首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Genomic Diversity of Field Isolates of Burkholderia solanacearum in Japan   总被引:1,自引:0,他引:1  
Genomic differences between 18 isolates of Burkholderia solanacearum originated from diseased plants cultivated in nine different agricultural fields were examined by using four DNA-based methods: repetitive DNA polymorphism analysis, restriction-site analysis of polymerase chain reaction products, random amplified polymorphic DNA (RAPD) analysis, and macrorestriction analysis. Genomic diversity among the isolates was detected by RAPD and macrorestriction analysis. The latter revealed the regional variation of the genome structure among the isolates, suggesting that B. solanacearum populations consist of a number of independent clonal lines.  相似文献   

2.
AIMS: The aim of this study was to determine the genetic diversity among isolates of Burkholderia andropogonis from various host plant species and geographic locations. METHODS AND RESULTS: Both random amplified polymorphic DNA (RAPD) and ribotyping analyses were used to assess the diversity of B. andropogonis isolates and compare these results with pathogenicity assays carried out on a number of common hosts of the organism. CONCLUSIONS: Both RAPD and ribotyping analyses revealed a high level of genetic diversity between isolates of B. andropogonis. Both methods demonstrated a similar clustering of isolates. However, there was no strict correlation between the genetic diversity revealed and the original host, geographic location or pathogenicity of the isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on the genetic diversity of isolates of B. andropogonis. The great degree of diversity revealed in this study contrasts with the lack of phenotypic diversity within this species.  相似文献   

3.
Neutral and pathogenicity markers were used to analyse the population structure of Magnaporthe grisea rice isolates from the north‐western Himalayan region of India. Random amplified polymorphic DNA (RAPD)‐based DNA fingerprinting of 48 rice isolates of M. grisea with five primers (OPA‐04, OPA‐10, OPA‐13, OPJ‐06 and OPJ‐19) showed a total of 65 RAPD bands, of which 54 were polymorphic. Cluster analysis of 48 rice isolates of M. grisea on the basis of these 65 RAPD bands revealed the presence of high genotypic diversity and continuous DNA fingerprint variation in the pathogen population. No correlation was observed between RAPD patterns and virulence characteristics of the pathogen. The observed population structure contrasted with presumed clonal reproductive behaviour of the pathogen and indicated the possibility of ongoing genetic recombination in the pathogen population. Analysis of the virulence organization of five RAPD groups (RG1–RG5) using 20 rice genotypes comprising at least 15 resistance genes revealed that no combination of resistance genes would confer resistance against all RAPD fingerprint groups present in the M. grisea rice population. The possible implications of the observed population structure of M. grisea for blast resistance breeding have been discussed.  相似文献   

4.
Reed stands in Germany and Europe were investigatedwith respect to their genetic diversity by means ofRandom Amplified Polymorphic DNA (RAPD) via thePolymerase Chain Reaction (PCR-fingerprinting).Different types of clonal distribution could bedistinguished: monoclonal reed stands and polyclonalreed stands, and among the latter, stands with low orhigh numbers of different clones as well as standswith mosaic-like coexisting or intermingling clones.Furthermore, clonal distribution and the expansion ofdifferent clones was observed within a newlydeveloping reed population. The findings appear tosupport a model of colonization postulating thatpopulations initiated by seeds are initiallygenetically diverse, but over time become dominated byone or a few clones adapted to the prevailing siteconditions. Thus, low genetic diversity seems to bethe result of a natural selection process. Clonaldiversity within a reed population and the type ofclonal distribution are discussed with regard to theirimportance for the reed stand's ability to adapt tochanging site conditions and eventually for itssurvival or die-back.  相似文献   

5.
BACKGROUND AND AIMS: Many alpine plant species combine clonal and sexual reproduction to minimize the risks of flowering and seed production in high mountain regions. The spatial genetic structure and diversity of these alpine species is strongly affected by different clonal strategies (phalanx or guerrilla) and the proportion of generative and vegetative reproduction. METHODS: The clonal structure of the alpine plant species Salix herbacea was investigated in a 3 x 3 m plot of an alpine meadow using microsatellite (simple sequence repeat; SSR) analysis. The data obtained were compared with the results of a random amplified polymorphic DNA (RAPD) analysis. KEY RESULTS: SSR analysis, based on three loci and 16 alleles, revealed 24 different genotypes and a proportion of distinguishable genotypes of 0.18. Six SSR clones were found consisting of at least five samples, 17 clones consisting of more than two samples and seven single genotypes. Mean clone size comprising at least five samples was 0.96 m(2), and spatial autocorrelation analysis showed strong similarity of samples up to 130 cm. RAPD analysis revealed a higher level of clonal diversity but a comparable number of larger clones and a similar spatial structure. CONCLUSIONS: The spatial genetic structure as well as the occurrence of single genotypes revealed in this study suggests both clonal and sexual propagation and repeated seedling recruitment in established populations of S. herbacea and is thus suggestive of a relaxed phalanx strategy.  相似文献   

6.
7.
To determine the relative importance of clonal growth and sexual reproduction, the Randomly Amplified Polymorphic DNA (RAPD) method was used to study genetic diversity and clonal structure of six populations of Elymus repens and four populations of Elymus hispidus from Poland. These outbreeding species are virtually self‐sterile and form widely spreading and long‐lived rhizomes. Using 12 primers, a total of 150 unambiguous RAPD fragments were amplified and scored. Results of AMOVA showed no significant genetic distinction between morphologically distinguished varieties of E. repens and E. hispidus. E. repens had slightly higher intra‐specific genetic polymorphism than E. hispidus; the percentage of polymorphic bands per population ranged from 38 to 49 and from 19 to 38 respectively. Clonal diversity measured using the Simpson diversity index (D) indicated different contributions of clonal reproduction in particular populations of E. repens (D: 0.20–0.72). Populations of E. hispidus were dominated by one or a few clones, which were generally restricted to a single population (D: 0.00–0.22). RAPD revealed that most genetic diversity resided within populations of the two studied species, suggesting that, despite their clonal character, propagation by seeds contributes considerably to reproduction of E. repens and E. hispidus.  相似文献   

8.
Random amplified polymorphic DNA (RAPD) was used to assess the genetic structure of Hemileia vastatrix populations. Forty-five rust isolates with different virulence spectra and from different hosts and geographical regions were analyzed. Out of 45 bands, generated with three RAPD primers, 35 (78%) were polymorphic and scored as molecular markers. Cluster analysis exhibits unstructured variability of this pathogen with regard to physiological race, geographical origin or host. The genotypic diversity (H') inferred from Shannon's index was higher than gene diversity (Ht), suggesting that diversity is distributed among clonal lineages. Estimates of gene diversity in Africa and Asia populations were higher in total (Ht) as compared to within population diversity (Hs). Genetic differentiation was considerable among coffee rust isolates from Africa (Gst = 0.865) and Asia (Gst = 0.768) but not among isolates from South America (Gst = 0.266). We concluded that genetic diversity in H. vastatrix was moderately low and that the genetic differentiation among populations shows that asexual reproduction is likely to play an important role in the population biology of this fungus. This should be taken into account for the development of breeding programs.  相似文献   

9.
Clonality is a common feature of plants and benthic marine organisms. In some cases clonal propagation results in a modest increase in population density, while in other cases dense populations may be generated by the propagation of only a few clones. We analyzed the population structure of the clonal gorgonian Plexaura kuna across several reef habitats with a range of disturbance regimes in the San Blas Islands, Panama, and the Florida Keys, U.S.A. Using multilocus DNA fingerprinting to distinguish clones, we estimated that clones ranged in size from single individuals to 500 colonies. The number of genotypes identified on nine reefs ranged from three to 25. Population density and clonal structure varied markedly among reefs with GO:GE ranging from 0.03 to 1.00. On some reefs vegetative reproduction transformed P. kuna from a rare species to the numerically most abundant gorgonian. The effect of clonal propagation on P. kuna population structure was dependent on interactions between fragmentation and the reef environment (disturbance regime, substratum). We present a generalized model relating population structure of clonal species to disturbance and the mode of vegetative propagation. Disturbance promotes colony propagation and skews the size-frequency distribution of clones among P. kuna and many species that propagate via fragmentation. Propagation of these species is promoted by disturbance (disturbance sensitive), and they tend to have clones that are dispersed across local sites. Species that fragment and have dispersed clones, have high genotypic diversity in habitats with low levels of disturbance. Genotypic diversity then decreases at intermediate disturbance and increases again at the highest disturbance levels. Clonal species that do not rely on disturbance for vegetative propagation (disturbance insensitive) generally do not disperse and form aggregated clones. Among these taxa disturbance has a greater affect on individual survival than on propagation. Genotypic diversity is directly related to the level of disturbance until very high levels of disturbance, at which time genotypic diversity declines.  相似文献   

10.
有性生殖对栗疫病菌群体结构的影响   总被引:1,自引:0,他引:1  
采用RAPD方法对来源于栗疫病菌8个不同子囊壳的子囊孢子后代和无性生殖的对照群体各23个菌株进行了群体结构的比较。从RAPD随机引物中筛选出扩增多态性丰富的4条引物,共扩增出条带73条,多态性检测率为100%。研究结果表明,在8个子囊壳和无性生殖群体中的基因多样性,64.27%由群体内部引起,只有35.73%的多样性由群体之间的基因差异引起。各子囊壳群体间存在的基因流动很小(Nm=0.8994)。有性群体和无性群体之间的遗传距离为0.1389,基因流动值为3.4212,说明子囊壳群体和无性生殖群体之间存在一定的系统关系。分析表明栗疫病菌子囊孢子后代在自然界的传播对自然界的病菌的多样性起重要的作用。  相似文献   

11.
AIMS: To assess the degree of genetic diversity among animal Salmonella Dublin UK isolates, and to compare it with the genetic diversity found among human isolates from the same time period. METHODS AND RESULTS: One hundred isolates (50 human and 50 animal) were typed using plasmid profiling, XbaI-pulsed field gel electrophoresis (PFGE) and PstI-SphI ribotyping. Antimicrobial resistance data to 16 antibiotics was presented, and the presence of class-I integrons was investigated by real-time PCR. Seven different plasmid profiles, 19 ribotypes and 21 PFGE types were detected. A combination of the three methods allowed clear differentiation of 43 clones or strains. Eighteen isolates were resistant to at least one antimicrobial; five of them were multi-resistant and of these, only three presented class I integrons. CONCLUSIONS: Ribotyping data suggest the existence of at least three very different clonal lines; the same distribution in well-defined groups was not evident from the PFGE data. The existence of a variety of clones in both animals and humans has been demonstrated. A few prevalent clones seem to be widely disseminated among different animal species and show a diverse geographical and temporal distribution. The same clones were found in animals and humans, which may infer that both farm and pet animals may act as potential vehicles of infection for humans. Some other clones seem to be less widely distributed. Clustering analysis of genomic fingerprints of Salmonella Dublin and Salm. Enteritidis isolates confirms the existence of a close phylogenetic relationship between both serotypes. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper describes the utility of a multiple genetic typing approach for Salm. Dublin. It gives useful information on clonal diversity among human and animal isolates.  相似文献   

12.
亚欧美栗疫病菌群体的遗传多样性   总被引:4,自引:0,他引:4  
从 12 0个随机引物中筛选出条带清晰、主带明显、重复性好的 9个引物 ,对来自不同地域和寄主的 7个群体的 14 2个栗疫病菌菌株进行 RAPD分析。 9个引物共扩增出条带 12 4条 ,其中多态性条带 111条 ,多态性比率为 89.5 2 %。利用 Popgen3.2软件对供试群体进行遗传多样性分析和 UPGMA聚类。结果表明 ,中国地区 4个群体间的遗传相似性较大 ,与美国、意大利和日本群体间的相似性较小 ;美国和意大利群体间的遗传相似性较大 ,且它们与日本群体间的相似性大于与中国群体间的相似性。病原菌群体的遗传变异率为 0 .2 35 1,其中在地区水平上 ,82 .34%由群体内的变异引起 ,17.6 6 %由群体间的差异引起 ,群体间的基因流动值为 2 .3311;而在寄主水平上 ,则 79.4 2 %由群体内的变异引起 ,2 0 .5 8%由群体间的差异引起 ,群体间的基因流动值为 1.92 97  相似文献   

13.
AIM: DNA fingerprinting using (GTG)(5) oligonucleotide as a primer in a random amplified polymorphic DNA (RAPD) assay was assessed by typing isolates of Campylobacter concisus strains, collected over a period of 8 years. METHODS AND RESULTS: RAPD analysis using the (GTG)(5) oligonucleotide as a primer was used to type 100 isolates of C. concisus comprising mostly isolates from children with diarrhoea. Using this method, 86% of the isolates were found to be genotypically diverse. Of these heterogeneous isolates, 25 of the strains were also shown to be genetically distinct in a previous study using pulsed field gel electrophoresis. The remaining isolates (14) could be classified into five profile groups based on the DNA fingerprinting patterns. The assay successfully identified epidemiologically linked strains from the unrelated genetically diverse pool of strains. CONCLUSIONS: Laboratory RADP typing using the (GTG)(5) primer proved to be useful in distinguishing related strains of C. concisus from a large pool of unrelated strains of this organism. SIGNIFICANCE AND IMPACT OF THE STUDY: RAPD typing using (GTG)(5) is a simple method that could be used to investigate the epidemiology of C. concisus. The results suggest that homologous lineages of C. concisus may exist within an otherwise heterogeneous species complex. However, these data need to be confirmed using a more robust typing method.  相似文献   

14.
Parthenogenetic organisms often harbour substantial genotypic diversity. This diversity may be the result of recurrent formations of new clones, or it may be maintained by environmental heterogeneity acting on ecological differences among clones. In aphids, both processes may be important because obligate and cyclical parthenogens can form mixed populations. Using microsatellites, I analysed the temporal dynamics of clonal diversity in such a population of the aphid Myzus persicae over a 1-year period. The frequency distribution of clonal genotypes was very skewed, with many rare and few common clones. The relative frequencies of common clones underwent strong and rapid changes indicative of intense clonal selection. Differences in their host associations suggest that these shifts may partly be caused by changes in the abundance of annual host plants. Other selective factors of potential importance are also discussed. New, sexually produced genotypes made a minor contribution to clonal diversity, consistent with the observed heterozygote excess characteristic of predominantly asexual populations in M. persicae.  相似文献   

15.
Random amplification of polymorphic DNA (RAPD) was evaluated as a genotypic method for typing clinical strains of Propionibacterium acnes. RAPD can suffer from problems of reproducibility if parameters are not standardised. In this study the reaction conditions were optimised by adjusting template DNA concentration and buffer constituents. All isolates were typeable using the optimised RAPD protocol which was found to be highly discriminatory (Simpson's diversity index, 0.98) and reproducible. Typing of P. acnes by optimised RAPD is an invaluable tool for the epidemiological investigation of P. acnes for which no other widely accepted method currently exists.  相似文献   

16.
Under the Red Queen hypothesis, host-parasite coevolution selects against common host genotypes. Although this mechanism might underlie the persistence of sexual reproduction, it might also maintain high clonal diversity. Alternatively, clonal diversity might be maintained by multiple origins of parthenogens from conspecific sexuals, a feature in many animal groups. Herein, we addressed the maintenance of overall genetic diversity by coevolving parasites, as predicted by the Red Queen hypothesis. We specifically examined the contribution of parasites to host clonal diversity and the frequency of sexually reproducing individuals in natural stream populations of Potamopyrgus antipodarum snails. We also tested the alternative hypothesis that clonal diversity is maintained by the input of clones by mutation from sympatric sexuals. Clonal diversity and the frequency of sexual individuals were both positively related to infection frequency. Surprisingly, although clones are derived by mutation from sexual snails, parasites explained more of the genotypic variation among parthenogenetic subpopulations. Our findings thus highlight the importance of parasites as drivers of clonal diversity, as well as sex.  相似文献   

17.
 The poor definition of variation in the ascochyta blight fungus (Ascochyta rabiei) has historically hindered breeding for resistance to the chickpea (Cicer arietinum L.) blight disease in West Asia and North Africa. We have employed 14 RAPD markers and an oligonucleotide probe complementary to the microsatellite sequence (GATA)4 to construct a genotype-specific DNA fragment profile from periodically sampled Syrian field isolates of this fungus. By using conventional pathogenicity tests and genome analysis with RAPD and microsatellite markers, we demonstrated that the DNA markers distinguish variability within and among the major pathotypes of A. rabiei and resolved each pathotypes into several genotypes. The genetic diversity estimate based on DNA marker analysis within pathotypes was highest for the least-aggressive pathotype (pathotype I), followed by the aggressive (pathotype II) and the most-aggressive pathotype (pathotype III). The pair-wise genetic distance estimated for all the isolates varied from 0.00 to 0.39, indicating a range from a clonal to a diverse relationship. On the basis of genome analysis, and information on the spatial and temporal distribution of the pathogen, a general picture of A. rabiei evolution in Syria is proposed. Received: 10 January 1998 / Accepted: 23 January 1998  相似文献   

18.
Arctic plants in general and arctic clonal plants in particular have often been assumed to contain low levels of genetic diversity. We used RAPDs (random amplified polymorphic DNAs) to investigate genetic diversity in the arctic-alpine Saxifraga cernua , which mainly reproduces clonally via bulbils, at three spatial scales in Svalbard: (i) 'macroscale', between two sites 11 km apart; (ii) 'mesoscale', along two crossing transects at each site; and (iii) 'microscale', within a 3 × 3 m square at each site. Thirteen putative clones (RAPD phenotypes) were distinguished among 93 ramets based on 38 RAPD markers. The genetic diversity ( D ; mean 0.52, range 0.10–0.81) and evenness ( E ; mean 0.42, range 0.00–0.82) were at the same level as in clonal plants in general. However, the diversity strongly depended on site and spatial scale. Several clones were highly divergent and clustered independently of site in UPGMA and PCO analyses. In an analysis of molecular variance ( AMOVA ), most of the variation (59%) was found within sites. Mantel tests revealed no correlation between spatial and genetic distance within sites. Our results suggest that occasional sexual reproduction as well as clonal migration via bulbil dispersal play a significant role in the treeless arctic environment, where S. cernua is widespread and locally very abundant. In contrast, Bauert et al. ( Molecular Ecology 7, 1519–1527) found no genetic variation within populations or regions of the Alps, where the species has highly isolated occurrences.  相似文献   

19.
Asexual reproduction in vertebrates is rare and generally considered an evolutionary dead end. Asexuality is often associated with polyploidy, and several hypotheses have been put forward to explain this relationship. So far, it remains unclear whether polyploidization in asexual organisms is a frequent or a rare event. Here we present a field study on the gynogenetic Amazon molly, Poecilia formosa. We used multilocus fingerprints and microsatellites to investigate the genetic diversity in 339 diploid and 55 triploid individuals and in 25 P. mexicana, its sexual host. Although multilocus DNA fingerprints found high clonal diversity in triploids, microsatellites revealed only two very similar clones in the triploids. Phylogenetic analysis of microsatellite data provided evidence for a monophyletic origin of the triploid clones of P. formosa. In addition, shared alleles within the triploid clones between the triploid and diploid genotypes and between asexual and sexual lineages indicate a recent origin of triploid clones in Poecilia formosa.  相似文献   

20.
Physical disturbance has often been invoked to control genotypic diversity in sessile clonal organisms, yet experimental evidence is lacking. I studied the effects of physical disturbance on genet dynamics and genotypic diversity in a clonal marine angiosperm, Zostera marina (eelgrass). In replicated plots of 1 m2, the vegetation canopy was removed in gaps of zero (control), 25%, 50% and 75% of the area (n = 6 replicates). Before removal and during two consecutive years, the genotypic composition was determined using genetic markers (DNA microsatellites) in a 5 x 5 pixel grid per plot. An aggregate index of genet dynamics summarizing recruitment, increase, loss and decrease of clones was maximal at intermediate disturbance levels (quadratic polynomial P = 0.02). Physical disturbance also increased the occurrence of new genotypes, possibly reflecting recruitment (linear model, P < 0.05). Contrary to expectations, there was no competitive advantage of more heterozygous genotypes over less heterozygous ones. In the absence of disturbance, in particular, clones with lower individual heterozygosity were more likely to increase in area over a 1-year time period than more heterozygous ones, while there was no such correlation in plots with disturbance (logistic model, P(disturbance x heterozygosity) = 0.036). Undisturbed plots revealed background recruitment independent of canopy gaps, suggesting that Z. marina exhibits a strategy of continual recruitment. Effects of experimental disturbance (linear or quadratic) on clonal diversity were not detectable. Instead, initial (pretreatment) clonal diversity accounted for between 68% and 91% of the variance in diversity, indicating remarkable resilience of genotypic diversity in the face of physical disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号