首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We constructed a system in which wild-type RepA or RepAcop1 protein was supplied in trans in various amounts to coexisting mini-Rts1 plasmids by clones of the repA or repAcop1 gene under the control of the native promoter with or without its operator sequence. RepAcop1 protein which contains a single amino acid substitution (Arg-142 to Lys) within its 288 amino acids could initiate the replication of the mini-Rts1 plasmid efficiently at both 37 and 42 degrees C even if it was supplied in excess. In contrast, excess wild-type RepA inhibited plasmid replication at 37 degrees C but supported replication at 42 degrees C. Therefore, it appears that the initiator activity of RepA is not related to the incompatibility phenotype associated with an excess of RepA protein. An immunoblot analysis revealed that neither RepA nor RepAcop1 synthesis was temperature sensitive and that both were autogenously regulated to a similar extent because of the presence of an operator located immediately upstream of the promoter. Two mutant RepA proteins, each of which contains a 4-amino-acid insertion in the middle of the protein, maintained the autorepressor and incompatibility activities but lost the ori(Rts1)-activating function.  相似文献   

2.
Rts1 is a high-molecular-weight (126 x 10(6)) plasmid encoding resistance to kanamycin. It expresses unusual temperature-sensitive phenotypes, which affect plasmid maintenance and replication, as well as host cell growth. We have cloned the essential replication region of Rts1 from pAK8, a smaller derivative which is phenotypically similar to Rts1. Restriction endonuclease digests of isolated pAK8 deoxyribonucleic acid were allowed to "self-ligate" (ligation without an additional cloning vector) and subsequently were used to transform Escherichia coli strain 20SO to kanamycin resistance. Screening of these strains for the phenotypes of thermosensitive host growth and temperature-dependent plasmid elimination demonstrated that these two properties were expressed independently. Furthermore, it was shown that the Rts1 replication locus per se is not necessarily responsible for altered host growth at the nonpermissive temperature. The kanamycin resistance fragment of pAK8 was also cloned into pBR322. Electrophoretic analysis of BamHI restriction enzyme digests of this plasmid and similar digests of an Rts1 miniplasmid has allowed the identification of an 18.6-megadalton fragment carrying the replication locus and a 14.1-megadalton fragment carrying the kanamycin resistance gene.  相似文献   

3.
The RepA protein of plasmid R1 is rate-limiting for initiation of R1 replication. Its synthesis is mainly regulated by interactions of the antisense RNA, CopA, with the leader region of the RepA mRNA, CopT. This work describes the characterization of several mutants with sequence alterations in the intergenic region between the copA gene and the repA reading frame. The analysis showed that most of the mutations led both to a decrease in stability of maintenance of mini-R1 derivatives and to lowered repA expression assayed in translational repA-lacZ fusion constructs. Destruction of the copA gene and replacement of the upstream region by the tac promoter in the latter constructs indicated that these mutations per se alter the expression of repA. In addition, we show that particular mutations in this region can directly affect CopA-mediated control, either by changing the kinetics of interaction of CopA RNA with the RepA mRNA and/or by modifying the activity of the copA promoter. These data indicate the importance of the region analysed in the process that controls R1 replication.  相似文献   

4.
Control of replication and segregation of R plasmid Rts1.   总被引:7,自引:6,他引:1       下载免费PDF全文
A mutant plasmid, pTW2, which was derived from the integrated Rst1 genome in the Escherichia coli chromosome, was studied as to its mode of replication at 30 degrees C. When Proteus mirabilis Pm17 harboring pTW2 was grown in broth at 30 degrees C, a considerable number of R- segregants (approximately 40%) were consistently observed. This indicates that pTW2 is unstable even at the permissive temperature for the replication of Rts1. The pTW2+ cells in a culture were heterogeneous with respect to the level of kanamycin resistance, ranging from 500 to 4,000 mug of the drug per ml. The amount of pTW2 deoxyribonucleic acid (DNA) relative to the Pm17 chromosomal DNA was about fivefold as large as that of Rts1 DNA in an exponentially growing culture. In addition, pTW2 in P. mirabilis continued to replicate after the chromosome had ceased to replicate, which was shown in the study of the inhibition of protein synthesis. Contrary to pTW2, the parent plasmid Rts1 is highly stable, and the relative percent Rts1 DNA is maintained at approximately 7% in any cultural conditions at a permissive temperature. These results suggest that copies of pTW2 may not segregate evenly into the host progeny upon cell division and that the replication of pTW2 does not coordinate with that of the chromosome. A remarkable instability of pTW2 as well as an increase in the relative percent pTW2 DNA was also shown when E. coli were used as the host cells. These results suggest the possibility that there is a gene or a gene cluster on the Rst1 genome responsible for the control of both replication and segregation of Rts1.  相似文献   

5.
6.
T Jiang  Y N Min  W Liu  D D Womble    R H Rownd 《Journal of bacteriology》1993,175(17):5350-5358
Mutants of IncFII plasmid NR1 that have transposons inserted in the repA4 open reading frame (ORF) are not inherited stably. The repA4 ORF is located immediately downstream from the replication origin (ori). The repA4 coding region contains inverted-repeat sequences that are homologous to the terC inverted repeats located in the replication terminus of the Escherichia coli chromosome. The site of initiation of leading-strand synthesis for replication of NR1 is also located in repA4 near its 3' end. Transposon insertions between ori and the right-hand terC repeat resulted in plasmid instability, whereas transposon insertions farther downstream did not. Derivatives that contained a 35-bp frameshift insertion in the repA4 ORF were all stable, even when the frameshift was located very near the 5' end of the coding region. This finding indicates that repA4 does not specify a protein product that is essential for plasmid stability. Examination of mutants having a nest of deletions with endpoints in or near repA4 indicated that the 3' end of the repA4 coding region and the site of leading-strand initiation could be deleted without appreciable effect on plasmid stability. Deletion of the pemI and pemK genes, located farther downstream from repA4 and reported to affect plasmid stability, also had no detectable effect. In contrast, mutants from which the right-hand terC repeat, or both right- and left-hand repeats, had been deleted were unstable. None of the insertion or deletion mutations in or near repA4 affected plasmid copy number. Alteration of the terC repeats by site-directed mutagenesis had little effect on plasmid stability. Plasmid stability was not affected by a fus mutation known to inactivate the termination function. Therefore, it appears that the overall integrity of the repA4 region is more important for stable maintenance of plasmid NR1 than are any of the individual known features found in this region.  相似文献   

7.
Incompatibility of the R plasmid Rts1 and its replication mutant pTW2 was studied in recA host cells of Escherichia coli. When the R plasmid R401, belonging to the same incompatibility group as Rts1, was used as a test plasmid, R401 was eliminated preferentially from (Rts-R401)+ cells irrespective of the direction of transfer. In contrast, pTW2 and R401 were mutually excluded. The decreased incompatibility of pTW2 was confirmed by a direct incompatibility test in which a derivative of Rts1 expelled pTW2 exclusively. Alkaline sucrose gradients of pTW2 and Rts1 DNA indicated that approximately one-fourth of the Rts1 genome was deleted in pTW2. In addition, both the various temperature-dependent properties of Rts1 and the inhibitory effect on phage T4 development were also lost in pTW2. A possible mechanism that regulates the stringent replication of Rts1 is discussed.  相似文献   

8.
Y Terawaki  Z Hong  Y Itoh    Y Kamio 《Journal of bacteriology》1988,170(3):1261-1267
RepA protein, essential for replication of plasmid Rts1, was found to bind in vivo immediately upstream of the repA promoter in studies with mini-Rts1 derivatives with deletions in the upstream region of repA. We constructed another series of repA mutants that would encode RepA derivatives containing oligopeptide substitutions in place of the carboxyl-terminal six amino acids. These modified RepA proteins could not activate ori (Rts1) at all and showed various degrees of incompatibility, or no incompatibility, toward a mini-Rts1 plasmid. These results suggest that the carboxyl-terminal six (or fewer) amino acids of RepA are important for exerting replication and incompatibility functions. One of the RepA derivatives, which showed an evident incompatibility without initiating replication, was examined for its ability to repress the repA gene.  相似文献   

9.
10.
A replication region, consisting of a 1.1-megadalton (Md) EcoRI/HindIII fragment, was isolated from an Rts1 derivative plasmid. This 1.1-Md fragment, designated as mini-Rts1, was ligated to either pBR322 or a nonreplicating DNA fragment specifying a drug resistance, and its replication properties were investigated. The mini-Rts1 plasmid was cured at a high frequency at 42 °C, while it was maintained stably at 37 °C despite it existed in low copy number. These behaviors are quite similar to those of Rts1. By dissecting the pBR322:mini-Rts1 chimeric plasmid with AccI endonuclease, an inc region of 0.34 Md in size was cloned, which expressed incompatibility toward Rts1. Proteins encoded on the mini-Rts1 genome were examined in the minicell system, and one specific product of 35,000 daltons in molecular weight was identified. Any polypeptides specific for the 0.34-Md inc+ region within mini-Rts1 were not detected.  相似文献   

11.
An R plasmid Rts1 was integrated into the gal region of the chromosome of Escherichia coli XA-7012 (galE) strain by the directed transposition technique. The integration of the Rts1 genome was confirmed mainly by conjugation studies and also by transduction experiments using phage P1. As a result, it was found that the integrated genome contained genes responsible for kanamycin resistance, conjugal transferability, and for autonomous replication. As reported previously, Rts1 is temperature sensitive in replication and inhibits the growth of the host at nonpermissive temperature. However, although a plasmid derived from the integrated Rts1 genome still demonstrates temperature sensitivity upon transfer and high level of kanamycin resistance, this plasmid no longer displays temperature sensitivity in replication and the inhibitory effect on the host. These results indicate that the temperature sensitivity of replication of Rts1 and its inhibitory effect on the host cell are due to the presence of a gene or gene cluster on the Rts1 genome and that the gene(s) is clearly discriminated from the one responsible for the temperature sensitivity of transfer.  相似文献   

12.
13.
Essential DNA sequence for the replication of Rts1.   总被引:11,自引:10,他引:1       下载免费PDF全文
Y Itoh  Y Kamio    Y Terawaki 《Journal of bacteriology》1987,169(3):1153-1160
The promoter sequence of the mini-Rts1 repA gene encoding the 33,000-dalton RepA protein that is essential for replication was defined by RNA polymerase protection experiments and by analyzing RepA protein synthesized in maxicells harboring mini-Rts1 derivatives deleted upstream of or within the presumptive promoter region. The -10 region of the promoter which shows homology to the incII repeat sequences overlaps two inverted repeats. One of the repeats forms a pair with a sequence in the -35 region, and the other forms a pair with the translation initiation region. The replication origin region, ori(Rts1), which was determined by supplying RepA protein in trans, was localized within 188 base pairs in a region containing three incII repeats and four GATC sequences. Dyad dnaA boxes that exist upstream from the GATC sequences appeared to be dispensable for the origin function, but deletion of both dnaA boxes from ori(Rts1) resulted in reduced replication frequency, suggesting that host-encoded DnaA protein is involved in the replication of Rts1 as a stimulatory element. Combination of the minimal repA and ori(Rts1) segments, even in the reverse orientation compared with the natural sequence, resulted in reconstitution of an autonomously replicating molecule.  相似文献   

14.
The inhibition of plasmid ColE1 replication caused by a deletion of the ColE1 plasmid replication origin has been previously reported (T. Hashimoto-Gotoh and J. Inselburg, J. Bacteriol. 139:597-619). Evidence is presented showing that restoration of the deleted nucleotide sequence in the precise relationship it normally has to the rest of the replication region is essential for restoration of ColE1 replication capability to the deletion mutant.  相似文献   

15.
The incompatibility properties of IncFII R plasmid NR1 were compared with those of two of its copy number mutants, pRR12 and pRR21. pRR12 produced an altered incompatibility product and also had an altered incompatibility target site. The target site appeared to be located within the incompatibility gene, which is located more than 1,200 base pairs from the plasmid origin of replication. The incompatibility properties of pRR21 were indistinguishable from those of NR1. Lambda phages have been constructed which contain the incompatibility region of NR1 or of one of its copy mutants fused to the lacZ gene. In lysogens constructed with these phages, beta-galactosidase was produced under the control of a promoter located within the plasmid incompatibility region. Lysogens containing prophages with the incompatibility regions from pRR12 and pRR21 produced higher levels of beta-galactosidase than did lysogens containing prophages with the incompatibility region from the wild-type NR1. The introduction into these inc-lac lysogens of pBR322 plasmids carrying the incompatibility regions of the wild-type or mutant plasmids resulted in decreased levels of beta-galactosidase production. For a given lysogen, the decrease was greater when the pBR322 derivative expressed a stronger incompatibility toward the plasmid from which the fragment in the prophage was derived. This suggested that the incompatibility product acts on its target to repress gene expression in the plasmid replication region.  相似文献   

16.
Replication of the thermosensitive drug resistance factor Rts1 was studied at the nonpermissive temperature (42 degrees C). It was concluded from the following observations that replication of this plasmid takes place at 42 degrees C without involving the covalently closed circular (CCC) form of deoxyribonucleic acid (DNA). (i) DNA-DNA- reassociation kinetics studies with purified Rts1 DNA showed that Rts1 DNA increased several-fold during cell growth at 42 degrees C while very little, if any, CCC DNA was synthesized. (ii) When Escherichia coli 20S0(Rts1) was labeled with [3H]thymidine at 42 degrees C, a significant amount of radioactive DNA hybridizable to Rts1 DNA was formed. This DNA was found in a fraction where DNA other than CCC DNA was expected in alkaline sucrose density gradient centrifugation analysis. When E. coli 20S0(Rts1) was labeled at 32 degrees C, the labeled CCC DNA did not disappear during a chase period at 42 degrees C. This indicates that preformed CCC DNA does not participate in replication at the nonpermissive temperature. These results are consistent with the hypothesis that there are two modes of replication of Rts1 DNA, one involving a CCC molecule and the other not involving this form, and that only the latter mode takes place at the nonpermissive temperature.  相似文献   

17.
Molecular cloning and mapping of a deletion derivative of the plasmid Rts 1   总被引:6,自引:0,他引:6  
The plasmid pTW20 is a deletion derivative of the kanamycin resistance plasmid Rts1. By digesting pTW20 DNA with EcoRI endonuclease six fragments were generated, and each was cloned in the vector plasmid pACYC184. These cloned EcoRI fragments were further digested with various endonucleases, and the cleavage map of pTW20 was constructed. A SalI fragment (1.5 Md) in E1 (the largest EcoRI fragment; 11.5 Md) contained the genes kan (kanamycin resistance) and puv (uv sensitization of host). An electron microscopy study of a BamHI fragment containing kan revealed the presence of a transposon-like structure in the fragment. The smallest EcoRI fragment E6 (2.0 Md) was capable of autonomous replication in a polA host, indicating that E6 contained replication genes of pTW20. These genes were found to be located on a 1.1-Md HindIII fragment in E6. Two incompatibility genes were identified on the pTW20 genome, one located on each of the fragments E6 and E5 (3.5 Md), and expressed T incompatibility independently. The nature of the temperature sensitivity of pTW20 was discussed.  相似文献   

18.
19.
The region of R plasmid NR1 that is capable of mediating autonomous replication was cloned by using EcoRI, SalI, and PstI restriction endonucleases. The only EcoRI fragment capable of mediating autonomous replication in either a pol+ or a polA host was fragment B. SalI fragment E joined in native orientation with the part of SalI fragment C that overlapped with EcoRI fragment B, and also two contiguous PstI fragments of sizes 1.6 and 1.1 kilobases from EcoRI fragment B-mediated autonomous replication. When these individual SalI fragments were cloned onto plasmid pBR313 or the individual PstI fragments were cloned onto plasmid pBR322, none of these single fragments could rescue the replication of the ColE1-like vectors in a polA host, even in the presence of a compatible "helper" plasmid derived from a copy mutant of NR1. In contrast to the results reported for closely related R plasmid R6, EcoRI fragment A of NR1 could not rescue the replication of ColE1 derivative RSF2124 in a polA(Am) mutant or in a polA(Ts) mutant at the restrictive temperature. Although capable of autonomous replication, EcoRI fragment B of NR1 (or smaller replicator fragments cloned from it by using other restriction enzymes) was not stably inherited in the absence of selection for the recombinant plasmid. When EcoRI fragment B was ligated to EcoRI fragment A of NR1, the recombinant plasmid was stable. Thus, EcoRI fragment A contained a stability (stb) function. The stb function did not act in trans since EcoRI fragment B was not stably inherited when a ColE1 derivative (RSF2124) ligated to EcoRI fragment A was present in the same cell. A cointegrate plasmid consisting of EcoRI fragment B of NR1 ligated to RSF2124 was also not stably inherited, whereas only EcoRI fragment B was unstable when both RSF2124 and EcoRI fragment B coexisted as autonomous plasmids in the same cell. The incompatibility gene of NR1 was shown to be located within the region of overlap between SalI fragment E and the PstI 1.1-kilobase fragment. A copy mutant of NR1 (called pRR12) was found to have greatly reduced incompatibility with NR1; this Inc- phenotype is cis dominant.  相似文献   

20.
We identified a 1,845-base-pair sequence that contains essential information for the autonomous replication and regulation of the 93-kilobase-pair IncI alpha group ColIb-P9 plasmid. Biochemical and genetic analyses revealed that this sequence specifies at least two structural genes, designated repZ and inc. The repZ gene encodes a protein with a molecular weight of 39,000, which probably functions as an initiator for the ColIb-P9 replicon. The inc gene that phenotypically governs the incompatibility encodes an RNA with a size of about 70 bases. This small RNA acts in trans to repress the expression of repZ, thereby functioning to maintain a constant copy number of the ColIb-P9 replicon in host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号