首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphatidylinositol 3-kinase (PI3K)/AKT pathway plays important roles in regulating cell motility. TSC2, a downstream target of AKT, is a central player in negatively controlling cell proliferation and protein translation through suppressing the activity of mTOR (mammalian target of rapamycin). However, the function of TSC2 in regulating cell migration remains unclear. Here, we show that TSC2 plays a critical role in the control of cell spreading, polarity, and migration. TSC2-deficient fibroblast cells were impaired in their ability to spread and alter actin cytoskeleton upon stimulation with insulin-like growth factor-1. Using scratch-induced polarization assay, we demonstrate that TSC2(−/−) fibroblast cells polarized poorly toward the wound compared with wild-type cells. Similarly, knockdown of TSC2 expression in colon cancer cells resulted in a marked decrease in cell motility. Functionally, the activation of CDC42- and RAC1-GTPase was largely reduced in TSC2 knock-out fibroblast and TSC2 knockdown cancer cells. Furthermore, overexpression of an activating p110α mutant or short term rapamycin treatment rescued the cell polarization defect in TSC2(−/−) fibroblast cells. Concurrently, the activation of CDC42 and RAC1 increased. The defect in cell migration and CDC42 and RAC1 activation was reversed by reintroducing TSC2 back into TSC2(−/−) fibroblast cells. Taken together, we identified a novel role of TSC2 in controlling cell polarity and migration by regulating CDC42 and RAC1 activation.  相似文献   

2.
During periodontal regeneration, multiple cell types can invade the wound site, thereby leading to repair. Cell motility requires interactions mediated by integrin receptors for the extracellular matrix (ECM), which might be useful in guiding specific cell populations into the periodontal defect. Our data demonstrate that fibroblasts exhibit differential motility when grown on ECM proteins. Specifically, gingival fibroblasts are twice as motile as periodontal ligament fibroblasts, whereas osteoblasts are essentially non-motile. Collagens promote the greatest motility of gingival fibroblasts in the following order: collagen III>collagen V>collagen I. Differences in motility do not correlate with cell proliferation or integrin expression. Osteoblasts display greater attachment to collagens than does either fibroblast population, but lower motility. Gingival fibroblast motility on collagen I is generally mediated by α2 integrins, whereas motility on collagen III involves α1 integrins. Other integrins (α10 or α11) may also contribute to gingival fibroblast motility. Thus, ECM proteins do indeed differentially promote the cell motility of periodontal cells. Because of their greater motility, gingival fibroblasts have more of a potential to invade periodontal wound sites and to contribute to regeneration. This finding may explain the formation of disorganized connective tissue masses rather than the occurrence of the true regeneration of the periodontium. This research was supported by the Louisiana Board of Regents through the Millennium Trust Health Excellence Fund, HEF-(2000-05)-04.  相似文献   

3.
The purpose of this study was to assess insoluble salts containing gadolinium (Gd3+) for effects on human dermal fibroblasts. Responses to insoluble Gd3+ salts were compared to responses seen with Gd3+ solubilized with organic chelators, as in the Gd3+-based contrast agents (GBCAs) used for magnetic resonance imaging. Insoluble particles of either Gd3+ phosphate or Gd3+ carbonate rapidly attached to the fibroblast cell surface and stimulated proliferation. Growth was observed at Gd3+ concentrations between 12.5 and 125 μM, with toxicity at higher concentrations. Such a narrow window did not characterize GBCA stimulation. Proliferation induced by insoluble Gd3+ salts was inhibited in the presence of antagonists of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways (similar to chelated Gd3+) but was not blocked by an antibody to the platelet-derived growth factor receptor (different from chelated Gd3+). Finally, high concentrations of the insoluble Gd3+ salts failed to prevent fibroblast lysis under low-Ca2+ conditions, while similar concentrations of chelated Gd3+ were effective. In conclusion, while insoluble Gd3+ salts are capable of stimulating fibroblast proliferation, one should be cautious in assuming that GBCA dechelation must occur in vivo to produce the profibrotic changes seen in association with GBCA exposure in the subset of renal failure patients that develop nephrogenic systemic fibrosis.  相似文献   

4.
Protein kinase C (PKC) isoforms are altered in colon tumors and upon exposure of intestinal mucosa to nutrients. We evaluated the effects of the PKC inhibitors staurosporine and calphostin C on human Caco-2 intestinal epithelial proliferation, motility, and differentiation. Motility was quantitated by monolayer expansion and the brush border enzymes dipeptidyl dipeptidase (DPDD) and alkaline phosphatase (AP) by synthetic substrate digestion. Staurosporine (0.03-1.0 ng/ml) and calphostin C (10-12M-10-4 M) dose-dependently inhibited monolayer expansion and AP but stimulated DPDD. Proliferation was also inhibited but the effects of each inhibitor on motility, AP, and DPDD were preserved after mitomycin C proliferative blockade, suggesting that these effects were proliferation-independent. PKC inhibitors independently inhibit motility, AP and proliferation in human intestinal Caco-2 epithelial cells, but selectively stimulate the small intestinal differentiation marker DPDD. PKC may regulate small intestinal epithelial differentiation.  相似文献   

5.
Multiple mechanisms contribute to progressive cardiac dysfunction after myocardial infarction (MI) and inflammation is an important mediator. Mast cells (MCs) trigger inflammation after MI by releasing bio‐active factors that contribute to healing. c‐Kit‐deficient (KitW/W‐v) mice have dysfunctional MCs and develop severe ventricular dilatation post‐MI. We explored the role of MCs in post‐MI repair. Mouse wild‐type (WT) and KitW/W‐v MCs were obtained from bone marrow (BM). MC effects on fibroblasts were examined in vitro by proliferation and gel contraction assays. MCs were implanted into infarcted mouse hearts and their effects were evaluated using molecular, cellular and cardiac functional analyses. In contrast to WT, KitW/W‐v MC transplantation into KitW/W‐v mice did not improve cardiac function or scar size post‐MI. KitW/W‐v MCs induced significantly reduced fibroblast proliferation and contraction compared to WT MCs. MC influence on fibroblast proliferation was Basic fibroblast growth factor (bFGF)‐dependent and MC‐induced fibroblast contractility functioned through transforming growth factor (TGF)‐β. WT MCs transiently rescue cardiac function early post‐MI, but the benefits of BM cell implantation lasted longer. MCs induced increased inflammation compared to the BM‐injected mice, with increased neutrophil infiltration and infarct tumour necrosis factor‐α (TNF‐α) concentration. This augmented inflammation was followed by increased angiogenesis and myofibroblast formation and reduced scar size at early time‐points. Similar to the functional data, these beneficial effects were transient, largely vanishing by day 28. Dysfunctional KitW/W‐v MCs were unable to rescue cardiac function post‐MI. WT MC implantation transiently enhanced angiogenesis and cardiac function. These data suggest that increased inflammation is beneficial to cardiac repair, but these effects are not persistent.  相似文献   

6.
Lu Y  Liu S  Zhang S  Cai G  Jiang H  Su H  Li X  Hong Q  Zhang X  Chen X 《Molecules and cells》2011,31(3):225-230
Tissue inhibitor of metalloproteinase-1 (TIMP-1) plays various roles in cell growth in different cell types. However, few studies have focused on TIMP-1’s effect on fibroblast cells. In this study, we investigated the effects of TIMP-1 overexpression on NIH3T3 fibroblast proliferation and potential transduction signaling pathways involved. Overexpression of TIMP-1, by transfection of the pLenti6/V5-DESTTIMP-1 plasmid, significantly promoted NIH3T3 proliferation as determined by the BrdU array. Neither 5 nor 15 nM GM6001 (matrix metalloproteinase system inhibitor) affected NIH3T3 proliferation, but 45 nM GM6001 inhibited proliferation. TIMP-1 overexpression activated the p-Akt pathway, but not the p-ERK or p-p38 pathway. In TIMP-1-transfected cells, cyclinD1 was upregulated and p21CIP1 and p27KIP1 were downregulated, which promoted cell entry into the S and G2/M phases. The PI3-K inhibitor LY294002 abolished the TIMP-1-induced effects. Overexpression of intracellular TIMP-1 stimulated NIH3T3 fibroblast proliferation in a matrix metalloproteinase (MMP)-independent manner by activating the p-Akt pathway and related cell cycle progression.  相似文献   

7.
Summary Cell proliferation assays are essential to developing an understanding of the molecular mechanisms that modulate cell growth and differentiation. In this paper, we describe the application of alamarBlue, a new and versatile metabolic dye, for the detection of Swiss 3T3 fibroblast proliferation and/or survival. As a redox indicator, alamarBlue is reduced by reactions innate to cellular metabolism and, therefore, provides an indirect measure of viable cell number. Various assay parameters were optimized for a 96-well format to achieve a detectable range of fibroblast cell number from 100 to 20 000 cells/well, which is similar to that obtained with traditional (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and [3H]thymidine assay techniques. Standard (reference) curves generated with a known fibroblast stimulator were used to facilitate quantitation and comparison of unknown test substances. The alamarBlue assay offers the advantages of technical simplicity, freedom from radioisotopes, versatility in detection, no extraction, and excellent reproducibility and sensitivity. We anticipate that this simple and versatile alamarBlue assay, when used alone or in conjunction with other bioassays, will be a useful tool for investigating the complex mechanisms of cellular proliferation.  相似文献   

8.
Focal adhesion kinase (FAK) is well established as a regulator of cell migration, but whether and how the closely related proline-rich tyrosine kinase 2 (Pyk2) regulates fibroblast motility is still under debate. Using mouse embryonic fibroblasts (MEFs) from Pyk2–/– mice, we show here, for the first time, that lack of Pyk2 significantly impairs both random and directed fibroblast motility. Pyk2–/– MEFs show reduced cell-edge protrusion dynamics, which is dependent on both the kinase and protein–protein binding activities of Pyk2. Using bioinformatics analysis of in vitro high- throughput screens followed by text mining, we identified CrkI/II as novel substrates and interactors of Pyk2. Knockdown of CrkI/II shows altered dynamics of cell-edge protrusions, which is similar to the phenotype observed in Pyk2–/– MEFs. Moreover, epistasis experiments suggest that Pyk2 regulates the dynamics of cell-edge protrusions via direct and indirect interactions with Crk that enable both activation and down-regulation of Crk-mediated cytoskeletal signaling. This complex mechanism may enable fine-tuning of cell-edge protrusion dynamics and consequent cell migration on the one hand together with tight regulation of cell motility, a process that should be strictly limited to specific time and context in normal cells, on the other hand.  相似文献   

9.
Objective: The study of human preadipocytes is hampered by the limited availability of adipose tissue and low yield of cell preparation. Proliferation of preadipocytes using common protocols, including fetal bovine serum (FBS), results in a markedly reduced differentiation capacity. Therefore, we were interested in developing an improved culture system that allows the proliferation of human preadipocytes without loss of differentiation capacity. Research Methods and Procedures: Adipose tissue samples were taken from subjects undergoing elective abdominal surgery. Cells were seeded at various densities and cultured using different formulations of proliferation media including factors such as fibroblast growth factor‐2 (basic fibroblast growth factor), epidermal growth factor, insulin, and FBS either alone or in combination. Cells were counted and induced to differentiate after confluence. After complete differentiation, cells were harvested, and glycerol‐3‐phosphate dehydrogenase activity was measured. Cells were subcultured for up to five passages. Results: The proliferation medium with 4 growth factors (PM4), consisting of 2.5% FBS, 10 ng/mL epidermal growth factor, 1 ng/mL basic fibroblast growth factor, and 8.7 µM insulin, resulted in lower doubling times at all seeding densities tested (0.05 × 104 to 1.5 × 104) compared with medium supplemented with 10% FBS. In contrast to cells in FBS medium, cells grown with PM4 medium retained full differentiation rate (glycerol‐3‐phosphate dehydrogenase activity, 493 ± 215 vs. 41 ± 17 mU/mg, p < 0.01). Differentiation capacity was fully retained at least for up to three passages in PM4 medium. Discussion: The use of PM4 medium results in substantial proliferation of human preadipocytes with preserved differentiation capacity. This novel technique represents a valuable tool for the study of human adipose tissue development and function starting from small samples.  相似文献   

10.
Human neonatal skin fibroblasts plated sparsely in MCDB 105 traversed a complete cell cycle in the absense of serum or serum-derived proteins. Addition of pure PDGF did not significantly increase entrance into S phase as revealed by 3H-thymidine labeling index or clonal growth on palladium islands. In subphysiologic Ca2+ concentrations or in the presence of a calmodulin inhibitor, W7, proliferation in the absence of growth factors ceased and PDGF became mitogenic. In contrast, confluent fibroblast cultures were stimulated by PDGF in physiologic Ca2+ concentrations. This was also the case with sparse adult skin fibroblast cultures while a fetal strain entered S in the absence of PDGF even in low extracellular Ca2+ concentrations. EGF gave similar results as PDGF in all experiments performed. This proposes a similar role for the two growth factors in the cell cycle. However, a difference in the mechanisms of action of PDGF and EGF is indicated by the fact that PDGF and EGF were additive at optimal concentrations when maximal growth response by a single growth factor was restricted by a subphysiologic extracellular Ca2+ concentration.  相似文献   

11.
Guinea pig lymph node cells stimulated in culture by T-cell mitogens or sensitizing antigens release ~60,000- and ~16,000-mol wt proteins that induce normal guinea pig fibroblasts to proliferate in vitro. These fibroblast proliferation factors can be separated from lymphocytederived chemotactic factor for fibroblasts and from lymphocyte mitogenic factor by gel filtration employing Sephadex G-100. The 16,000-mol wt fibroblast proliferation factor was found to coelute with interleukin 1 (IL 1) from gel filtration columns. When the 16,000 molecular weight factor was further analyzed by anion exchange-high-performance liquid chromatography five major peaks containing IL 1 activity were obtained, only one contained fibroblast proliferation activity, suggesting forms of IL 1 exist that are not mitogenic for fibroblast. Occasionally, a large-molecular-weight inhibitor of fibroblast proliferation was detectable in void volume fractions from gel filtration of supernatant from antigen-stimulated lymph node cell cultures. This inhibition was accompanied by gross aggregation of fibroblasts. These studies suggest that fibroblast accumulation at sites of certain cell-mediated immune reactions in vivo may in part be attributable to the release of mediators by lymphocytes and, or macrophages that induce fibroblast growth.  相似文献   

12.
Summary A mitogenic factor which promotes quail myoblast proliferation has been purified some 105-fold from chick embryo extract by a combination of cation-exchange chromatography and heparin-affinity chromatography. The factor is eluted from heparin-Sepharose with 2M NaCl and is a single-chain polypeptide with an apparent molecular weight of 15000 to 17000. It is active at subnanogram level in triggering the proliferation and thereby delaying temporarily fusion of myoblasts. It also stimulates the proliferation of quail fibroblasts in a similar effective concentration range. For both myoblasts and fibroblasts the dose-response to the factor is quantitatively and qualitatively comparable with that of bovine pituitary fibroblast growth factor. These observations strongly suggest that the factor very probably corresponds to chicken fibroblast growth factor or to a closely related molecule(s) and that it is possibly involved in the regulation of myogenesis. This work was partly supported by a grant from the National Center of Neurology and Psychiatry (NCNP grant 86-01) of the Ministry of Health and Welfare, Japan.  相似文献   

13.
Ca2+ signaling, intracellular pH and cell volume in cell proliferation   总被引:3,自引:0,他引:3  
Mitogens control progression through the cell cycle in non-transformed cells by complex cascades of intracellular messengers, such as Ca2+ and protons, and by cell volume changes. Intracellular Ca2+ and proton concentrations are critical for linking external stimuli to proliferation, motility, apoptosis and differentiation. This review summarizes the role in cell proliferation of calcium release from intracellular stores and the Ca2+ entry through plasma membrane Ca2+ channels. In addition, the impact of intracellular pH and cell volume on cell proliferation is discussed.  相似文献   

14.
A method for the in vitro proliferation of human bone marrow mesenchymal stem cells (MSCs) employing a medium not containing fetal calf serum (FCS) was developed for a regenerative medicine of cartilage using MSCs. Without using density-gradient centrifugation, the bone marrow aspirate was poured into a dish (6.0 \times 105 nucleated cells/cm2) with DMEM medium containing 10% serum (FCS or donor serum) and basic fibroblast growth factor, and incubated at 37 °C under a 5% CO2 atmosphere. The density of adhesive cells incubated with the medium containing human serum and basic fibroblast growth factor (10 ng/ml) almost reached confluence at 19d and was 1.4-2.7 times that in the medium containing only FCS. The density of cells incubated with the medium containing only human serum was 0.1-0.6 times that in the medium containing only FCS. The content of CD45- CD105+ cells among the cells harvested after a 19-d incubation in the medium containing human serum and basic fibroblast growth factor was higher than 90%. This high content and chondrogenic activity, which was confirmed by pellet cultivation and staining with Safranine O, were maintained even after further subcultivation in the medium to 17 population doubling levels. Consequently, this method might be applicable to in vitro proliferation of MSCs for the regeneration of cartilage.  相似文献   

15.
The role of paracrine tumor-stroma regulation in the progression of cancer is under intense investigation. Activated fibroblasts are key components of the tumor microenvironment providing the soluble factors mediating the regulation. Nemosis is an experimental model to study these parameters: formation of a multicellular spheroid activates fibroblasts and leads to increased production of soluble factors involved in the promotion of growth and motility. Role of nemosis was investigated in the tumorigenesis of HaCaT derivatives representing skin carcinoma progression. Conditioned medium from fibroblast spheroids increased proliferation rate of HaCaT derivatives. Expression of proliferation marker Ki-67 increased significantly in benign A5 and low-grade malignant II-4 cells, but did not further increase in the metastatic RT3 cells. Expression of p63, keratinocyte stem cell marker linked to cancer progression, was augmented by medium from nemotic fibroblasts; this increase was also seen in RT3 cells. Scratch-wound healing of the keratinocytes was enhanced in response to fibroblast nemosis. Neutralizing antibodies against growth factors inhibited wound healing to some extent; the response varied between benign and malignant keratinocytes. Migration and invasion were enhanced by conditioned medium from nemotic fibroblasts in benign and low-grade malignant cells. RT3 keratinocyte migration was further augmented, but invasion was not, indicating their intrinsic capacity to invade. Our data demonstrate that fibroblast nemosis increases proliferation and motility of HaCaT keratinocyte derivatives, and thus nemosis can be used as a model to study the role of soluble factors secreted by fibroblasts in tumor progression.  相似文献   

16.
Video microscopy and digital time-lapse recording were used to monitor locomotion and proliferation of bovine pulmonary artery endothelial (BPAE) cells cultured with varying concentrations of basic fibroblast growth factor (bFGF). Cell trajectories were reconstructed using a generalized nearest-neighbor algorithm and analyzed to determine how cell motility is affected by cell-cell collisions, cell divisions, and increasing cell density. The temporal evolution patterns of the average speed of locomotion for all cells in a culture were computed and the effects of varying bFGF concentrations were analyzed. Intermediate concentrations of bFGF (30 and 50 ng/mL) significantly increased the speed of locomotion above the levels we observed with 0 and 100 ng/mL concentrations of bFGF. Increases in cell density due to proliferation were immediately accompanied by a decrease in the average speed of locomotion of the cell population. Finally, the effect of bFGF concentration on the overall cell proliferation rates was assessed. With the addition of 30 or 50 ng/mL of bFGF to the culture media, the observed cell proliferation rates increased significantly. The proliferation rates decreased when the bFGF concentration increased to 100 ng/mL. These results show that bFGF concentrations that increase the motility of BPAE cells also increase the observed cell proliferation rates. (c) 1994 John Wiley & Sons, Inc.  相似文献   

17.
Substance P (SP), fibroblast growth factor (FGF), and epidermal growth factor (EGF) are mitogens for fibroblasts. EGF acts as a progression factor, whereas FGF and SP have competence factor activity. The ability of eicosanoids to regulate proliferation of fibroblasts and the increased production of prostaglandins by fibroblasts in response to the growth factors, led us to investigate the involvement of cyclooxygenase-dependent arachidonic acid metabolites in the mitogenic response of serum-starved human skin fibroblasts to SP, FGF, and EGF. We tested the interaction of a submaximal concentration of SP(10−9 M) with baFGF (40 μg/ml) and EGF(0.01 μg/ml) both on fibroblast proliferation and release of arachidonic acid metabolites. A combination of SP and EGF synergistically stimulated fibroblast proliferation and prostaglandin E2 release, whereas addition of SP to FGF-containing cultures did not affect cell growth. Inhibition of cyclooxygenase by acetylsalicylic acid augmented the growth response of fibroblasts to all: SP, FGF, and EGF. In the presence of acetylsalicylic acid, SP combined with FGF enhanced fibroblast proliferation, whereas a combination with EGF inhibited cellular growth with respect to growth induced by EGF alone. Thus, interactions of SP with FGF and EGF differently affected the mitogenic response depending on the formation of arachidonic acid metabolites. The findings indicate that eicosanoids may be important mediators of competence and progression factor activities that may determine the effects of substance P on fibroblast proliferation in a cytokine network. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Accurate regulation of dermal fibroblast function plays a crucial role in wound healing. Many fibrotic diseases are characterized by a failure to conclude normal tissue repair and the persistence of fibroblasts inside lesions. In the present study we demonstrate that endoglin haploinsufficiency promotes fibroblast accumulation during wound healing. Moreover, scars from endoglin-heterozygous (Eng+/−) mice show persisting fibroblasts 12 days after wounding, which could lead to a fibrotic scar. Endoglin haploinsufficiency results in increased proliferation and migration of primary cultured murine dermal fibroblasts (MDFs). Moreover, Eng+/− MDF have diminished responses to apoptotic signals compared with control cells. Altogether, these modifications could explain the augmented presence of fibroblasts in Eng+/− mice wounds. We demonstrate that endoglin expression regulates Akt phosphorylation and that PI3K inhibition abolishes the differences in proliferation between endoglin haploinsufficient and control cells. Finally, persistent fibroblasts in Eng+/− mice wound co-localize with a greater degree of Akt phosphorylation. Thus, endoglin haploinsufficiency seems to promote fibroblast accumulation during wound healing through the activation of the PI3K/Akt pathway. These studies open new non-Smad signaling pathway for endoglin regulating fibroblast cell function during wound healing, as new therapeutic opportunities for the treatment of fibrotic wounds.  相似文献   

19.
Fibrosis is a pathological situation in which excessive amounts of extracellular matrix (ECM) are deposited in the tissue. Myofibroblasts play a crucial role in the development and progress of fibrosis as they actively synthesize ECM components such as collagen I, fibronectin and connective tissue growth factor (CTGF) and cause organ fibrosis. Transforming growth factor beta 1 (TGF-β1) plays a major role in tissue fibrosis. Activin receptor-like kinase 1 (ALK1) is a type I receptor of TGF-β1 with an important role in angiogenesis whose function in cellular biology and TGF-β signaling is well known in endothelial cells, but its role in fibroblast biology and its contribution to fibrosis is poorly studied. We have recently demonstrated that ALK1 regulates ECM protein expression in a mouse model of obstructive nephropathy. Our aim was to evaluate the role of ALK1 in several processes involved in fibrosis such as ECM protein expression, proliferation and migration in ALK1+/+ and ALK1+/− mouse embryonic fibroblasts (MEFs) after TGF-β1 stimulations and inhibitors. ALK1 heterozygous MEFs show increased expression of ECM proteins (collagen I, fibronectin and CTGF/CCN2), cell proliferation and migration due to an alteration of TGF-β/Smad signaling. ALK1 heterozygous disruption shows an increase of Smad2 and Smad3 phosphorylation that explains the increases in CTGF/CCN2, fibronectin and collagen I, proliferation and cell motility observed in these cells. Therefore, we suggest that ALK1 plays an important role in the regulation of ECM protein expression, proliferation and migration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号