首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morita E 《The FEBS journal》2012,279(8):1399-1406
The endosomal sorting complexes required for transport (ESCRTs) mediate membrane fission from the cytoplasmic face of the bud neck. ESCRTs were originally identified as factors involved in multivesicular body vesicle biogenesis in yeast but have since been shown to function in other membrane fission events in mammalian cells, including enveloped virus budding and the abscission step of cytokinesis. Several recent studies have revealed that not all ESCRT factors are required for each of these biological processes, and this review summarizes our current understanding of the different requirements for ESCRT factors in these three different ESCRT-mediated mammalian membrane fission processes.  相似文献   

2.
The endosomal sorting complex required for transport (ESCRT)-III complex, capable of polymerization and remodeling, participates in abscission of the intercellular membrane bridge connecting two daughter cells at the end of cytokinesis. Here, we integrate quantitative imaging of ESCRT-III during cytokinetic abscission with biophysical properties of ESCRT-III complexes to formulate and test a computational model for ESCRT-mediated cytokinetic abscission. We propose that cytokinetic abscission is driven by an ESCRT-III fission complex, which arises from ESCRT-III polymerization at the edge of the cytokinetic midbody structure, located at the center of the intercellular bridge. Formation of the fission complex is completed by remodeling and breakage of the ESCRT-III polymer assisted by VPS4. Subsequent spontaneous constriction of the fission complex generates bending deformation of the intercellular bridge membrane. The related membrane elastic force propels the fission complex along the intercellular bridge away from the midbody until it reaches an equilibrium position, determining the scission site. Membrane attachment to the dome-like end-cap of the fission complex drives membrane fission, completing the abscission process. We substantiate the model by theoretical analysis of the membrane elastic energy and by experimental verification of the major model assumptions.  相似文献   

3.
Membrane trafficking via targeted exocytosis to the Saccharomyces cerevisiae bud neck provides new membrane and membrane-associated factors that are critical for cytokinesis. It remains unknown whether yeast plasma membrane abscission, the final step of cytokinesis, occurs spontaneously following extensive vesicle fusion, as in plant cells, or requires dedicated membrane fission machinery, as in cultured mammalian cells. Components of the endosomal sorting complexes required for transport (ESCRT) pathway, or close relatives thereof, appear to participate in cytokinetic abscission in various cell types, but roles in cell division had not been documented in budding yeast, where ESCRTs were first characterized. By contrast, the septin family of filament-forming cytoskeletal proteins were first identified by their requirement for yeast cell division. We show here that mutations in ESCRT-encoding genes exacerbate the cytokinesis defects of cla4Δ or elm1Δ mutants, in which septin assembly is perturbed at an early stage in cell division, and alleviate phenotypes of cells carrying temperature-sensitive alleles of a septin-encoding gene, CDC10. Elevated chitin synthase II (Chs2) levels coupled with aberrant morphogenesis and chitin deposition in elm1Δ cells carrying ESCRT mutations suggest that ESCRTs normally enhance the efficiency of cell division by promoting timely endocytic turnover of key cytokinetic enzymes.  相似文献   

4.
Cytokinesis is the process by which mitotic cells physically split in two following chromosome segregation. Dividing animal cells first ingress a cytokinetic furrow and then separate the plasma membrane by abscission. The general cytological events and several conserved molecular factors involved in cytokinesis have been known for many years. However, recent progress in microscopy, chemical genetics, biochemical reconstitution and biophysical methodology has tremendously increased our understanding of the underlying molecular mechanisms. We discuss how recent insights have led to refined models of the distinct steps of animal cell cytokinesis, including anaphase spindle reorganization, division plane specification, actomyosin ring assembly and contraction, and abscission. We highlight how molecular signalling pathways coordinate the individual events to ensure faithful partitioning of the genome to emerging daughter cells.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) becomes enveloped while budding through the plasma membrane, and the release of nascent virions requires a membrane fission event that separates the viral envelope from the cell surface. To facilitate this crucial step in its life cycle, HIV-1 exploits a complex cellular membrane remodeling and fission machinery known as the endosomal sorting complex required for transport (ESCRT) pathway. HIV-1 Gag directly interacts with early-acting components of this pathway, which ultimately triggers the assembly of the ESCRT-III membrane fission complex at viral budding sites. Surprisingly, HIV-1 requires only a subset of ESCRT-III components, indicating that the membrane fission reaction that occurs during HIV-1 budding differs in crucial aspects from topologically related cellular abscission events.  相似文献   

6.
The endosomal sorting complexes required for transport (ESCRT) pathway mediates membrane fission reactions during intraluminal endosomal vesicle formation, budding of HIV-1 and other enveloped viruses, and the final abscission step of cytokinesis in mammals and archaea. Current models hold that ubiquitin-binding ESCRT factors act early in the pathway to regulate factor recruitment and assembly, whereas the late acting ESCRT-III proteins form filaments that draw the membranes together and mediate fission, possibly, in collaboration with VPS4-ATPases. I will discuss our current understanding of the structures and functions of the different ESCRT factors in HIV budding and abscission with a particular focus on our studies aimed at understanding: (1) how ubiquitin regulates ESCRT recruitment during HIV-1 budding and (2) the structures and membrane-binding properties of ESCRT-III subunits and filaments.  相似文献   

7.
During cell division, cells undergo membrane remodeling to achieve changes in their size and shape. In addition, cell division entails local delivery and retrieval of membranes and specific proteins as well as remodeling of cytoskeletons, in particular, upon cytokinetic abscission. Accumulating lines of evidence highlight that endocytic membrane removal from and subsequent membrane delivery to the plasma membrane are crucial for the changes in cell size and shape, and that trafficking of vesicles carrying specific proteins to the abscission site participate in local remodeling of membranes and cytoskeletons. Furthermore, the endosomal sorting complex required for transport (ESCRT) machinery has been shown to play crucial roles in cytokinetic abscission. Here, the author briefly overviews membrane-trafficking events early in cell division, and subsequently focus on regulation and functional significance of membrane trafficking involving Rab11 and Arf6 small GTPases in late cytokinesis phases and assembly of the ESCRT machinery in cytokinetic abscission.  相似文献   

8.
The terminal step of cytokinesis in animal cells is the abscission of the midbody, a cytoplasmic bridge that connects the two prospective daughter cells. Here we show that two members of the SNARE membrane fusion machinery, syntaxin 2 and endobrevin/VAMP-8, specifically localize to the midbody during cytokinesis in mammalian cells. Inhibition of their function by overexpression of nonmembrane-anchored mutants causes failure of cytokinesis leading to the formation of binucleated cells. Time-lapse microscopy shows that only midbody abscission but not further upstream events, such as furrowing, are affected. These results indicate that successful completion of cytokinesis requires a SNARE-mediated membrane fusion event and that this requirement is distinct from exocytic events that may be involved in prior ingression of the plasma membrane.  相似文献   

9.
Vesicle trafficking and membrane remodelling in cytokinesis   总被引:1,自引:0,他引:1  
All cells complete cell division by the process of cytokinesis. At the end of mitosis, eukaryotic cells accurately mark the site of division between the replicated genetic material and assemble a contractile ring comprised of myosin II, actin filaments and other proteins, which is attached to the plasma membrane. The myosin-actin interaction drives constriction of the contractile ring, forming a cleavage furrow (the so-called 'purse-string' model of cytokinesis). After furrowing is completed, the cells remain attached by a thin cytoplasmic bridge, filled with two anti-parallel arrays of microtubules with their plus-ends interdigitating in the midbody region. The cell then assembles the abscission machinery required for cleavage of the intercellular bridge, and so forms two genetically identical daughter cells. We now know much of the molecular detail of cytokinesis, including a list of potential genes/proteins involved, analysis of the function of some of these proteins, and the temporal order of their arrival at the cleavage site. Such studies reveal that membrane trafficking and/or remodelling appears to play crucial roles in both furrowing and abscission. In the present review, we assess studies of vesicular trafficking during cytokinesis, discuss the role of the lipid components of the plasma membrane and endosomes and their role in cytokinesis, and describe some novel molecules implicated in cytokinesis. The present review covers experiments performed mainly on tissue culture cells. We will end by considering how this mechanistic insight may be related to cytokinesis in other systems, and how other forms of cytokinesis may utilize similar aspects of the same machinery.  相似文献   

10.
TSG101 and ALIX both function in HIV budding and in vesicle formation at the multivesicular body (MVB), where they interact with other Endosomal Sorting Complex Required for Transport (ESCRT) pathway factors required for release of viruses and vesicles. Proteomic analyses revealed that ALIX and TSG101/ESCRT-I also bind a series of proteins involved in cytokinesis, including CEP55, CD2AP, ROCK1, and IQGAP1. ALIX and TSG101 concentrate at centrosomes and are then recruited to the midbodies of dividing cells through direct interactions between the central CEP55 'hinge' region and GPP-based motifs within TSG101 and ALIX. ESCRT-III and VPS4 proteins are also recruited, indicating that much of the ESCRT pathway localizes to the midbody. Depletion of ALIX and TSG101/ESCRT-I inhibits the abscission step of HeLa cell cytokinesis, as does VPS4 overexpression, confirming a requirement for these proteins in cell division. Furthermore, ALIX point mutants that block CEP55 and CHMP4/ESCRT-III binding also inhibit abscission, indicating that both interactions are essential. These experiments suggest that the ESCRT pathway may be recruited to facilitate analogous membrane fission events during HIV budding, MVB vesicle formation, and the abscission stage of cytokinesis.  相似文献   

11.
The molecular mechanisms mediating cell surface trafficking of caveolae are unknown. Caveolae bud from plasma membranes to form free carrier vesicles through a “pinching off” or fission process requiring cytosol and driven by GTP hydrolysis (Schnitzer, J.E., P. Oh, and D.P. McIntosh. 1996. Science. 274:239–242). Here, we use several independent techniques and functional assays ranging from cell-free to intact cell systems to establish a function for dynamin in the formation of transport vesicles from the endothelial cell plasma membrane by mediating fission at the neck of caveolae. This caveolar fission requires interaction with cytosolic dynamin as well as its hydrolysis of GTP. Expression of dynamin in cytosol as well as purified recombinant dynamin alone supports GTP-induced caveolar fission in a cell-free assay whereas its removal from cytosol or the addition to the cytosol of specific antibodies for dynamin inhibits this fission. Overexpression of mutant dynamin lacking normal GTPase activity not only inhibits GTP-induced fission and budding of caveolae but also prevents caveolae-mediated internalization of cholera toxin B chain in intact and permeabilized endothelial cells. Analysis of endothelium in vivo by subcellular fractionation and immunomicroscopy shows that dynamin is concentrated on caveolae, primarily at the expected site of action, their necks. Thus, through its ability to oligomerize, dynamin appears to form a structural collar around the neck of caveolae that hydrolyzes GTP to mediate internalization via the fission of caveolae from the plasma membrane to form free transport vesicles.  相似文献   

12.
M Carmena 《Open biology》2012,2(7):120095
At the end of cell division, the cytoplasmic bridge joining the daughter cells is severed through a process that involves scission of the plasma membrane. The presence of chromatin bridges 'stuck' in the division plane is sensed by the chromosomal passenger complex (CPC) component Aurora B kinase, triggering a checkpoint that delays abscission until the chromatin bridges have been resolved. Recent work has started to shed some light on the molecular mechanism by which the CPC controls the timing of abscission.  相似文献   

13.
Pedicel abscission in Hibiscus rosa-sinensis was investigated by light and electron microscopy. During the pre-abscission period endoplasmic reticulum declined somewhat, dictyosomes increased in number and apparent activity, and mitochondria maintained their numbers. The observations suggested that dictyosomal vesicles were migrating to and fusing with the plasma membrane. The enzyme acid phosphatase was associated with dictyosomes and dictyosomal saccules, with small vacuoles and invaginations of the plasma membrane, and in the paramural region between the plasma membrane and the cell wall. Our interpretation is that acid phosphatase, (and probably also the enzymes involved in cell wall dissolution) are transported via an endoplasmic reticulum-dictyosome-vesicle carrier system to the paramural regions of the cell. In more general terms, our observations support the view that the enzymes involved in the cell wall hydrolysis of abscission are synthesized within a compartmentalized, lysosomal system prior to their release and action.  相似文献   

14.
Lonicera maackii (Rupr.) Maxim. (Amur honeysuckle) is native to Asia and an important ornamental in China. However, the anatomy of leaf abscission (shedding) in L. maackii had not been studied previously. Such work is needed not only because knowledge of the leaf abscission process is important for a horticultural species like L. maackii but also because leaf abscission is probably the least understood abscission process, as it occurs so rapidly. Therefore, our objective was to use scanning electron microscopy (SEM) to examine the progression of leaf abscission in L. maackii at the cellular level. L. maackii branches with leaves were regularly collected in Beijing, China over the 2-month period in which leaves abscise, and examined with SEM. We found that, unlike in model species, the cortex is involved in abscission, forming an “abaxial gap.” We discovered that there is no discrete abscission zone prior to the onset of abscission and that no cell divisions precede abscission. An abscission zone did become evident well after the abscission process had begun, but its cells were enlarged, not constricted as in typical abscission zones. In the abaxial gap, intact cells separated at their middle lamella, but in the abscission zone, cell separation involved the entire wall, which is not typical. We did observe expected mechanical fission of vascular tissues. While the leaf abscission process we observed in L. maackii has similarities with model systems, aspects deviate from the expected.  相似文献   

15.
James H Hurley 《The EMBO journal》2015,34(19):2398-2407
The ESCRT proteins are an ancient system that buds membranes and severs membrane necks from their inner face. Three “classical” functions of the ESCRTs have dominated research into these proteins since their discovery in 2001: the biogenesis of multivesicular bodies in endolysosomal sorting; the budding of HIV-1 and other viruses from the plasma membrane of infected cells; and the membrane abscission step in cytokinesis. The past few years have seen an explosion of novel functions: the biogenesis of microvesicles and exosomes; plasma membrane wound repair; neuron pruning; extraction of defective nuclear pore complexes; nuclear envelope reformation; plus-stranded RNA virus replication compartment formation; and micro- and macroautophagy. Most, and perhaps all, of the functions involve the conserved membrane-neck-directed activities of the ESCRTs, revealing a remarkably widespread role for this machinery through a broad swath of cell biology.  相似文献   

16.
Plasma membranes from abscission zones of kidney bean seedlings were isolated on sucrose density gradients using cellulase and KCl-stimulated ATPase as marker enzymes. Following treatment of the seedling explants with 50 microliters per liter ethylene, an increase in the buoyant density of the plasma membrane fraction from 1.165 to 1.175 grams per cubic centimeter was observed. Such a change is consistent with the loss of lipids from the senescent cells of the abscission zone.  相似文献   

17.
The parasitic protozoan Toxoplasma gondii has been examined with the electron microscope in order to study the fine structure and the formation of the membranes surrounding the cell. The study of the ultrastructure of the membranes covering the parasite shows the existence of a three-membraned complex. Only the outer membrane is considered to be the plasma membrane; the two membranes below it form an inseparable whole of changeable molecular architecture (modifications in appearance depending on the methods of fixation, local differentiation). During reproduction, which takes place by fission or more often by endogeny, the membranes of the daughter individuals are formed from the membranes of the parent. At first the middle and inner membranes of the parent extend, separating the cytoplasm of the daughter cells from that of the parent. The three-membrane complex of the endozoites is completed at the time of their liberation; the external membrane of the parent covers the leaving endozoites; thus, the plasma membrane of the daughter cells derives also from that of the parent. These findings on the origin and role of limiting membranes during reproduction differ entirely from those described so far for other cells.  相似文献   

18.
An increasing number of peptides translocate the plasma membrane of mammalian cells promising new avenues for drug delivery. However, only a few examples are known to penetrate the fungal cell wall. We compared the capacity of different fluorophore-labelled peptides to translocate into fission yeast and human cells and determined their intracellular distribution. Most of the 20 peptides tested were able to enter human cells, but only one, transportan 10 (TP10), efficiently penetrated fission yeast and was distributed uniformly inside the cells. The results show that the fungal cell wall may reduce, but does not block peptide uptake.  相似文献   

19.
The intricate and tightly regulated organization of eukaryotic cells into spatially and functionally distinct membrane-bound compartments is a defining feature of complex organisms. These compartments are defined by their lipid and protein compositions, with their limiting membrane as the functional interface to the rest of the cell. Thus, proper segregation of membrane proteins and lipids is necessary for the maintenance of organelle identity, and this segregation must be maintained despite extensive, rapid membrane exchange between compartments. Sorting processes of high efficiency and fidelity are required to avoid potentially deleterious mis-targeting and maintain cellular function. Although much molecular machinery associated with membrane traffic (i.e. membrane budding/fusion/fission) has been characterized both structurally and biochemically, the mechanistic details underlying the tightly regulated distribution of membranes between subcellular locations remain to be elucidated. This review presents evidence for the role of ordered lateral membrane domains known as lipid rafts in both biosynthetic sorting in the late secretory pathway, as well as endocytosis and recycling to/from the plasma membrane. Although such evidence is extensive and the involvement of membrane domains in sorting is definitive, specific mechanistic details for raft-dependent sorting processes remain elusive.  相似文献   

20.
The large GTPase dynamin is required for budding of clathrin-coated vesicles from the plasma membrane, after which the clathrin coat is removed by the chaperone Hsc70 and its cochaperone auxilin. Recent evidence suggests that the GTP-bound form of dynamin may recruit factors that execute the fission reaction. Here, we show that dynamin:GTP binds to Hsc70 and auxilin. We mapped two domains within auxilin that interact with dynamin, and these domains inhibit endocytosis when overexpressed in HeLa cells or when added in a permeable cell assay. The inhibition is not due to impairment of clathrin uncoating or to altered clathrin distribution in cells. Thus, in addition to its requirement for clathrin uncoating, our results show that auxilin also acts during the early steps of clathrin-coated vesicle formation. The data suggest that dynamin regulates the action of molecular chaperones in vesicle budding during endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号