首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indexes for arterial stiffness are, by their nature, influenced by the ambient blood pressure due to the curvilinear nature of arterial compliance. We developed a new concept of the "Modelflow aortic age," which is, theoretically, not influenced by the ambient blood pressure and provides an easily understood context (biological vs. chronological age) for measures of arterial stiffness. The purpose of the present study was to validate this pressure-independent index for aortic stiffness in humans. Twelve sedentary elderly (65-77 yr), 11 Masters athletes (65-73 yr), and 12 sedentary young individuals (20-42 yr) were studied. Modelflow aortic ages were comparable with chronological ages in both sedentary groups, indicating that healthy sedentary individuals have age-appropriate aortas. In contrast, Masters athletes showed younger Modelflow aortic ages than their chronological ages. The coefficient of variation of sedentary subjects was three times smaller with the Modelflow aortic age (21%) than with other indexes, such as static systemic arterial stiffness (61%), central pulse wave velocity (61%), or carotid β-stiffness index (58%). The typical error was very small and two times smaller in the Modelflow aortic age (<7%) than in static systemic arterial stiffness (>13%) during cardiac unloading by lower body negative pressure. The Modelflow aortic age can more precisely and reliably estimate aortic stiffening with aging and modifiers, such as life-long exercise training compared with the pressure-dependent index of static systemic arterial stiffness, and provides a physiologically relevant and clinically compelling context for such measurements.  相似文献   

2.

Background

Recent community-based research has linked aortic stiffness to the development of atrial fibrillation. We posit that aortic stiffness contributes to adverse atrial remodeling leading to the persistence of atrial fibrillation following catheter ablation in lone atrial fibrillation patients, despite the absence of apparent structural heart disease. Here, we aim to evaluate aortic stiffness in lone atrial fibrillation patients and determine its association with arrhythmia recurrence following radio-frequency catheter ablation.

Methods

We studied 68 consecutive lone atrial fibrillation patients who underwent catheter ablation procedure for atrial fibrillation and 50 healthy age- and sex-matched community controls. We performed radial artery applanation tonometry to obtain central measures of aortic stiffness: pulse pressure, augmentation pressure and augmentation index. Following ablation, arrhythmia recurrence was monitored at months 3, 6, 9, 12 and 6 monthly thereafter.

Results

Compared to healthy controls, lone atrial fibrillation patients had significantly elevated peripheral pulse pressure, central pulse pressure, augmentation pressure and larger left atrial dimensions (all P<0.05). During a mean follow-up of 2.9±1.4 years, 38 of the 68 lone atrial fibrillation patients had atrial fibrillation recurrence after initial catheter ablation procedure. Neither blood pressure nor aortic stiffness indices differed between patients with and without atrial fibrillation recurrence. However, patients with highest levels (≥75th percentile) of peripheral pulse pressure, central pulse pressure and augmentation pressure had higher atrial fibrillation recurrence rates (all P<0.05). Only central aortic stiffness indices were associated with lower survival free from atrial fibrillation using Kaplan-Meier analysis.

Conclusion

Aortic stiffness is an important risk factor in patients with lone atrial fibrillation and contributes to higher atrial fibrillation recurrence following catheter ablation procedure.  相似文献   

3.
Cardiovascular events are more common in the winter months, possibly because of hemodynamic alterations in response to cold exposure. The purpose of this study was to determine the effect of acute facial cooling on central aortic pressure, arterial stiffness, and wave reflection. Twelve healthy subjects (age 23 +/- 3 yr; 6 men, 6 women) underwent supine measurements of carotid-femoral pulse wave velocity (PWV), brachial artery blood pressure, and central aortic pressure (via the synthesis of a central aortic pressure waveform by radial artery applanation tonometry and generalized transfer function) during a control trial (supine rest) and a facial cooling trial (0 degrees C gel pack). Aortic augmentation index (AI), an index of wave reflection, was calculated from the aortic pressure waveform. Measurements were made at baseline, 2 min, and 7 min during each trial. Facial cooling increased (P < 0.05) peripheral and central diastolic and systolic pressures. Central systolic pressure increased more than peripheral systolic pressure (22 +/- 3 vs. 15 +/- 2 mmHg; P < 0.05), resulting in decreased pulse pressure amplification ratio. Facial cooling resulted in a robust increase in AI and a modest increase in PWV (AI: -1.4 +/- 3.8 vs. 21.2 +/- 3.0 and 19.9 +/- 3.6%; PWV: 5.6 +/- 0.2 vs. 6.5 +/- 0.3 and 6.2 +/- 0.2 m/s; P < 0.05). Change in mean arterial pressure but not PWV predicted the change in AI, suggesting that facial cooling may increase AI independent of aortic PWV. Facial cooling and the resulting peripheral vasoconstriction are associated with an increase in wave reflection and augmentation of central systolic pressure, potentially explaining ischemia and cardiovascular events in the cold.  相似文献   

4.
We present a protocol for measuring in vivo aortic stiffness in mice using high-resolution ultrasound imaging. Aortic diameter is measured by ultrasound and aortic blood pressure is measured invasively with a solid-state pressure catheter. Blood pressure is raised then lowered incrementally by intravenous infusion of vasoactive drugs phenylephrine and sodium nitroprusside. Aortic diameter is measured for each pressure step to characterize the pressure-diameter relationship of the ascending aorta. Stiffness indices derived from the pressure-diameter relationship can be calculated from the data collected. Calculation of arterial compliance is described in this protocol.This technique can be used to investigate mechanisms underlying increased aortic stiffness associated with cardiovascular disease and aging. The technique produces a physiologically relevant measure of stiffness compared to ex vivo approaches because physiological influences on aortic stiffness are incorporated in the measurement. The primary limitation of this technique is the measurement error introduced from the movement of the aorta during the cardiac cycle. This motion can be compensated by adjusting the location of the probe with the aortic movement as well as making multiple measurements of the aortic pressure-diameter relationship and expanding the experimental group size.  相似文献   

5.
Influence of fibrillin-1 genotype on the aortic stiffness in men.   总被引:2,自引:0,他引:2  
Aortic stiffness is a predictor of cardiovascular mortality. The mechanical properties of the arterial wall depend on the connective tissue framework, with variation in fibrillin-1 and collagen I genes being associated with aortic stiffness and/or pulse pressure elevation. The aim of this study was to investigate whether variation in fibrillin-1 genotype was associated with aortic stiffness in men. The mechanical properties of the abdominal aorta of 79 healthy men (range 28-81 yr) were investigated by ultrasonographic phase-locked echo tracking. Fibrillin-1 genotype, characterized by the variable tandem repeat in intron 28, and collagen type I alpha 1 genotype characterized by the 2,064 G>T polymorphism, were determined by using DNA from peripheral blood cells. Three common fibrillin-1 genotypes, 2-2, 2-3, and 2-4, were observed in 50 (64%), 10 (13%), and 11 (14%) of the men, respectively. Those of 2-3 genotype had higher pressure strain elastic modulus and aortic stiffness compared with men of 2-2 or 2-4 genotype (P = 0.005). Pulse pressure also was increased in the 2-3 genotype (P = 0.04). There was no significant association between type 1 collagen genotype and aortic stiffness in this cohort. In conclusion, the fibrillin-1 2-3 genotype in men was associated with increased aortic stiffness and pulse pressure, indicative of an increased risk for cardiovascular disease.  相似文献   

6.
BACKGROUND: Oxidative stress plays an important role in the pathogenesis of atherosclerosis. Advanced oxidation protein products (AOPP) are markers of oxidative stress and mediators of inflammation. Increased arterial stiffness is associated with increased risk of cardiovascular mortality and morbidity. The aim of this study was to evaluate the relationship between an indirect marker of arterial stiffness and the AOPP level in apparently healthy individuals. METHODS AND RESULTS: Arterial stiffness was estimated with the use of the stiffness index (SI(DVP)) which significantly correlated with age, mean blood pressure, body fat content and AOPP. The SI(DVP) was associated with AOPP concentration in both single (R = 0.22, p = 0.03) and multiple regression models adjusted for age, sex, mean blood pressure and body fat content (R(2) = 42%, p < 0.0001). CONCLUSIONS: The AOPP concentration is elevated in healthy people with increased values of stiffness index. This finding supports the concept that oxidative stress may contribute to arterial stiffening in humans.  相似文献   

7.
Doppler blood flow measurements and derived pressure differences, through the Bernoulli equation, are used in the diagnosis of aortic coarctation, a congenital stenosis distal to the left subclavian artery. Doppler velocities remain elevated at the coarctation site after successful repair of coarctation, leading to high Doppler derived pressure differences without significant arm-leg pressure differences. We studied this apparent contradiction of two diagnostic methods, in vivo using patient and control data, and in vitro using a hydraulic model. Clinical and echocardiographic data from 31 patients, aged 13.0 +/- 4.0, 10.5 +/- 4.7 yr after coarctectomy by end-to-end anastomosis, and 18 age-matched healthy subjects were reviewed. Doppler peak velocities at the aortic isthmus were elevated in patients (2.2 +/- 0.4 vs. 1.2 +/- 0.2m/s, P < 0.001), corresponding to significant Doppler differences (20 +/- 7 mmHg), however, without significant arm-leg pressure differences. In all patients, a mild anatomic stenosis could still be observed. Local stiffness was increased. The hypothesis that the less distensible surgical scar in post-coarctectomy patients leads to a significant dynamic obstruction in systole was validated in a latex model of the aorta. Rigid rings (0.5-1.5 cm), matching the unloaded aortic diameter, were mounted around the aorta. Under loading conditions, Doppler peak velocities increased by 40 +/-7%, yielding Doppler differences of 21 +/- 3 mmHg, without a significant pressure drop. An alternative expression to calculate pressure differences, using both velocity and geometric information, was validated in the model. In conclusion, post-operatively, Doppler velocities remain elevated due to a mild anatomical and significant dynamic narrowing, but the specific geometry, resembling a tubular hypoplasia rather than an abrupt stenosis, permits an almost complete pressure recovery explaining the occurrence of Doppler differences in disagreement with the negligible arm-leg pressure difference.  相似文献   

8.
Smooth muscle relaxation is expected to yield beneficial effects on hydraulic impedance properties of large vessels. We investigated the effects of intravenous diltiazem infusion on aortic wall stiffness and local hydraulic impedance properties. In seven anesthetized, closed-chest dogs, instantaneous cross-sectional area and pressure of the descending thoracic aorta were measured using transesophageal echocardiography combined with acoustic quantification and a micromanometer, respectively. Data were acquired during a vena caval balloon inflation, both at the control condition and with diltiazem infusion. At the operating point, diltiazem reduced blood pressure in all dogs but did not alter aortic dimensions or wall stiffness. Over the observed pressure range, aortic area-pressure relationships were linear. Whereas diltiazem affected the slope of this relationship variably (no change in 3 dogs, increase in 1 dog, decrease in 3 dogs), the zero-pressure area intercept was significantly increased in every case such that higher area was observed at any given pressure. When comparisons were made at a common level of wall stress, wall stiffness was either increased or unchanged during diltiazem infusion. In contrast, diltiazem decreased wall stiffness in every case when comparisons were made at a common level of aortic midwall radius. Aortic characteristic impedance and pulse wave velocity, components of left ventricular hydraulic load that are determined by aortic elastic and geometric properties, were affected variably. A comparison of wall stiffness at matched wall stress appears inappropriate for assessing changes in smooth muscle tone. Because of the competing effects of changes in vessel diameter and wall stiffness, smooth muscle relaxation is not necessarily accompanied by the expected beneficial changes in local aortic hydraulic impedance. These results can be reconciled by recognizing that components other than vascular smooth muscle (e.g., elastin, collagen) contribute to aortic wall stiffness.  相似文献   

9.
Left ventricular–arterial (VA) coupling has been recognized to be of great significance in understanding both the global and local mechanical performance of the circulatory system. In this study, a closed-loop multi-scale model of the human cardiovascular system is established for the purpose of studying the coupled VA hemodynamic changes during aging. Obtained results show that age-associated changes in arterial properties have some negative but relatively small influences on left ventricular (LV) mechanical performance, whereas they progressively increase LV and aortic systolic pressures, and aortic pulse pressure during aging. Wave analysis reveals that increased aortic characteristic impedance and premature wave reflection induced by arterial stiffening are two coexistent factors responsible for aortic systolic hypertension and increased aortic pulse pressure at old age. In contrast, aortic dilatation can partly counteract the negative influences of arterial stiffening. Coupled LV-systolic and arterial stiffening (a constant VA coupling index) well preserves LV mechanical performance given normal LV diastolic function during aging, but with a concomitant further elevation of LV and aortic systolic pressures. Furthermore, it is found that the states of arterial, LV-systolic and diastolic stiffness can be distinguished by investigating the sensitivity of LV-systolic pressure to various cardiac indices.  相似文献   

10.
Isolated systolic hypertension (ISH) is characterised by elevated systolic (SBP) and somewhat lowered diastolic blood pressure (DBP). ISH occurs predominantly in elderly hypertensives as a result of aortic stiffness, which increases with age. Elevated SBP and even more so widened pulse pressure (PP=SBP-DBP) are recognised as important risk factors for stroke and ischaemic heart disease. ISH therefore requires consistent drug therapy, combined with lifestyle advice. It is important to lower SBP without reducing DBP too much, in order to avoid a further widening of the PP.Large-scale intervention studies (SHEP, SYST-EUR, SYST-China, and INSIGHT) have demonstrated that thiazide diuretics and calcium antagonists are the drugs of choice to protect against stroke and MI. ACE inhibitors, AT1-blockers and omapatrilate may be considered because of their haemodynamic effects and their additional benefit in patients with heart failure or diabetes. Nitrates and NO-donors reduce SBP more than DBP because of their effects on the large conduit arteries. Spironolactone is of potential interest since it may reduce aortic stiffness.  相似文献   

11.
Large-artery stiffening is a major risk factor in aging and hypertension. Elevated blood pressure (BP) and vascular wall properties participate in arterial stiffening; we aimed to evaluate their respective role by combining echo-tracking and the spontaneously hypertensive rats (SHR) treated with low doses of a nitric oxide synthase inhibitor, shown to have arterial stiffening. Normotensive [Wistar-Kyoto (WKY)], SHR, and SHR treated for 2 wk with N(G)-nitro-L-arginine methyl ester (SHRLN) were anesthetized; BP and distension (pulsatile displacement) of the aortic walls with the ArtLab echo-tracking device were measured. Stiffness index increased in SHRLN vs. SHR; compliance, distensibility, and the slopes and area of the distension-pressure loop curve decreased. The pulsatile distension and pressure waveforms were strongly altered in SHRLN. Maximal values were decreased and increased, respectively, and the waveform kinetics also differed. Thus the area under the curve adjusted to heart rate (AUC/ms) was calculated. Acute BP reductions were induced by diltiazem in SHR and SHRLN, to levels similar to those of WKY. In SHR, compliance, distensibility, stiffness index, and the ascending slope of the distension-pressure loop reached the values of WKY, whereas they were only partially improved in SHRLN. Aortic distension (maximal value and AUC/ms) and the area of the distension-pressure loop were improved in SHR, but not in SHRLN. These data confirm the aortic stiffening induced by nitric oxide reduction in SHR. They show that the ArtLab system analyzes aortic stiffness in rats, and that the aortic pulsatile distension waveform is a parameter strongly dependent on the vascular wall properties.  相似文献   

12.
Endurance exercise is efficacious in reducing arterial stiffness. However, the effect of resistance training (RT) on arterial stiffening is controversial. High-intensity, high-volume RT has been shown to increase arterial stiffness in young adults. We tested the hypothesis that an RT protocol consisting of progressively higher intensity without concurrent increases in training volume would not elicit increases in either central or peripheral arterial stiffness or alter aortic pressure wave reflection in young men and women. The RT group (n = 24; 21 +/- 1 years) performed two sets of 8-12 repetitions to volitional fatigue on seven exercise machines on 3 days/week for 12 weeks, whereas the control group (n = 18; 22 +/- 1 years) did not perform RT. Central and peripheral arterial pulse wave velocity (PWV), aortic pressure wave reflection (augmentation index; AIx), brachial flow-mediated dilation (FMD), and plasma levels of nitrate/nitrite (NOx) and norepinephrine (NE) were measured before and after RT. RT increased the one-repetition maximum for the chest press and the leg extension (P < 0.001). RT also increased lean body mass (P < 0.01) and reduced body fat (%; P < 0.01). However, RT did not affect carotid-radial, carotid-femoral, and femoral-distal PWV (8.4 +/- 0.2 vs. 8.0 +/- 0.2 m/sec; 6.5 +/- 0.1 vs. 6.3 +/- 0.2 m/sec; 9.5 +/- 0.3 vs. 9.5 +/- 0.3 m/sec, respectively) or AIx (2.5% +/- 2.3% vs. 4.8% +/- 1.8 %, respectively). Additionally, no changes were observed in brachial FMD, NOx, NE, or blood pressures. These results suggest that an RT protocol consisting of progressively higher intensity without concurrent increases in training volume does not increase central or peripheral arterial stiffness or alter aortic pressure wave characteristics in young subjects.  相似文献   

13.
Aortic valve stenosis is associated with an elevated left ventricular pressure and transaortic pressure drop. Clinicians routinely use Doppler ultrasound to quantify aortic valve stenosis severity by estimating this pressure drop from blood velocity. However, this method approximates the peak pressure drop, and is unable to quantify the partial pressure recovery distal to the valve. As pressure drops are flow dependent, it remains difficult to assess the true significance of a stenosis for low-flow low-gradient patients. Recent advances in segmentation techniques enable patient-specific Computational Fluid Dynamics (CFD) simulations of flow through the aortic valve. In this work a simulation framework is presented and used to analyze data of 18 patients. The ventricle and valve are reconstructed from 4D Computed Tomography imaging data. Ventricular motion is extracted from the medical images and used to model ventricular contraction and corresponding blood flow through the valve. Simplifications of the framework are assessed by introducing two simplified CFD models: a truncated time-dependent and a steady-state model. Model simplifications are justified for cases where the simulated pressure drop is above 10 mmHg. Furthermore, we propose a valve resistance index to quantify stenosis severity from simulation results. This index is compared to established metrics for clinical decision making, i.e. blood velocity and valve area. It is found that velocity measurements alone do not adequately reflect stenosis severity. This work demonstrates that combining 4D imaging data and CFD has the potential to provide a physiologically relevant diagnostic metric to quantify aortic valve stenosis severity.  相似文献   

14.
Spironolactone is thought to improve aortic stiffness via blood pressure (BP) independent (antifibrotic) effects, but the exact mechanism is unknown. We used metabolomics and hemodynamic measures to reveal the underlying actions of spironolactone in people with a hypertensive response to exercise (HRE). Baseline and follow-up serum samples from 115 participants randomized to 3 months spironolactone (25 mg/day) or placebo were analysed using liquid chromatography/mass spectrometry and nuclear magnetic resonance spectroscopy. Hemodynamic measures recorded at baseline and follow-up included aortic pulse wave velocity (stiffness) and 24 h ambulatory BP. Aortic stiffness was significantly reduced by spironolactone compared with placebo (?0.18 ± 0.17 vs 0.30 ± 0.16 m/s; p < 0.05), but this was no longer significant after adjustment for the change in daytime systolic BP (p = 0.132). Further, the change in aortic stiffness was correlated with the change in daytime and 24 h systolic BP (p < 0.05). Metabolomics detected 42 features that were candidate downstream metabolites of spironolactone (no endogenous metabolites), although none were correlated with changes in aortic stiffness (p > 0.05 for all). However, the spironolactone metabolite canrenoate was associated with the change in daytime systolic BP (r = ?0.355, p = 0.017) and 24 h pulse pressure (r = ?0.332, p = 0.026). This remained highly significant on multiple regression and was independent of age, body mass index and sex. Canrenoate appears to be an active metabolite with BP-dependent effects on the attenuation of aortic stiffness in people with HRE. This finding, together with the lack of change in endogenous metabolites, suggests that the antifibrotic effects of spironolactone could be BP-dependent.  相似文献   

15.

Background

Cardiovascular morbidity and mortality is high in patients with chronic obstructive pulmonary disease (COPD) and arterial stiffness is a potentially modifiable risk factor with added predictive value beyond that obtained from traditional risk factors. Arterial stiffness has been the target of pharmacologic and exercise interventions in patients with COPD, but the effects appear limited to those patients with more significant elevations in arterial stiffness. We aimed to identify predictors of increased arterial stiffness in a cohort with moderate to severe COPD.

Methods

Aortic pulse wave velocity (aPWV) was measured in subjects with moderate to severe COPD enrolled in a multicenter randomized controlled trial. Subjects were categorized into quartiles based on aPWV values and factors affecting high arterial stiffness were assessed. Multivariate models were created to identify independent predictors of high aPWV, and cardiovascular disease (CVD).

Results

153 patients were included. Mean age was 63.2 (SD 8.2) years and mean FEV1 was 55.4 (SD 15.2) % predicted. Compared to the quartile with the lowest aPWV, subjects in the highest quartile were older, had higher systolic blood pressure (SBP), were more likely to be current smokers, and had greater burden of thoracic aortic calcification. On multivariate analyses, age (adjusted OR 1.14, 95%CI 1.05 to 1.25, p?=?0.003) and SBP (adjusted OR 1.06, 95% CI 1.02 to 1.09, p?=?0.001) were independent predictors of elevated aPWV. Body mass index, therapy with cholesterol lowering medications and coronary calcification were independent predictors of CVD.

Conclusions

Elevated arterial stiffness in patients with COPD can be predicted using age, blood pressure and thoracic aortic calcification. This will help identify subjects for enrollment in clinical trials using aPWV for assessing the impact of COPD therapies on CV outcomes.

Trial registration

Clinicaltrials.gov NCT00857766  相似文献   

16.
Obesity is an escalating global health problem associated with both an increased risk of death and an increased risk of cardiovascular events. Our goal was to use magnetic resonance imaging (MRI) to determine the effect of obesity and weight loss, in the absence of the traditional cardiovascular risk factors, on aortic pulse wave velocity (PWV) a reliable, reproducible, and accurate clinical measure of aortic stiffness linked to increased mortality. Fifty obese (BMI 38.3 ± 6.8 kg/m2) and eighteen normal‐weight controls (BMI 22.0 ± 1.7 kg/m2) with no identifiable cardiovascular risk factors underwent vascular MRI to assess PWV between the ascending aorta at the level of the pulmonary artery and the abdominal aorta (AA). Twenty‐eight subjects underwent repeat imaging after a 1‐year period of weight loss. Both groups were well matched for age, systolic blood pressure, fasting glucose, and total cholesterol. Obesity was associated with a 14% increase in PWV (P = 0.021), and with elevated C‐reactive protein (CRP) (P < 0.01) and leptin levels (P < 0.001) factors known to cause increase arterial stiffness. Weight loss (average 50% excess weight) was associated with a 14% improvement in PWV (P = 0.03), and with reductions in serum leptin levels (P < 0.01). Obesity, in the absence of the traditional cardiovascular risk factors, is associated with increased aortic PWV, a noninvasive clinical measure of aortic stiffness independently predictive of cardiovascular mortality. Significant weight loss results in improvements in aortic PWV. This may provide a potential link between both obesity and increased mortality, and the reduction in mortality that occurs with weight loss.  相似文献   

17.
Although they are implicated on their own as risk factors for cardiovascular disease, the potential link between nitric oxide (NO) deficiency, ANG II, and vascular stiffening has not been tested before. We evaluated the role of chronic ANG II treatment and NO deficiency, alone and in combination, on aortic stiffness in mice and tested parameters contributing to increases in active or passive components of vascular stiffness, including blood pressure, vascular smooth muscle contractility, and extracellular matrix components. Untreated (control) mice and mice treated with a NO synthase (NOS) inhibitor [N(omega)-nitro-L-arginine methyl ester (L-NAME), 0.5 g/l] were implanted with osmotic minipumps delivering ANG II (500 ng.kg(-1).min(-1)) for 28 days. Aortic stiffness was then measured in vivo by pulse wave velocity (PWV) and ex vivo by load-strain analysis to obtain values of maximal passive stiffness (MPS). Blood pressure and aortic contractility ex vivo were measured. ANG II treatment or NOS inhibition with L-NAME did not independently increase vascular stiffness; however, the combined treatments worked synergistically to increase PWV and MPS. The combined treatments of ANG II + L-NAME also significantly increased aortic wall collagen content while decreasing elastin. These novel results suggest that NO deficiency and ANG II act synergistically to increase aortic stiffness in mice predominantly via changes in aortic wall collagen/elastin ratio.  相似文献   

18.
Cardiovascular autonomic dysfunction and alterations in vascular elasticity are known complications of several disorders, including diabetes mellitus, hypertension, hypercholesterolemia, aging, and chronic kidney disease. The current study was designed to test whether a relationship existed between pulse wave velocity (PWV), augmentation index (AIx), aortic elastic properties, and cardiovascular autonomic function in healthy volunteers. The study comprised 25 healthy volunteers, whose aortic strain, distensibility, and stiffness index were measured by echocardiography, whereas PWV and AIx were evaluated by Arteriograph (TensioMed, Budapest, Hungary) in all cases. Autonomic function was assessed by means of 5 standard cardiovascular reflex tests. We found that heart rate response to deep breathing, as the most reproducible cardiovascular reflex test to characterize parasympathetic function, showed low to moderate correlations with PWV (r = -0.431, p = 0.032), aortic strain (r = 0.594, p = 0.002), distensibility (r = 0.407, p = 0.043), and stiffness index (r = -0.453, p = 0.023). Valsalva ratio and autonomic neuropathy score (ANS) correlated with PWV (r = -0.557, p = 0.004 and r = -0.421, p = 0.036, respectively) and AIx (r = -0.461, p = 0.020 and r = -0.385, p = 0.057, respectively), while ANS correlated with even aortic stiffness index (r = -0.457, p = 0.022). Cardiovascular reflex tests mainly characterizing sympathetic function had no correlation with aortic stiffness parameters (p = NS for all correlations). Correlations exist between parameters characterizing aortic elasticity and parasympathetic autonomic function, as shown by standard cardiovascular reflex tests in healthy volunteers.  相似文献   

19.
The effects of myocardial stunning and ischemic preconditioning on left-ventricular developed pressure and end-diastolic pressure (diastolic stiffness) as well as on coronary-perfusion pressure were examined in isolated isovolumic rabbit hearts. The isovolumic relaxation was evaluated, and the time constant of pressure decay during the isovolumic period was calculated. Our experimental protocol comprised: 1) myocardial stunning-global ischemia (15 min) followed by reperfusion (30 min); 2) myocardial stunning-global ischemia (20 min) followed by reperfusion (30 min); and 3) ischemic preconditioning — a single cycle of brief global ischemia and reperfusion (5 min each), before a second ischemic period, of 20-min duration. There was no effect upon systolic and diastolic parameters when 15 and 20 minutes of ischemia were evaluated. In both stunned groups the left ventricular developed pressure first recovered to near control values, but then stabilized at only 60% of the control values. Whereas the isovolumic relaxation time constant was increased after 5 min of reperfusion, and return to control values at late reperfusion, the end diastolic pressure remained elevated during the entire period. Values of dP/dV calculated at common pressure levels, were used as a second index of diastolic stiffness. They were increased after stunning, as also was the coronary perfusion pressure. When the heart was preconditioned with a single episode of ischemia, the systolic and diastolic alterations were completely abolished. We thus concluded that diastolic abnormalities incurred by myocardial stunning consist in both an increase in diastolic stiffness and an early impairment of isovolumic relaxation. The increase in stiffness cannot result from incomplete relaxation since these two parameters become temporally dissociated during the reperfusion period.  相似文献   

20.
A thorough understanding of the well-functioning, native aortic root is pivotal in an era, where valve sparing surgical techniques are developed and used with increasing frequency. The objective of this study was to characterize the local structural stiffness of the native aortic root, to create a baseline for understanding how different surgical interventions affect the dynamics of the aortic root. In this acute porcine study (N = 10), two dedicated force transducers were implanted to quantify the forces acting on both the annular plane and on the sinotubular junction (STJ). To assess the changes in geometry, eleven sonomicrometry crystals were implanted within the aortic root. The combination of force and length measurements yields the radial structural stiffness for each segment of the aortic root.The least compliant segment at the annular plane was the right-left interleaflet triangle with a stiffness modulus of 1.1 N mm−1 (SD0.4). At the sinotubular junction the same segment (right-left) was most compliant, compared with the two other segments, however not statistically significant different.The elastic energy storage was derived from the aortic root pressure volume relationship; the mean elastic energy storage was 826 µJ (SD529). In conclusion, the aortic root has been characterized in terms of both segmental forces, segmental change in length and elastic energy storage. This study is the first to assess the radial structural stiffness of different segments of the aortic root. The presented data is reference for further studies regarding the impact of surgical interventions on the aortic root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号