首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: [2Fe-2S] ferredoxins, also called plant-type ferredoxins, are low-potential redox proteins that are widely distributed in biological systems. In photosynthesis, the plant-type ferredoxins function as the central molecule for distributing electrons from the photolysis of water to a number of ferredox-independent enzymes, as well as to cyclic photophosphorylation electron transfer. This paper reports only the second structure of a [2Fe-2S] ferredoxin from a eukaryotic organism in its native form. RESULTS: Ferredoxin from the green algae Chlorella fusca has been purified, characterised, crystallised and its structure determined to 1.4 A resolution - the highest resolution structure published to date for a plant-type ferredoxin. The structure has the general features of the plant-type ferredoxins already described, with conformational differences corresponding to regions of higher mobility. Immunological data indicate that a serine residue within the protein is partially phosphorylated. A slightly electropositive shift in the measured redox potential value, -325 mV, is observed in comparison with other ferredoxins. CONCLUSIONS: This high-resolution structure provides a detailed picture of the hydrogen-bonding pattern around the [2Fe-2S] cluster of a plant-type ferredoxin; for the first time, it was possible to obtain reliable error estimates for the geometrical parameters. The presence of phosphoserine in the protein indicates a possible mechanism for the regulation of the distribution of reducing power from the photosynthetic electron-transfer chain.  相似文献   

2.
We report the observation of paramagnetically shifted (hyperfine) proton resonances from vertebrate mitochondrial [2Fe-2S] ferredoxins. The hyperfine signals of human, bovine, and chick [2Fe-2S] ferredoxins are described and compared with those of Anabaena 7120 vegetative ferredoxin, a plant-type [2Fe-2S] ferredoxin studied previously [Skjeldal, L., Westler, W. M., & Markley, J. L. (1990) Arch. Biochem. Biophys. 278, 482-485]. The hyperfine resonances of the three vertebrate ferredoxins were very similar to one another both in the oxidized state and in the reduced state, and slow (on the NMR scale) electron self-exchange was observed in partially reduced samples. For the oxidized vertebrate ferredoxins, hyperfine signals were observed downfield of the diamagnetic envelope from +13 to +50 ppm, and the general pattern of peaks and their anti-Curie temperature dependence are similar to those observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed both upfield (-2 to -18 ppm) and downfield (+15 to +45 ppm), and all were found to exhibit Curie-type temperature dependence. This pattern and temperature dependence are distinctly different from those found with reduced plant-type ferredoxins which have signal centered around +120 ppm with Curie-type temperature dependence, assigned to cysteines which interact with Fe(III), and signals centered around +20 ppm with anti-Curie temperature dependence, assigned to cysteines which interact with Fe(II) [Dugad, L. B., La Mar, G. N., Banci, L., & Bertini, I. (1990) Biochemistry 29, 2263-2271].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A vertebrate ferredoxin (human ferredoxin) and a plant-type ferredoxin (the ferredoxin from the vegetative form of Anabaena 7120) were labeled selectively with deuterium at their active site cysteines. The recombinant proteins were produced in Escherichia coli and labeled by replacing natural abundance cysteine in the defined culture medium with (2)H(alpha)-cysteine, (2)H(beta2), (2)H(beta3)-cysteine, or (2)H(beta2)-cystine. The chiral labeled cystine ((2)H(beta2)-cystine) was prepared by selective hydrogen exchange catalyzed by cystathionine gamma-synthase. NMR spectra of these samples in their oxidized and reduced states support unambiguous identifications by atom type of (1)H and (2)H NMR signals from the cysteine alpha and beta hydrogens. These signals lie outside the normal diamagnetic spectral region as a result of interaction of the hydrogens with unpaired electron density from the iron-sulfur cluster, and their chemical shifts are highly dependent on local conformation at the active site. The very different chemical properties of the iron centers of plant-type and vertebrate ferredoxins reflect relatively small differences in the conformation of the iron-sulfur cluster ligands.  相似文献   

4.
Background: [2Fe–2S] ferredoxins, also called plant-type ferredoxins, are low-potential redox proteins that are widely distributed in biological systems. In photosynthesis, the plant-type ferredoxins function as the central molecule for distributing electrons from the photolysis of water to a number of ferredox-independent enzymes, as well as to cyclic photophosphorylation electron transfer. This paper reports only the second structure of a [2Fe–2S] ferredoxin from a eukaryotic organism in its native form.Results: Ferredoxin from the green algae Chlorella fusca has been purified, characterised, crystallised and its structure determined to 1.4 Å resolution – the highest resolution structure published to date for a plant-type ferredoxin. The structure has the general features of the plant-type ferredoxins already described, with conformational differences corresponding to regions of higher mobility. Immunological data indicate that a serine residue within the protein is partially phosphorylated. A slightly electropositive shift in the measured redox potential value, -325 mV, is observed in comparison with other ferredoxins.Conclusions: This high-resolution structure provides a detailed picture of the hydrogen-bonding pattern around the [2Fe–2S] cluster of a plant-type ferredoxin; for the first time, it was possible to obtain reliable error estimates for the geometrical parameters. The presence of phosphoserine in the protein indicates a possible mechanism for the regulation of the distribution of reducing power from the photosynthetic electron-transfer chain.  相似文献   

5.
Crystallographic analysis of a fully functional, truncated bovine adrenodoxin, Adx(4-108), has revealed the structure of a vertebrate-type [2Fe-2S] ferredoxin at high resolution. Adrenodoxin is involved in steroid hormone biosythesis in adrenal gland mitochondria by transferring electrons from adrenodoxin reductase to different cytochromes P450. Plant-type [2Fe-2S] ferredoxins interact with photosystem I and a diverse set of reductases.A systematic structural comparison of Adx(4-108) with plant-type ferredoxins which share about 20 % sequence identity yields these results. (1) The ferredoxins of both types are partitioned into a large, strictly conserved core domain bearing the [2Fe-2S] cluster and a smaller interaction domain which is structurally different for both subfamilies. (2) In both types, residues involved in interactions with reductase are located at similar positions on the molecular surface and coupled to the [2Fe-2S] cluster via structurally equivalent hydrogen bonds. (3) The accessibility of the [2Fe-2S] cluster differs between Adx(4-108) and the plant-type ferredoxins where a solvent funnel leads from the surface to the cluster. (4) All ferredoxins are negative monopoles with a clear charge separation into two compartments, and all resulting dipoles but one point into a narrow cone located in between the interaction domain and the [2Fe-2S] cluster, possibly controlling predocking movements during interactions with redox partners. (5) Model calculations suggest that FE1 is the origin of electron transfer pathways to the surface in all analyzed [2Fe-2S] ferredoxins and that additional transfer probability for electrons tunneling from the more buried FE2 to the cysteine residue in position 92 of Adx is present in some.  相似文献   

6.
Two plant-type ferredoxins were isolated and purified from a blue-green alga, Nostoc verrucosum. They were separable by chromatography on a DEAE-cellulose column. The slow-moving band was designated ferredoxin I (Fd I) and the fast-moving band was ferredoxin II (Fd II). The ratio of the yield of ferredoxins I and II was about 1 : 0.84. Both ferredoxins had absorption spectra similar to those of plant-type ferredoxins. Two atoms of non-heme iron and two of labile sulfur were found per mol of both ferredoxin I and ferredoxin II. Their molecular weights were identical and estimated to be about 18 000 by a gel filtration method. The biochemical activities of these Nostoc ferredoxins were studied: the NADP photoreduction activity on one hand and the NADP-cytochrome c reductase activity on the other.  相似文献   

7.
A [2Fe-2S] ferredoxin (Fd1) from the hyperthermophilic bacterium Aquifex aeolicus has been obtained by heterologous expression of the encoding gene in Escherichia coli. Sequence comparisons show that this protein belongs to the extended family of plant- and mammalian-type [2Fe-2S] ferredoxins but also indicate that it is not closely similar to either the plant-type or mammalian-type subfamilies. Instead, it appears to bear some similarity to novel members of this family, in particular the Isc-type ferredoxins involved in the assembly of iron-sulfur clusters in vivo. The two redox levels of the [2Fe-2S](2+/+) metal site of A. aeolicus ferredoxin have been studied by UV-visible, resonance Raman, EPR, variable temperature magnetic circular dichroism, and M?ssbauer spectroscopies. A full-spin Hamiltonian analysis is given for the M?ssbauer spectra. In aggregate, the spectroscopic data reveal differences with both the plant-type and mammalian-type ferredoxins, in keeping with the sequence comparisons. The midpoint potential of the [2Fe-2S](2+/+) couple, at -375 mV versus the normal hydrogen electrode, is more negative than those of mammalian-type ferredoxins and at the upper end of the range covered by plant-type ferredoxins. A. aeolicus ferredoxin contains two cysteines in addition to the four that are committed as ligands of the [2Fe-2S] cluster. These two residues have been shown by chemical modification and site-directed mutagenesis to form a disulfide bridge in the native protein. While that cystine unit plays a significant role in the exceptional thermostability of A. aeolicus ferredoxin (T(m) = 121 degrees C at pH 7 versus T(m) = 113 degrees C in a molecular variant where the disulfide bridge has been removed), it does not bear on the properties of the [2Fe-2S](2+/+) chromophore. This observation is consistent with the large distance (ca. 20 A) that is predicted to separate the iron-sulfur chromophore from the disulfide bridge.  相似文献   

8.
Two plant-type ferredoxins were isolated and purified from a blue-green alga, Nostoc verrucosum. They were separable by chromatography on a DEAE-cellulose column. The slow-moving band was designated ferredoxin I (Fd I) and the fast-moving band was ferredoxin II (Fd II). The ratio of the yield of ferredoxins I and II was about 1:0.84. Both ferredoxins had absorption spectra similar to those of plant-type ferredoxins. Two atoms of non-heme iron and two of labile sulfur were found per mol of both ferredoxin I and ferredoxin II. Their molecular weights were identical and estimated to be about 18 000 by a gel filtration method. The biochemical activities of these Nostoc ferredoxins were studied: the NADP photoreduction activity on one hand and the NADP-cytochrome c reductase activity on the other.  相似文献   

9.
The molecular structure of the oxidized form of the [2Fe-2S] ferredoxin isolated from the cyanobacterium Anabaena species strain PCC 7120 has been determined by X-ray diffraction analysis to a nominal resolution of 2.5 A and refined to a crystallographic R factor of 18.7%. Crystals used in this investigation belong to the space group P2(1)2(1)2(1) with unit cell dimensions of a = 37.42 A, b = 38.12 A, and c = 147.12 A and two molecules in the asymmetric unit. The three-dimensional structure of this ferredoxin was solved by a method that combined X-ray data from one isomorphous heavy-atom derivative with noncrystallographic symmetry averaging and solvent flattening. As in other plant-type [2Fe-2S] ferredoxins, the iron-sulfur cluster is located toward the outer edge of the molecule, and the irons are tetrahedrally coordinated by both inorganic sulfurs and sulfurs provided by protein cysteine residues. The main secondary structural elements include four strands of beta-pleated sheet and three alpha-helical regions.  相似文献   

10.
Abstract The cyanobacterium Nostoc sp. strain PCC 73102, cultured under nitrogen-fixing conditions, was investigated for the occurrence of ferrodoxins by SDS-PAGE/Western immunoblots using antisera directed against both a major plant-type and a bacterial-type ferredoxin purified from Anabaena variabilis . Immunocytological labelling and transmission electron microscopy were used to study the distribution of both types of ferredoxins in the Nostoc cells. SDS-PAGE/Western immunoblots revealed two proteins/polypeptides in the Nostoc strain, immunologically related to two soluble ferredoxins purified from Anabaena variabilis : the major plant-type ferredoxin (Fd I) and a bacterial-type ferredoxin (Fd III). Immunolocalization showed a uniform distribution of the plant-type and the bacterial-type ferredoxin in both the photosynthetic vegetative cells and in the nitrogen-fixing heterocysts, with no specific association with any subcellular inclusions. Using the particle analysis of an image processor, the labelling associated with the vegetative cells, expressed as number of gold particles per cell area, was found to be only slightly higher (1.2x) or almost twice as high (1.9x) compared to the heterocysts for the major plant-type and the bacterial-type ferredoxin, respectively.  相似文献   

11.
Analysis of the genome of the hyperthermophilic bacterium Aquifex aeolicus has revealed the presence of a previously undetected gene potentially encoding a plant- and mammalian-type [2Fe-2S] ferredoxin. Expression of that gene in Escherichia coli has yielded a novel thermostable [2Fe-2S] ferredoxin (designated ferredoxin 5) whose sequence is most similar to those of ferredoxins involved in the assembly of iron-sulfur clusters (Isc-Fd). It nevertheless differs from the latter proteins by having deletions near its N- and C-termini, and no cysteine residues other than those involved in [2Fe-2S] cluster coordination. Resonance Raman, low-temperature MCD and EPR studies show close spectral similarities between ferredoxin 5 and the Isc-Fd from Azotobacter vinelandii. M?ssbauer spectra of the reduced protein were analyzed with an S = 1/2 spin Hamiltonian and interpreted in the framework of the ligand field model proposed by Bertrand and Gayda. The redox potential of A. aeolicus ferredoxin 5 (-390 mV) is in keeping with its relatedness to Isc-Fd. Unfolding experiments showed that A. aeolicus ferredoxin 5 is highly thermostable (T(m) = 106 degrees C at pH 7), despite being devoid of features (e.g., high content of charged residues) usually associated with extreme thermal stability. Searches for genes potentially encoding plant-type [2Fe-2S] ferredoxins have been performed on the sequenced genomes of hyperthermophilic organisms. None other than the two proteins from A. aeolicus were retrieved, indicating that this otherwise widely distributed group of proteins is barely represented among hyperthermophiles.  相似文献   

12.
The (Fe2S2)2+ complex of an artificial 20-peptide ligand, Ac-Pro-Tyr-Ser-Cys-Arg-Ala-Gly-Ala-Cys-Ser-Thr-Cys-Ala-Gly-Pro-Leu-Leu-T hr-Cys- Val-NH2, containing an invariant Cys-A-B-C-D-Cys-X-Y-Cys (A, B, C, D, X, Y = amino acid residues) fragment of plant-type ferredoxins was synthesized by a ligand exchange method with [Fe2S2(S-t-Bu)4]2-. 1H-nmr spectroscopic and electrochemical data of the complex indicate the presence of two coordination isomers. One of them having a Cys-X-Y-Cys bridging coordination to the two Fe(III) ions, has the (Fe2S2)2+ core environment similar to those of the denatured plant-type ferredoxins and exhibits a positive shifted redox potential at -0.64 V vs saturated colonel electrode (SCE) in N,N-dimethylformamide (DMF). Another isomer with the Cys-A-B-C-D-Cys bridging coordination shows a negative redox potential at -0.96 V vs SCE in DMF.  相似文献   

13.
The amino acid sequence of the ferrodoxin of Porphyra umbilicalis was determined by the dansyl-phenyl isothiocyanate method, on peptides obtained by tryptic, chymotryptic and thermolytic digestion of the protein or its CNBr-cleavage fragments. The molecule consists of 98 residues, has an unblocked N-terminus and shows considerable similarity with other plant-type ferredoxins. It is the first reported sequence of a red-algal ferredoxin.  相似文献   

14.
Isoelectric points of ferredoxins, flavodoxins and a rubredoxin from a range of sources were measured by electrofocusing over the pH range between 2.5 and 5.0 on thin layers of polyacrylamide gel. The pH gradient along the gel was measured directly by a surface electrode. The isoelectric points of the plant-type ferredoxins were between approx. 3.15 and 3.35, and those of the flavodoxins close to 3.5. Ferredoxin, rubredoxin and flavodoxin from Clostridium pasteurianum had isolectric points of the of 2.75, 2.9, and 3.1, respectively. The values for the isoelectric points ferredoxins are significantly lower than previous results in the literature suggest.  相似文献   

15.
The diiron ferredoxins have a common diamond-core structure with two bridging sulfides, but differ in the nature of their terminal ligands: either four cysteine thiolates in the Fe(2)S(2) ferredoxins or two cysteine thiolates and two histidine imidazoles in the Rieske ferredoxins. Contributions of the bridging (b) and terminal (t) ligands to the resonance Raman spectra of the Fe(2)S(2) ferredoxins have been distinguished previously by isotopic substitution of the bridging sulfides. We now find that uniform (15)N-labeling of Anabaena Fe(2)S(2) ferredoxin results in shifts of -1 cm(-1) in the Fe-S(t) stretching modes at 282, 340, and 357 cm(-1). The (15)N dependence is ascribed to kinematic coupling of the Fe-S(Cys) stretch with deformations of the cysteine backbone, including the amide nitrogen. No (15)N dependence occurs for the nu(Fe-S(b)) modes at 395 and 426 cm(-1). Similar effects are observed for the Rieske center in T4MOC ferredoxin from the toluene-4-monooxygenase system of Pseudomonas mendocina. Upon selective (15)N-labeling of the alpha-amino group of cysteine, the vibrational modes at 321, 332, 350, and 362 cm(-1) all undergo shifts of -1 to -2 cm(-1), thereby identifying them as combinations of nu(Fe-S(t)) and delta(Cys). These same four modes undergo similar isotope shifts when T4MOC ferredoxin is selectively labeled with (15)N-histidine ((15)N in either the alpha1,delta1 or delta1,epsilon2 positions). Thus, the Fe-S(Cys) stretch must also be undergoing kinematic coupling with vibrations of the Fe-His moiety. The extensive kinematic coupling of iron ligand vibrations observed in both the Fe(2)S(2) and Rieske ferredoxins presumably arises from the rigidity of the protein framework and is reminiscent of the behavior of cupredoxins. In both cases, the structural rigidity is likely to play a role in minimizing the reorganization energy for electron transfer.  相似文献   

16.
The amino acid in position 49 in bovine adrenodoxin is conserved among vertebrate [2Fe-2S] ferredoxins as hydroxyl function. A corresponding residue is missing in the cluster-coordinating loop of plant-type [2Fe-2S] ferredoxins. To probe the function of Thr-49 in a vertebrate ferredoxin, replacement mutants T49A, T49S, T49L, and T49Y, and a deletion mutant, T49Delta, were generated and expressed in Escherichia coli. CD spectra of purified proteins indicate changes of the [2Fe-2S] center geometry only for mutant T49Delta, whereas NMR studies reveal no transduction of structural changes to the interaction domain. The redox potential of T49Delta (-370 mV) is lowered by approximately 100 mV compared with wild type adrenodoxin and reaches the potential range of plant-type ferredoxins (-305 to -455 mV). Substitution mutants show moderate changes in the binding affinity to the redox partners. In contrast, the binding affinity of T49Delta to adrenodoxin reductase and cytochrome P-450 11A1 (CYP11A1) is dramatically reduced. These results led to the conclusion that Thr-49 modulates the redox potential in adrenodoxin and that the cluster-binding loop around Thr-49 represents a new interaction region with the redox partners adrenodoxin reductase and CYP11A1. In addition, variations of the apparent rate constants of all mutants for CYP11A1 reduction indicate the participation of residue 49 in the electron transfer pathway between adrenodoxin and CYP11A1.  相似文献   

17.
The amino acid sequence of the ferredoxin of Brassica napus was determined by using a Beckman 890C sequencer in combination with the characterization of peptides obtained by tryptic and chymotryptic digestion of the protein; some peptides were subdigested with thermolysin. The molecule consists of a single polypeptide chain of 96 amino acid residues and has an unblocked N-terminus. The primary structure shows considerable similarity with other plant-type ferredoxins.  相似文献   

18.
19.
Midpoint redox potentials of plant and algal ferredoxins.   总被引:4,自引:0,他引:4       下载免费PDF全文
Midpoint potentials of plant-type ferredoxins from a range of sources were measured by redox titrations combined with electron-paramagnetic-resonance spectroscopy. For ferredoxins from higher plants, green algae and most red algae, the midpoint potentials (at pH 8.0) were between --390 and --425 mV. Values for the major ferredoxin fractions from blue-green algae were less negative (between --325 and --390 mV). In addition, Spirulina maxima and Nostoc strain MAC contain second minor ferredoxin components with a different potential, --305 mV (the highest so far measured for a plant-algal ferrodoxin) for Spirulina ferrodoxin II, and --455 mV (the lowest so far measured for a plant-algal ferredoxin) for Nostoc strain MAC ferredoxin II. However, two ferredoxins extracted from a variety of the higher plant Pisum sativum (pea) had midpoint potentials that were only slightly different from each other. These values are discussed in terms of possible roles for the ferredoxins in addition to their involvement in photosynthetic electron transport.  相似文献   

20.
The amino acid sequence of the major ferredoxin component isolated from a dinoflagellate, Peridinium bipes, was completely determined. Staphylococcus aureus V8 proteolytic, tryptic and chymotryptic peptides of Cm-ferredoxin were prepared and sequenced. The sequence was Phe-Lys-Val-Thr-Leu-Asp-Thr-Pro-Asp-Gly-Lys-Lys-Ser-Phe-Glu-Cys- Pro-Gly-Asp-Ser-Tyr-Ile-Leu-Asp-Lys-Ala-Glu-Glu-Glu-Gly-Leu-Glu-Leu-Pro- Tyr-Ser - Cys-Arg-Ala-Gly-Ser-Cys-Ser-Ser-Cys-Ala-Gly-Lys-Val-Leu-Thr-Gly-Ser-Ile- Asp-Gln - Ser-Asp-Gln-Ala-Phe-Leu-Asp-Asp-Asp-Gln-Gly-Gly-Asp-Gly-Tyr-Cys-Leu-Thr- Cys-Val - Thr-Tyr-Pro-Thr-Ser-Asp-Val-Thr-Ile-Lys-Thr-His-Cys-Glu-Ser-Glu-Leu. It was composed of 93 amino acid residues with 7 cysteine residues, the highest number found among the chloroplast-type ferredoxins so far sequenced. A cysteine residue was found for the first time at the 89th position in a chloroplast-type ferredoxin. Calculation of the numbers of amino acid differences among chloroplast-type ferredoxins indicates that the Peridinium ferredoxin is far divergent not only from higher plant ferredoxins but also from blue-green algal ferredoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号