Maurer's cleft membrane with the C-terminal domain exposed to the erythrocyte cytoplasm, whereas the N-terminal domain is buried inside the cleft. Transfer of PfEMP1 to the erythrocyte surface appears to involve electron-lucent extensions of the Maurer's clefts. Thus, we have delineated some important aspects of the unusual trafficking mechanism for delivery of this critical parasite virulence factor to the erythrocyte surface.  相似文献   

6.
Surface proteins from Plasmodium falciparum are important malaria vaccine targets. However, the surface proteins previously identified are highly variant and difficult to study. We used tandem mass spectrometry to characterize the variant antigens (Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1)) expressed on the surface of malaria-infected erythrocytes that bind to chondroitin sulfate A (CSA) in the placenta. Whereas PfEMP1 variants previously implicated as CSA ligands were detected, in unselected parasites four novel variants were detected in CSA-binding or placental parasites but not in unselected parasites. These novel PfEMP1 variants require further study to confirm whether they play a role in placental malaria.  相似文献   

7.
The human malarial parasite Plasmodium falciparum exports virulence determinants, such as the P. falciparum erythrocyte membrane protein 1 (PfEMP1), beyond its own periplasmatic boundaries to the surface of its host erythrocyte. This is remarkable given that erythrocytes lack a secretory pathway. Here we present evidence for a continuous membrane network of parasite origin in the erythrocyte cytoplasm. Co-localizations with antibodies against PfEMP1, PfExp-1, Pf332 and PfSbpl at the light and electron microscopical level indicate that this membrane network is composed of structures that have been previously described as tubovesicular membrane network (TVM), Maurer's clefts and membrane whorls. This membrane network could also be visualized in vivo by vital staining of infected erythrocytes with the fluorescent dye LysoSensor Green DND-153. At sites where the membrane network abuts the erythrocyte plasma membrane we observed small vesicles of 15-25 nm in size, which seem to bud from and/or fuse with the membrane network and the erythrocyte plasma membrane, respectively. On the basis of our data we hypothesize that this membrane network of parasite origin represents a novel secretory organelle that is involved in the trafficking of PfEMP1 across the erythrocyte cytoplasm.  相似文献   

8.
A ring-infected erythrocyte surface antigen (RESA) has been detected by modified immunofluorescence assay in erythrocytes infected with the simian malaria parasite, Plasmodium fragile. This RESA, of Mr 95,000, shares many characteristics with the RESA initially found in the human malaria parasite P. falciparum. Both antigens are found in the membrane of erythrocytes infected with young asexual parasite stages, in merozoite-enriched preparations, and in parasite culture supernatant. Since the RESA of P. falciparum has been shown to confer protective immunity and since P. fragile infection of rhesus monkeys mimics P. falciparum infection in humans, the finding of a RESA in P. fragile underlines the importance of this species as an animal model for antimalarial vaccines.  相似文献   

9.
10.
A common pathological characteristic of Plasmodium falciparum infection is the cytoadhesion of mature-stage-infected erythrocytes (IE) to host endothelium and syncytiotrophoblasts. Massive accumulation of IE in the brain microvasculature or placenta is strongly correlated with severe forms of malaria. Extensive binding of IE to placental chondroitin sulfate A (CSA) is associated with physiopathology during pregnancy. The adhesive phenotype of IE correlates with the appearance of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) at the erythrocyte surface (approximately 16 h after merozoite invasion), so that only early blood-stage (ring-stage) IE appear in the peripheral blood. Here, we describe results that challenge the existing view of blood-stage IE biology by demonstrating the specific adhesion of IE, during the early ring-stage, to endothelial cell lines from the brain and lung and to placental syncytiotrophoblasts. Later, during blood-stage development of these IE, trophozoites switch to an exclusively CSA cytoadhesion phenotype. Therefore, adhesion to an individual endothelial cell or syncytiotrophoblast may occur throughout the blood-stage cycle, indicating the presence in malaria patients of noncirculating (cryptic) parasite subpopulations. We detected two previously unknown parasite proteins on the surface of ring-stage IE. These proteins disappear shortly after the start of PfEMP1-mediated adhesion.  相似文献   

11.

Background

The asexual blood stages of the human malaria parasite Plasmodium falciparum produce highly immunogenic polymorphic antigens that are expressed on the surface of the host cell. In contrast, few studies have examined the surface of the gametocyte-infected erythrocyte.

Methodology/Principal Findings

We used flow cytometry to detect antibodies recognising the surface of live cultured erythrocytes infected with gametocytes of P. falciparum strain 3D7 in the plasma of 200 Gambian children. The majority of children had been identified as carrying gametocytes after treatment for malaria, and each donated blood for mosquito-feeding experiments. None of the plasma recognised the surface of erythrocytes infected with developmental stages of gametocytes (I–IV), but 66 of 194 (34.0%) plasma contained IgG that recognised the surface of erythrocytes infected with mature (stage V) gametocytes. Thirty-four (17.0%) of 200 plasma tested recognised erythrocytes infected with trophozoites and schizonts, but there was no association with recognition of the surface of gametocyte-infected erythrocytes (odds ratio 1.08, 95% C.I. 0.434–2.57; P = 0.851). Plasma antibodies with the ability to recognise gametocyte surface antigens (GSA) were associated with the presence of antibodies that recognise the gamete antigen Pfs 230, but not Pfs48/45. Antibodies recognising GSA were associated with donors having lower gametocyte densities 4 weeks after antimalarial treatment.

Conclusions/Significance

We provide evidence that GSA are distinct from antigens detected on the surface of asexual 3D7 parasites. Our findings suggest a novel strategy for the development of transmission-blocking vaccines.  相似文献   

12.
Sequestration of Plasmodium falciparum-infected erythrocytes in the placenta is responsible for many of the harmful effects of malaria during pregnancy. Sequestration occurs as a result of parasite adhesion molecules expressed on the surface of infected erythrocytes binding to host receptors in the placenta such as chondroitin sulphate A (CSA). Identification of the parasite ligand(s) responsible for placental adhesion could lead to the development of a vaccine to induce antibodies to prevent placental sequestration. Such a vaccine would reduce the maternal anaemia and infant deaths that are associated with malaria in pregnancy. Current research indicates that the parasite ligands mediating placental adhesion may be members of the P. falciparum variant surface antigen family PfEMP1, encoded by var genes. Two relatively well-conserved subfamilies of var genes have been implicated in placental adhesion, however, their role remains controversial. This review examines the evidence for and against the involvement of var genes in placental adhesion, and considers whether the most appropriate vaccine candidates have yet been identified.  相似文献   

13.
Antibodies to polymorphic antigens expressed during the parasites erythrocytic stages are important mediators of protective immunity against P. falciparum malaria. Therefore, polymorphic blood stage antigens like MSP3, EBA-175 and GLURP and variant surface antigens PfEMP1 and RIFIN are considered vaccine candidates. However, to what extent these antibodies to blood stage antigens are acquired during naive individuals' first infections has not been studied in depth. Using plasma samples collected from controlled experimental P. falciparum infections we show that antibodies against variant surface antigens, PfEMP1 and RIFIN as well as MSP3 and GLURP, are acquired during a single short low density P. falciparum infection in non-immune individuals including strain transcendent PfEMP1 immune responses. These data indicate that the immunogenicity of the variant surface antigens is similar to the less diverse merozoite antigens. The acquisition of a broad and strain transcendent repertoire of PfEMP1 antibodies may reflect a parasite strategy of expressing most or all PfEMP1 variants at liver release optimizing the likelihood of survival and establishment of chronic infections in the new host.  相似文献   

14.
15.
Sequence diversity in pathogen antigens is an obstacle to the development of interventions against many infectious diseases. In malaria caused by Plasmodium falciparum, the PfEMP1 family of variant surface antigens encoded by var genes are adhesion molecules that play a pivotal role in malaria pathogenesis and clinical disease. PfEMP1 is a major target of protective immunity, however, development of drugs or vaccines based on PfEMP1 is problematic due to extensive sequence diversity within the PfEMP1 family. Here we identified the PfEMP1 variants transcribed by P. falciparum strains selected for a virulence-associated adhesion phenotype (IgM-positive rosetting). The parasites transcribed a subset of Group A PfEMP1 variants characterised by an unusual PfEMP1 architecture and a distinct N-terminal domain (either DBLα1.5 or DBLα1.8 type). Antibodies raised in rabbits against the N-terminal domains showed functional activity (surface reactivity with live infected erythrocytes (IEs), rosette inhibition and induction of phagocytosis of IEs) down to low concentrations (<10 µg/ml of total IgG) against homologous parasites. Furthermore, the antibodies showed broad cross-reactivity against heterologous parasite strains with the same rosetting phenotype, including clinical isolates from four sub-Saharan African countries that showed surface reactivity with either DBLα1.5 antibodies (variant HB3var6) or DBLα1.8 antibodies (variant TM284var1). These data show that parasites with a virulence-associated adhesion phenotype share IE surface epitopes that can be targeted by strain-transcending antibodies to PfEMP1. The existence of shared surface epitopes amongst functionally similar disease-associated P. falciparum parasite isolates suggests that development of therapeutic interventions to prevent severe malaria is a realistic goal.  相似文献   

16.
The particular virulence of the human malaria parasite Plasmodium falciparum derives from export of parasite-encoded proteins to the surface of the mature erythrocytes in which it resides. The mechanisms and machinery for the export of proteins to the erythrocyte membrane are largely unknown. In other eukaryotic cells, cholesterol-rich membrane microdomains or "rafts" have been shown to play an important role in the export of proteins to the cell surface. Our data suggest that depletion of cholesterol from the erythrocyte membrane with methyl-beta-cyclodextrin significantly inhibits the delivery of the major virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). The trafficking defect appears to lie at the level of transfer of PfEMP1 from parasite-derived membranous structures within the infected erythrocyte cytoplasm, known as the Maurer's clefts, to the erythrocyte membrane. Thus our data suggest that delivery of this key cytoadherence-mediating protein to the host erythrocyte membrane involves insertion of PfEMP1 at cholesterol-rich microdomains. GTP-dependent vesicle budding and fusion events are also involved in many trafficking processes. To determine whether GTP-dependent events are involved in PfEMP1 trafficking, we have incorporated non-membrane-permeating GTP analogs inside resealed erythrocytes. Although these nonhydrolyzable GTP analogs reduced erythrocyte invasion efficiency and partially retarded growth of the intracellular parasite, they appeared to have little direct effect on PfEMP1 trafficking.  相似文献   

17.
Pregnancy-associated malaria (PAM) is associated with the massive sequestration of erythrocytes infected with CSA-binding parasites in the placenta. Natural protective immunity against PAM is acquired during the course of pregnancies, with the development of anti-PfEMP1 antibodies recognizing placental infected erythrocytes (IEs) from different geographical regions. Mouse monoclonal antibodies (mabs) were raised against Plasmodium falciparum variant surface proteins expressed by CSA-binding parasites. These mabs blocked 0-60% of CSA-binding parasite adhesion and immunoprecipitated a 350 kDa 125I-labeled PfEMP1(CSA). Two var2CSA domains expressed on the surface of CHO cells (DBL5epsilon and DBL6epsilon) were identified as the targets of three of four antibodies inhibiting CSA binding. Two of these antibodies also recognized either DBL2x or DBL3x, suggesting that some epitopes may be common to several var2CSA domains. These mabs also specifically selected CSA-binding IEs and facilitated the purification from IE extracts of the native var2CSA ligand. This purified ligand elicited antibodies in immunized mice inhibiting efficiently IE(CSA) cytoadhesion. Based on our findings, we provide the first demonstration that the parasite var2CSA surface protein can elicit inhibitory antibodies and define here the subunits of the var2CSA ligand suitable for use in vaccine development.  相似文献   

18.
Parasite adhesion and immune evasion in placental malaria.   总被引:6,自引:0,他引:6  
Parasite sequestration in the placenta is a key feature of infection by Plasmodium falciparum during pregnancy and is associated with severe adverse outcomes for both mother and baby. Here, James Beeson and colleagues draw together the findings of recent studies on parasite mechanisms that mediate this process. They review evidence for novel parasite variants that appear able to evade pre-existing immunity, for the adhesion of P. falciparum-infected erythrocytes to placental glycosaminoglycans (and the molecular basis of these parasite properties) and for the expression of var genes encoding the variant antigen and adhesive ligand P. falciparum-erythrocyte membrane protein 1 (PfEMP1).  相似文献   

19.
BACKGROUND: The need for improved malaria diagnostics has long been recognized. METHODS: Human parasitized erythrocytes based on the principles of flow cytometry (FCM) method is described for the determination of parasitemia in Plasmodium falciparum cultures using the fluorescence activated cell sorter and DNA-binding fluorescent dye, YOYO-1. The same assay samples can be also evaluated both microscopically and by scintillation counting after use of (3)H-hypoxanthine-labeled parasites. RESULTS: The counts of uninfected, infected, and nucleated cells occurred with high precision. The cells were categorized into different populations according to their physical or chemical properties such as RNase treatment and compensation required optimization. The detection and quantitation limits in the assay were 0.003% and 0.008% parasitemia, respectively. Overall, the parasite counts by FCM measurement correlated highly (r(2) = 0.923-0.968) with the parasitemia measured by (3)H-hypoxanthine incorporation assay when parasites variants incubated with various antimalarial drugs. In addition, the low levels of parasitemia (7.9%-21.3%) detected by microscopy than by FCM may be related to a number of tiny schizonts externally attached to the erythrocyte membranes but were not definitely inside the erythrocyte that normally would never be included in microscopy counting. CONCLUSION: On the basis of data reported herein, a rapid, high sensitivity, lower sampling error and reliable identification of human parasitized erythrocytes by the principles of FCM have been established. Published 2007 Wiley-Liss, Inc.  相似文献   

20.

Background

Rosetting is a Plasmodium falciparum virulence factor implicated in the pathogenesis of life-threatening malaria. Rosetting occurs when parasite–derived P. falciparum Erythrocyte Membrane Protein One (PfEMP1) on the surface of infected erythrocytes binds to human receptors on uninfected erythrocytes. PfEMP1 is a possible target for a vaccine to induce antibodies to inhibit rosetting and prevent severe malaria.

Methodology/Findings

We examined the vaccine potential of the six extracellular domains of a rosette-mediating PfEMP1 variant (ITvar9/R29var1 from the R29 parasite strain) by immunizing rabbits with recombinant proteins expressed in E. coli. Antibodies raised to each domain were tested for surface fluorescence with live infected erythrocytes, rosette inhibition and phagocytosis-induction. Antibodies to all PfEMP1 domains recognized the surface of live infected erythrocytes down to low concentrations (0.02–1.56 µg/ml of total IgG). Antibodies to all PfEMP1 domains except for the second Duffy-Binding-Like region inhibited rosetting (50% inhibitory concentration 0.04–4 µg/ml) and were able to opsonize and induce phagocytosis of infected erythrocytes at low concentrations (1.56–6.25 µg/ml). Antibodies to the N-terminal region (NTS-DBL1α) were the most effective in all assays. All antibodies were specific for the R29 parasite strain, and showed no functional activity against five other rosetting strains.

Conclusions/Significance

These results are encouraging for vaccine development as they show that potent antibodies can be generated to recombinant PfEMP1 domains that will inhibit rosetting and induce phagocytosis of infected erythrocytes. However, further work is needed on rosetting mechanisms and cross-reactivity in field isolates to define a set of PfEMP1 variants that could induce functional antibodies against a broad range of P. falciparum rosetting parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号