首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nutrient limitation conditions, optimization and comparison of polyhydroxyalkanoate (PHA) yields and biomass production by parent and mutant strains of Rhizobium meliloti were investigated. Complex interactions among concentrations of sucrose (5–55 g/l), urea (0.05–0.65 g/l) inoculum (10–250 ml/l) and K2HPO4 (0.5–2 g/l), were studied using central composite rotatable design (CCRD) experiments. Phosphate-limiting medium (0.33 g K2HPO4/l) in the presence of excess carbon (sucrose 42.5 g/l) results in more production of PHA (2.2 g/l) in the parent strain. In comparison, the mutant strain required moderate levels of sucrose (30 g/l), along with excess of phosphate (1 g/l) for high PHA content of cell biomass (80%) and PHA yield (3.3 g/l). Optimised PHA production (biomass 4.8 g/l and PHA 3.09 g/l) by the parent strain occurred at: sucrose 51.58 g/l, urea 0.65 g/l, K2HPO4 0.48 g/l and inoculum 10 ml/l. In the mutant strain, higher yields of biomass (9.05 g/l) and PHA (5.66 g/l) were obtained in Optimised medium containing: sucrose 55 g/l, urea 0.65 g/l, K2HPO4 1.0 g/l and inoculum 150.58 ml/l.  相似文献   

2.
Methylobacterium extorquens ATCC 55366 was successfully cultivated at very high cell densities in a fed-batch fermentation system using methanol as a sole carbon and energy source and a completely minimal culture medium for the production of poly--hydroxybutyrate (PHB). Cell biomass levels were between 100 g/l and 115 g/l (dry weight) and cells contained between 40% and 46% PHB on a dry-weight basis. PHB with higher molecular mass values than previously reported for methylotrophic bacteria was obtained under certain conditions. Shake-flask and fermentor experiments showed the importance of adjusting the mineral composition of the medium for improved biomass production and higher growth rates. High-cell-density cultures were obtained without the need for oxygen-enriched air; once the oxygen transfer capacity of the fermentor was reached, methanol was thereafter added in proportion to the amount of available dissolved oxygen, thus preventing oxygen limitation. Controlling the methanol concentration at a very low level (less than 0.01 g/l), during the PHB production phase, led not only to prevention of oxygen limitation but also to the production of very high-molecular-mass PHB, in the 900–1800 kDa range. Biomass yields relative to the total methanol consumed were in the range 0.29–0.33 g/g, whereas PHB yields were in the range 0.09–0.12 g/g. During the active period of PHB synthesis, PHB yields relative to the total methanol consumed were between 0.2 g/g and 0.22 g/g. M. extorquens ATCC 55366 appears to be a promising organism for industrial PHB production.  相似文献   

3.
The production of ethanol and enriched fructose syrups from a synthetic medium with various sucrose concentrations using the mutant Saccharomyces cerevisiae ATCC 36858 was investigated. In batch tests, fructose yields were above 90% of theoretical values for the sucrose concentrations between 35 g/l and 257 g/l. The specific growth rates and biomass yields were from 0.218 to 0.128 h(-1) and from 0.160 to 0.075 g biomass/g of glucose and fructose consumed, respectively. Ethanol yields were in the range of 72 to 85% of theoretical value when sucrose concentrations were above 81 g/l. The volumetric ethanol productivity was 2.23 g ethanol/(l h) in a medium containing 216 g/l sucrose. Fructo-oligosaccharides and glycerol were also produced in the process. A maximum fructo-oligosaccharides concentration (up to 9 g/l) was attained in the 257 g/l sucrose medium in the first 7 h of the fermentation. These sugars started to be consumed when the concentrations of sucrose in the media were less than 30% of its initial values. The fructo-oligosaccharides mixture was composed of 6-kestose (61.5%), neokestose (29.7%) and 1-kestose (8.8%). The concentration of glycerol produced in the process was less than 9 g/l. These results will be useful in the production of enriched fructose syrups and ethanol using sucrose-based raw materials.  相似文献   

4.
Summary WhenMortierella alpina ATCC 32222 was incubated in a glucose salts medium at 25°C the biomass (17.5 g/l) contained 9.62% arachidonic acid which amounted to 54% (w/w) of total biomass lipids. When the glucose concentration in the medium was varied from 0 to 150 g/l, the percentage of arachidonic acid in biomass and in lipids was highest at a glucose concentration of 30 g/l, but highest yield of arachidonic acid per litre of culture broth was observed at a glucose concentration of 100 g/l. While production of biomass reached a plateau of 17 g/l after a 3-day incubation at 25°C, the percentage of arachidonic acid in lipids and biomass increased dramatically from 3 to 6 days with a concurrent arachidonic acid yield increase from 0.89 to 1.63 g/l. Optimum initial culture pH for arachidonic acid production was in the range 6.0–6.7. By increasing the concentration of the glucose salts medium three-fold, yields of biomass and arachidonic acid were increased to 35.8 g/l and 3.73 g/l, respectively.  相似文献   

5.
1,3-Propanediol (1,3-PD) is widely used in polymer industry in production of polyethers, polyesters and polyurethanes. In this article, a study on 1,3-PD production and tolerance of Halanaerobium saccharolyticum subsp. saccharolyticum is presented. 1,3-PD production was optimized for temperature, vitamin B(12) and acetate concentration. The highest 1,3-PD concentrations and yields (0.6 mol/mol glycerol) were obtained at vitamin B?? concentration 64 μg/l and an inverse correlation between 1,3-PD and hydrogen production was observed with varying vitamin B?? concentrations. In the studied temperature range and initial acetate concentrations up to 10 g/l, no significant variations were observed in 1,3-PD production. High initial acetate (29-58 g/l) was observed to cause slight decrease in 1,3-PD concentrations produced but no effects on 1,3-PD yields (mol/mol glycerol). Initial 1,3-PD concentrations inhibited the growth of H. saccharolyticum subsp. saccharolyticum. When initial 1,3-PD concentration was raised from 1g/l to 57 g/l, a decrease of 12% to 75%, respectively, in the highest optical density was observed.  相似文献   

6.
Aureobasidium pullulans NRRL 6220 synthesized polysaccharide most actively in media containing sucrose, fructose or maltose with (NH4)2SO4 (0.6 g/l) or ammonium acetate giving greatest yields of the polysaccharide. With (NH4)2SO4 at 1.2 g/l, production of polysaccharide was decreased considerably. Polysaccharide production was highest with an initial pH of 6.5 while biomass formation was better below an initial pH of 5.5. Optimum phosphate concentration for polysaccharide production was 0.03 m.S.M. Badr-Eldin, H.G. El-Masry and O.A. Abd El-Rahman are with the Microbial Chemistry Department, National Research Center, Dokki, Cairo, Egypt; F.H.A. Mohamad is with the Chemical Engineering and Pilot Plant Department, National Research Center, Dokki, Cairo, Egypt. O.M. El-Tayeb is with the Microbiology Department, Faculty of Pharmacy, Cairo University, Egypt.  相似文献   

7.
Summary Ethanol was produced from xylose, using the enzyme glucose isomerase (xylose isomerase) and Saccharomyces cerevisiae. The influence of aeration, pH, enzyme concentration, cell mass and the concentration of the respiratory inhibitor sodium azide on the production of ethanol and the formation of by-products was investigated. Anaerobic conditions at pH 6.0, 10 g/l enzyme, 75 g/l dry weight cell mass and 4.6 mM sodium azide were found to be optimal. Under these conditions theoretical yields of ethanol were obtained from 42 g/l xylose within 24 hours.In a fed-batch culture, 62 g/l ethanol was produced from 127 g/l xylose with a yield of 0.49 and a productivity of 1.35 g/l·h.  相似文献   

8.
Besides lactic acid, many lactic acid bacteria also produce proteinaceous metabolites (bacteriocins) such as nisin. As catabolite repression and end-product inhibition limit production of both products, we have investigated the use of alternative methods of supplying substrate and neutralizing or extracting lactic acid to increase yields. Fed-batch fermentation trials using a stillage-based medium with pH control by NH4OH resulted in improved lactic acid (83.4 g/l, 3.18 g/l/h, 95% yield) and nisin (1,260 IU/ml, 84,000 IU/l/h, 14,900 IU/g) production. Removing particulate matter from the stillage-based medium increased nisin production (1,590 IU/ml, 33,700 IU/g), but decreased lactic acid production (58.5 g/l, 1.40 g/l/h, 96% yield). Removing lactic acid by ion exchange resins stimulated higher lactic acid concentrations (60 to 65 g/l) and productivities (2.0 to 2.6 g/l/h) in the filtered stillage medium at the expense of nisin production (1,500 IU/ml, 25,800 IU/g).  相似文献   

9.
Cui FJ  Li Y  Xu ZH  Xu HY  Sun K  Tao WY 《Bioresource technology》2006,97(10):1209-1216
In this work, a three-level Box-Behnken factorial design was employed combining with response surface methodology (RSM) to optimize the medium composition for the production of the mycelial biomass and exo-polymer in submerged cultures by Grifola frondosa GF9801. A mathematical model was then developed to show the effect of each medium composition and their interactions on the production of mycelial biomass and exo-polymer. The model estimated that, a maximal yield of mycelial biomass (17.61 g/l) could be obtained when the concentrations of glucose, KH2PO4, peptone were set at 45.2 g/l, 2.97 g/l, 6.58 g/l, respectively; while a maximal exo-polymer yield (1.326 g/l) could be achieved when setting concentrations of glucose, KH2PO4, peptone at 58.6 g/l, 4.06 g/l and 3.79 g/l, respectively. These predicted values were also verified by validation experiments. Compared with the values obtained by other runs in the experimental design, the optimized medium resulted in a significant increase in the yields of mycelial biomass and exo-polymer. Maximum mycelial biomass yield of 22.50 g/l was achieved in a 15-l fermenter using the optimized medium.  相似文献   

10.
Cell immobilization has shown to be especially adequate for xylitol production. This work studies the suitability of the air lift bioreactor for xylitol production by Debaryomyces hansenii immobilized in Ca-alginate operating in fed-batch cultures to avoid substrate inhibition. The results showed that the air lift bioreactor is an adequate system since the minimum air flow required for fluidization was even lower than that leading to the microaerobic conditions that trigger xylitol accumulation by this yeast, also maintaining the integrity of the alginate beads and the viability of the immobilized cells until 3 months of reuses. Maximum productivities and yields of 0.43 g/l/h and 0.71 g/g were achieved with a xylose concentration of 60 g/l after each feeding. The xylose feeding rate, the air flow, and the biomass concentration at the beginning of the fed-batch operation have shown to be critical parameters for achieving high productivities and yields. Although a maximum xylitol production of 139 g/l was obtained, product inhibition was evidenced in batch experiments, which allowed estimating at 200 and 275 g/l the IC50 for xylitol productivity and yield, respectively. The remarkable production of glycerol in the absence of glucose was noticeable, which could not only be attributed to the osmoregulatory function of this polyol in conditions of high osmotic pressure caused by high xylitol concentrations but also to the role of the glycerol synthesis pathway in the regeneration of NAD+ in conditions of suboptimal microaeration caused by insufficient aeration or high oxygen demand when high biomass concentrations were achieved.  相似文献   

11.
Aureobasidium pullulans produced pullulan and melanin when grown in medium containing low nitrate levels. With high nitrate concentrations, however, this fungus produced a mixture of exopolysaccharides (EPS) without melanin synthesis. At 0.78 g l(-1) N as nitrate, where no melanin synthesis occurred, maximum EPS yields reached 6.92 g l(-1) and then decreased to the final yield of 2.36 g l(-1). Following melanin addition (0.1 g l(-1)), yields reached 7.02 g l(-1) at 48 h and fell to a final yield of 5.21 g l(-1). The EPS produced in high nitrate medium contained both pullulan and (1-->3)-beta-glucan, but only pullulan was produced with melanin-supplementation. With melanin addition a doubling of (1-->3)-beta-glucanase activity was observed in high nitrate medium compared to that without supplementation. On the other hand amylolytic activities disappeared in medium with melanin production or addition. Culture filtrates sustained a higher reducing capacity (RC) when melanin was present. Low RC appeared to reduce (1-->3)-beta-glucanase activity and increase amylolytic activities. Thus, higher RC appears to inhibit production/activity of amylose-degrading enzymes capable of degrading pullulan, and stimulates (1-->3)-beta-glucanase synthesis/activity, leading to a preferential accumulation of pullulan.  相似文献   

12.
The quantitative effects of pH, temperature, time of fermentation, sugar concentration, nitrogen concentration and potassium ferrocyanide on citric acid production were investigated using a statistical experimental design. It was found that palmyra jaggery (sugar syrup from the palmyra palm) is a suitable substrate for increasing the yield of citric acid using Aspergillus niger MTCC 281 by submerged fermentation. Regression equations were used to model the fermentation in order to determine optimum fermentation conditions. Higher yields were obtained after optimizing media components and conditions of fermentation. Maximum citric acid production was obtained at pH 5.35, 29.76 °C, 5.7 days of fermentation with 221.66 g of substrate/l, 0.479 g of ammonium nitrate/l and 2.33 g of potassium ferrocyanide/l.  相似文献   

13.
Optimization of fermentation conditions for ethanol production from whey   总被引:1,自引:0,他引:1  
Summary Optimal conditions for ethanol production in 7% whey solutions by the yeast Candida pseudotropicalis ATCC 8619 included initial pH of 4.57 and 30°C. Complete fermentation of the available lactose took place without supplementary nutrients; additions of nitrogen or phosphorus salts, yeast extract or corn steep liquor resulted in increased yeast production and lower ethanol yields. A positive correlation was observed between increases in yeast inocula and lactose utilization and ethanol production rates; 8.35 g/l of ethanol was obtained within 22 h by using yeast inoculum of 13.9 g/l. No differences in fermentation rates or ethanol yields were observed when whole or deproteinized whey solutions were used. Concentrated whey permeates, obtained after removal of the valuable proteins from whey, can be effectively fermented for ethanol production.  相似文献   

14.
Pretreated sunflower stalks saccharified with a Trichoderma reesei Rut-C 30 cellulase showed 57.8% saccharification. Enzyme hydrolysate concentrated to 40 g/l reducing sugars was fermented under optimum conditions of fermentation time (24 h), pH (5.0), temperature (30 degrees C) and inoculum size (3% v/v) and, showed a maximum ethanol yield of 0.444 g/g ethanol. Ethanol production scaled up in a 1 l and a 15 l fermenter under optimum conditions revealed maximum ethanol yields of 0.439 and 0.437 g/g respectively.  相似文献   

15.
Candida shehatae were sequentially subjected to aerobic conditions for cellular growth, followed by anaerobic conditions for ethanol production from D-xylose at pH 2.5, 4.5 and 6.0. Ethanol yields increased from 0.25 g/g to 0.37 g/g and xylitol yields decreased from 0.33 g/g to 0.1 g/g as the pH was increased from 2.5 to 6.0. Cell viability, measured by plate counts and methylene blue staining, decreased in all of the fermentations, following the switch from aerobic to anaerobic conditions. However, pH 6.0 was shown to extend cell viability and increase the final ethanol concentration from 45 g/l to 55 g/l, compared to the yield at pH 4.5. Received: 25 April 1995/Received revision: 5 September 1995/Accepted: 20 September 1995  相似文献   

16.
Summary Fed-batch fermentations of Acidothermus cellulolyticus utilizing mixtures of cellulose and sugars were investigated for potential improvements in cellulase enzyme production. In these fermentations, we combined cellulose from several sources with various simple sugars at selected concentrations. The best source of cellulose for cellulase production was found to be ball-milled Solka Floc at 15 g/l. Fed-batch fermentations with cellobiose and Solka Floc increased cell mass only slightly, but succeeded in significantly enhancing cellulase synthesis compared to batch conditions. Maximum cellulase activities obtained from fermentations initiated with 2.5 g cellobiose/l and 15 g Solka Floc/l were 0.187 units (U)/ml, achieved by continuous feeding to maintain <0.1 g cellobiose/l, and 0.215 U/ml using the same initial medium when 2.5 g cellobiose/l was step-fed after the sugar was nearly consumed. In batch, dual-substrate systems consisting of simple sugars with Solka Floc, substrate inhibition was evident in terms of specific growth rates, specific productivity values, and maximum enzyme yields. Limiting concentrations of glucose or sucrose at 5 g/l, and cellobiose at 2.5 g/l, in the presence of Solka Floc, yielded cellulase activities of 0.134, 0.159, and 0.164 U/ml, respectively. Offprint requests to: M. E. Himmel  相似文献   

17.
The different cultivation strategies of batch, fed-batch and continuous culture for the synthesis of biomass and carotenoids by Dietzia natronolimnaea HS-1 from waste molasses and its hydrolysate were compared. The efficiency of three various pretreatments (enzymatic, acidic and acidic at high temperature) for the determination of the best hydrolysate was also studied by evaluating the conversion rate of sucrose. The analytical procedures initially showed that canthaxanthin (CTX) and enzymatic hydrolysis were the most abundant pigment biosynthesized and the most suitable process for the substrate production, respectively. An increase in reducing sugar concentration of the enzymatic hydrolysate molasses (EHM) from 25 to 50 g/l led to a drastic decrease in biomass formation and substrate utilization. EHM (25 g/l) was a better substrate for the cell growth and product formation than the waste molasses (25 g/l). The application of EHM instead of molasses enhanced the biomass production in fed-batch culture more than batch and continuous cultures. However, the continuous cultivation had the highest biomass (12.98 g/l), carotenoid (27.33 mg/l) and CTX (25.04 mg/l) yields with 25 g/l of EHM. The CTX isolated from D. natronolimnaea HS-1 may be used as a natural antioxidant for possible production of healthy-functional foods in the future.  相似文献   

18.
Mannosylerythritol (ME) is the hydrophilic backbone of mannosylerythritol lipids as the most promising biosurfactants produced by different Pseudozyma yeasts, and has been receiving attention as a new sugar alcohol. Different Pseudozyma yeasts were examined for the sugar alcohol production using glucose as the sole carbon source. P. hubeiensis KM-59 highly produced a conventional type of ME, i.e., 4-O-β-d-mannopyranosyl-d-erythritol (4-ME). Interestingly, P. tsukubaensis KM-160 produced a diastereomer of 4-ME, i.e., 1-O-β-d-mannopyranosyl-d-erythritol (1-ME). In shake flask culture with 200 g/l of glucose, strain KM-59 produced 4-ME at a yield of 33.2 g/l (2.2 g/l/day of the productivity), while strain KM-160 produced 1-ME at 30.0 g/l (2.0 g/l/day). Moreover, the two strains were found to produce ME from glycerol; the maximum yields of 4-ME and 1-ME from 200 g/l of glycerol were 16.1 g/l (1.1 g/l/day) and 15.8 g/l (1.1 g/l/day), respectively. The production of 1-ME as the new diastereomer was further investigated in fed batch culture using a 5-l jar-fermenter. Compared to the flask culture, strain KM-160 gave three times higher productivity of 1-ME at 38.0 g/l (6.3 g/l/day) from glucose and at 31.1 g/l (3.5 g/l/day) from glycerol, respectively. This is the first report on the selective production of two diastereomers of ME, and should thus facilitate the functional development and application of the disaccharide sugar alcohol in the food and relative industries.  相似文献   

19.
To increase the yield of heterologous production of the class II bacteriocin DvnRV41 with Escherichia coli Origami (DE3) (pLysS/pCR03), induction of bacteriocin gene expression was optimized by varying the inducer isopropyl beta-D-thiogalactopyranoside (IPTG) concentration (0-2 mM), and controlled batch and fed-batch cultures were tested on a 2-L scale. A concentration of 0.5 mM IPTG was found to be optimal for cell growth and bacteriocin production. Shake flask cultivation of E. coli Origami (DE3) (pLysS/pCR03) gave biomass and bacteriocin yields of 1.54 +/- 0.06 g cdw/l and 18 +/- 1 mg DvnRV41/l, respectively. Biomass (2.70 +/- 0.06 and 6.8 +/- 0.6 g cdw/l, respectively) and bacteriocin yields (30 and 74 mg DvnRV41 per liter, respectively) were both increased with batch and fed-batch compared to shake flask cultures. Bacteriocin yields reported in this study are among the highest published for other heterologous expression systems in shake flasks.  相似文献   

20.
Fourteen different media were used in the fermentative production of acetone-butanol. The highest total yields were achieved in medium I. Potato starch and soluble starch were suitable as carbon sources. The best concentrations of potato starch and soluble starch were 500.0 and 10.0 g/l, respectively. Peptone was the most favourable nitrogen source. The best concentration of peptone was 4.0 g/l. Calcium carbonate in 3.6 g/l acted as buffering agent in the fermentation process. The best initial pH value of the fermentation medium was 6.0. The optimum temperature was 32--33degreesC. The fermentation process required 120 h to obtain maximum yields of acetone-butanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号