首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle mitochondrial content is tightly regulated, and requires the expression of both nuclear and mitochondrial genes. In addition, muscle mitochondrial content is a major determinant of aerobic exercise capacity in healthy subjects. The current study was designed to test the hypothesis that in healthy humans, muscle mitochondrial DNA (mtDNA) content is correlated with citrate synthase activity (a representative nuclear-encoded mitochondrial enzyme) and aerobic exercise capacity as defined by whole-body peak oxygen consumption (VO2). Furthermore, it was postulated that these relationships might be altered with disease. Twelve healthy and five paraplegic subjects underwent exercise testing and vastus lateralis muscle biopsy sampling. An additional ten healthy subjects and eight patients with unilateral peripheral arterial disease (PAD) underwent exercise testing and gastrocnemius muscle biopsy sampling. Citrate synthase activity and mtDNA content were positively correlated in the vastus lateralis muscles from the healthy subjects. This relationship was similar in muscle from paraplegic subjects. mtDNA content was positively correlated with peak VO2 in the healthy subjects and in the paraplegic subjects in whom peak VO2 had been elicited by functional electrical stimulation of the muscle. In contrast, the PAD subjects demonstrated higher mtDNA contents than would have been predicted based on their claudication-limited peak VO2. Thus, in healthy humans there are strong relationships between muscle mtDNA content and both muscle citrate synthase activity and peak VO2. These relationships are consistent with coordinant nuclear DNA and mtDNA expression, and with mitochondrial content being a determinant of aerobic exercise capacity. The relationships seen in healthy humans are quantitatively similar in paraplegic patients, but not in patients with PAD, a disease which is associated with a metabolic myopathy. The relationships between mtDNA content, mitochondrial enzyme activities and exercise capacity provide insight into the physiologic and pathophysiologic regulation of muscle mitochondrial expression.  相似文献   

2.
3.
We present a patient with external ophthalmoplegia, bilateral ptosis, progressive muscle weakness with "ragged-red fibres" and mental retardation. Mitochondrial DNA analysis by Southern blot revealed heteroplasmy in muscle for a 7.4 kb deletion. In white blood cells, the deletion was only detectable by PCR. There was no evidence for duplications, nor for multiple deletions in the proband or siblings. PCR analysis did not reveal the presence of a mitochondrial DNA defect in the parents and siblings. Thus, there is no experimental support for a maternally inherited mitochondrial DNA deletion. We consider this a sporadic case with a de novo deletion. Diabetes and complaints of fatigue, also seen in this family, are probably coincidental. Mental retardation has been reported occasionally in patients with mitochondrial deletions, but is not common.  相似文献   

4.
Forty per cent of patients with mitochondrial myopathies, a diverse group of multisystem diseases predominantly affecting skeletal muscle and the brain, have large deletions of a proportion of muscle mitochondrial DNA (mt DNA). These appeared to be identical in 13 of 28 cases, contained within the region 8286-13595 bp. Analysis of the deletion junction in two cases showed a 13 nucleotide sequence which occurred in the normal genome as a direct repeat flanking the region deleted in the mutant mt DNAs. Mt DNA deletions may arise from recombination or slippage between short sequence repeats during replication.  相似文献   

5.
The mitochondrial function in skeletal muscle biopsies of three patients with chronic progressive external ophthalmoplegia, having deletions of the mitochondrial DNA, was studied by laser-excited fluorescence measurements of NAD(P)H and flavoproteins in saponin-skinned fibers. We detected substantially elevated steady state redox states of the mitochondrial NAD-system in the muscle fibers of these patients. Moreover, the respiratory chain-linked autofluorescence changes in the muscle fibers of these patients were larger in comparison to controls indicating substantial alterations of the mitochondrial content. These results are in line with the presence of elevated numbers of partially respiratory chain inhibited mitochondria in the skeletal muscle of chronic progressive external ophthalmoplegia patients. (Mol Cell Biochem 174: 97–100, 1997)  相似文献   

6.
Shanske S  Wong LJ 《Mitochondrion》2004,4(5-6):403-415
In this article, we review the current methodologies used for the molecular diagnosis of mitochondrial DNA defects. Definition of mitochondrial disorders at the molecular level has been difficult because of both clinical and genetic heterogeneity. Direct DNA analysis for common point mutations and large mtDNA deletions is readily performed and can be done routinely. However, a large number of patients who have the clinical manifestations and muscle pathology findings consistent with mitochondrial DNA disorders do not have detectable common mutations. Additional mutation screening methods are required for the detection of rare and previously undescribed mutations in the mitochondrial genome.  相似文献   

7.
Mitochondrial DNA (mtDNA) is the only extrachromosomal DNA in human cells. The mitochondrial genome encodes essential information for the synthesis of the mitochondrial respiratory chain. Inherited defects of this genome are an important cause of human disease. In addition, the mitochondrial genome seems to be particularly prone to DNA damage and acquired mutations may have a role in ageing, cancer and neurodegeneration. We wished to determine if radiotherapy and chemotherapy used in the treatment of cancer could induce changes in the mitochondrial genome. Such changes would be an important genetic marker of DNA damage and may explain some of the adverse effects of treatment. We studied samples from patients who had received radiotherapy and chemotherapy for point mutations within the mtDNA control region, and for large-scale deletions. In blood samples from patients, we found a significantly increased number of point mutations compared to the control subjects. In muscle biopsies from 7 of 8 patients whom had received whole body irradiation as well as chemotherapy, the level of a specific mtDNA deletion was significantly greater than in control subjects. Our studies have shown that in patients who have been treated for cancer there is an increased level of mtDNA damage.  相似文献   

8.
D R Johns  O Hurko 《Genomics》1989,5(3):623-628
Deletions of mitochondrial DNA have been detected in skeletal muscle of some patients with mitochondrial encephalomyopathies, but their junctions have been defined only approximately. We developed a procedure, using widely spaced primers for the polymerase chain reaction, that amplifies preferentially the sequences bracketing the deletion. This procedure permits detection of minor proportions, not detectable by Southern analysis, of deleted mitochondrial DNA species in a heteroplasmic mixture. Different proportions of intact mitochondrial DNA and species deleted from nucleotide 8708 to 13,722 were found in skeletal muscle, blood, and urinary epithelial cells from a patient with chronic progressive external ophthalmoplegia. These data indicate that the mutation occurred at or before early embryonic development and provide the first definition at the nucleotide level of a human disease caused by a deletion of mitochondrial DNA.  相似文献   

9.
There is an age-associated decline in the mitochondrial function of the Wistar rat heart. Previous reports from this lab have shown a decrease in mitochondrial cytochrome c oxidase (COX) activity associated with a reduction in COX gene and protein expression and a similar decrease in the rate of mitochondrial protein synthesis. Damage to mitochondrial DNA may contribute to this decline.

Using the HPLC-Coularray system (ESA, USA), we measured levels of nuclear and mitochondrial 8-oxo-2'-deoxyguanosine (8-oxodG) from 6-month (young) and 23-month-old (senescent) rat liver DNA. We measured the sensitivity of the technique by damaging calf thymus DNA with photoactivated methylene blue for 30s up to 2h. The levels of damage were linear over the entire time course including the shorter times which showed levels comparable to those expected in liver. For the liver data, 8-oxodG was reported as a fraction of 2-deoxyguanosine (2-dG). There was no change in the levels of 8-oxodG levels in the nuclear DNA from 6 to 23-months of age. However, the levels of 8-oxodG increased 2.5-fold in the mitochondrial DNA with age. At 6 months, the level of 8-oxodG in mtDNA was 5-fold higher than nuclear and increased to approximately 12-fold higher by 23 months of age. These findings agree with other reports showing an age-associated increase in levels of mtDNA damage; however, the degree to which it increases is smaller. Such damage to the mitochondrial DNA may contribute to the age-associated decline in mitochondrial function.  相似文献   

10.
《BBA》2014,1837(2):226-231
It has been suggested that human mitochondrial variants influence maximal oxygen uptake (VO2max). Whether mitochondrial respiratory capacity per mitochondrion (intrinsic activity) in human skeletal muscle is affected by differences in mitochondrial variants is not known. We recruited 54 males and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present.  相似文献   

11.
Using PCR, we found that normal heart muscle and brain from adult human individuals contain low levels of a specific mitochondrial DNA deletion, previously found only in patients affected with certain types of neuromuscular disease. This deletion was not observed in fetal heart or brain. Experimental tests support the idea that the deletion exists in vivo in adult mitochondria and is not an in vitro artifact of PCR. Our data provide direct experimental support for the idea that accumulation of mitochondrial DNA deletions may be important in aging.  相似文献   

12.
There are fewer mitochondria and a reduced oxidative capacity in skeletal muscle in obesity. Moderate-intensity physical activity combined with weight loss increase oxidative enzyme activity in obese sedentary adults; however, this adaptation occurs without a significant increase in mitochondrial DNA (mtDNA), which is unlike the classic pattern of mitochondrial biogenesis induced by vigorous activity. The objective of this study was to examine the hypothesis that the mitochondrial adaptation to moderate-intensity exercise and weight loss in obesity induces increased mitochondrial cristae despite a lack of mtDNA proliferation. Content of cardiolipin and mtDNA and enzymatic activities of the electron transport chain (ETC) and tricarboxylic acid cycle were measured in biopsy samples of vastus lateralis muscle obtained from sedentary obese men and women before and following a 4-mo walking intervention combined with weight loss. Cardiolipin increased by 60% from 47 +/- 4 to 74 +/- 8 microg/mU CK (P < 0.01), but skeletal muscle mtDNA content did not change significantly (1,901 +/- 363 to 2,169 +/- 317 Rc, where Rc is relative copy number of mtDNA per diploid nuclear genome). Enzyme activity of the ETC increased (P < 0.01); that for rotenone-sensitive NADH-oxidase (96 +/- 1%) increased more than for ubiquinol-oxidase (48 +/- 6%). Activities for citrate synthase and succinate dehydrogenase increased by 29 +/- 9% and 40 +/- 6%, respectively. In conclusion, moderate-intensity physical activity combined with weight loss induces skeletal muscle mitochondrial biogenesis in previously sedentary obese men and women, but this response occurs without mtDNA proliferation and may be characterized by an increase in mitochondrial cristae.  相似文献   

13.
Skeletal muscles from a mother and her daughter both with chronic progressive ophthalmoplegia were analyzed. Histological and biochemical analyses of their muscle samples showed typical features of this type of mitochondrial myopathy. Southern blot analysis revealed that, in both patients, there were two species of mitochondrial DNA (mtDNA): normal one and partially deleted one. The sizes of the deletion were different; the mutant mtDNAs from the mother and the daughter had about 2.5- and 5-kilobase deletions, respectively. The two mutant mtDNAs shared a common deleted region of 1.2-kilobase. However, both the start and the end of deletion were different between them, implying a novel mode of inheritance. This is the first report that the mutant mtDNA is responsible for the maternal inheritance of a human disease.  相似文献   

14.
Summary The mitochondrial DNA (mtDNA) of Japanese patients suffering from the syndrome of mitochondrial myopathy, encephalopathy, lactic acidosis and strokelike episodes (MELAS) exhibits a specific heteroplasmic AG transition in the tRNALeu at position 3243. In this study, we investigated mtDNA from skeletal muscle, cardiac muscle, brain, liver, diaphragm, fibroblasts and blood cells of four Caucasians with MELAS, one younger healthy sister of two MELAS patients, and eleven controls. We found that 1) the mutation was present in all investigated tissues of Caucasians with MELAS but not in controls, 2) within a single patient, the tissue-specific variation of the copy number of mutated mtDNA covered the same range as in the skeletal muscle of different patients, 3) the mutation was also present in the blood cells of the healthy sister of two MELAS siblings.  相似文献   

15.
Defects of mitochondrial DNA (mtDNA) are an important cause of disease and play a role in the ageing process. There are multiple copies of the mitochondrial genome in a single cell. In many patients with acquired or inherited mtDNA mutations, there exists a mixture of mutated and wild type genomes (termed heteroplasmy) within individual cells. As a biochemical and clinical defect is only observed when there are high levels of mutated mtDNA, a crucial investigation is to determine the level of heteroplasmic mutations within tissues and individual cells. We have developed an assay to determine the relative amount of deleted mtDNA using real-time fluorescence PCR. This assay detects the vast majority of deleted molecules, thus eliminating the need to develop specific probes. We have demonstrated an excellent correlation with other techniques (Southern blotting and three- primer competitive PCR), and have shown this technique to be sensitive to quantify the level of deleted mtDNA molecules in individual cells. Finally, we have used this assay to investigate patients with mitochondrial disease and shown in individual skeletal muscle fibres that there exist different patterns of abnormalities between patients with single or multiple mtDNA deletions. We believe that this technique has significant advantages over other methods to quantify deleted mtDNA and, employed alongside our method to sequence the mitochondrial genome from single cells, will further our understanding of the role of mtDNA mutations in human disease and ageing.  相似文献   

16.
Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected by a dystrophic morphology. The results add to the complexity of the pathogenesis underlying mitochondrial myopathies, and expand the knowledge about the impact of energy deficiency on another aspect of muscle structure and function.  相似文献   

17.
An apparently identical deletion of 4.977 bp in length (position 8,483-13,459) was detectable in the mitochondrial DNA from skeletal muscle, heart muscle, kidney, and liver of a patient with Kearns-Sayre syndrome. The proportion of deleted genome varied from 60% for the skeletal muscle to 15% for heart muscle and kidney, and was below 5% in the liver. The mtDNA heteroplasmy of the liver was only detectable after amplification by PCR. In skeletal and heart muscle histochemical and immunocytochemical findings concerning cytochrome c oxidase were in good correlation with the proportion of deleted mitochondrial DNA.  相似文献   

18.
The mitochondrial machinery plays a key role in the energy production and maintenance of spermatozoa motility. In this paper 200 idiopathic oligo-asthenozoospermic patients were classified on the basis of rapid progressive motility ("a") and sperm concentration. Mitochondrial enzymatic activity was studied and correlated to the viability of sperm cells. Mitochondrial DNA purified from both motile and non-motile sperm of the same individuals was amplificated using PCR. Results suggested that only motile sperm have organelles functional in oxygen consumption, unequivocally demonstrating that motility depends on the mitochondrial activity. Mitochondrial DNA of oligo-asthenozoospermic patients seemed to present some defects that made DNA unavailable for amplification.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号