首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell migration plays roles in invasion of transformed cells and scattering of embryonic mesenchymal cells into surrounding tissues. We have found that Ig-like Necl-5/Tage4 is up-regulated in NIH3T3 cells transformed by an oncogenic Ras (V12Ras-NIH3T3 cells) and heterophilically trans-interacts with a Ca(2+)-independent Ig-like cell adhesion molecule nectin-3, eventually enhancing their intercellular motility. We show here that Necl-5 furthermore enhances cell migration in a nectin-3-independent manner. Studies using L fibroblasts expressing various mutants of Necl-5, NIH3T3 cells, and V12Ras-NIH3T3 cells have revealed that Necl-5 enhances serum- and platelet-derived growth factor-induced cell migration. The extracellular region of Necl-5 is necessary for directional cell migration, but not for random cell motility. The cytoplasmic region of Necl-5 is necessary for both directional and random cell movement. Necl-5 colocalizes with integrin alpha(V)beta(3) at leading edges of migrating cells. Analyses using an inhibitor or an activator of integrin alpha(V)beta(3) or a dominant negative mutant of Necl-5 have shown the functional association of Necl-5 with integrin alpha(V)beta(3) in cell motility. Cdc42 and Rac small G proteins are activated by the action of Necl-5 and required for the serum-induced, Necl-5-enhanced cell motility. These results indicate that Necl-5 regulates serum- and platelet-derived growth factor-induced cell migration in an integrin-dependent, nectin-3-independent manner, when cells do not contact other cells. We furthermore show here that enhanced motility and metastasis of V12Ras-NIH3T3 cells are at least partly the result of up-regulated Necl-5.  相似文献   

2.
Focal complexes are continuously formed and transformed into focal adhesions during cell movement. We previously demonstrated that Necl-5 co-localizes with integrin alpha(V)beta(3) at focal complexes, whereas Necl-5 does not localize at focal adhesions in moving NIH3T3 cells, suggesting that Necl-5 may be dissociated from integrin alpha(V)beta(3) during the transformation of focal complexes into focal adhesions, but the underlying mechanism remains unknown. Here, we explore the roles of Necl-5 and Rho-associated kinase (ROCK) in the regulation of the transformation of focal complexes into focal adhesions. We found that inhibition of Necl-5 expression and expression of a constitutively active mutant of ROCK1 enhanced, whereas treatment with a ROCK inhibitor Y-27632 inhibited the transformation of focal complexes into focal adhesions. In HEK293 cells ectopically expressing Necl-5 and integrin alpha(V)beta(3), treatment of cells with Y-27632 increased the binding of Necl-5 to clustered integrin alpha(V)beta(3). The experiments using inhibitors of myosin ATPase and actin polymerization revealed that actomyosin-driven contractility exerts a similar function as ROCK. The phosphorylation of integrin beta(3) at Tyr(747), which is known to be critical for the formation of focal adhesions, plays a pivotal role for the interaction between Necl-5 and integrin alpha(V)beta(3). These results indicate that the transformation of focal complexes into focal adhesions is negatively and positively regulated by Necl-5 and ROCK, respectively, and that ROCK-dependent actomyosin-driven contractility is a critical determinant for the regulation of the interaction between Necl-5 and integrin alpha(V)beta(3).  相似文献   

3.
Cyclical activation and inactivation of Rho family small G proteins, such as Rho, Rac, and Cdc42, are needed for moving cells to form leading edge structures in response to chemoattractants. However, the mechanisms underlying the dynamic regulation of their activities are not fully understood. We recently showed that another small G protein, Rap1, plays a crucial role in the platelet-derived growth factor (PDGF)-induced formation of leading edge structures and activation of Rac1 in NIH3T3 cells. We showed here that knockdown of afadin, an actin-binding protein, in NIH3T3 cells resulted in a failure to develop leading edge structures in association with an impairment of the activation of Rap1 and Rac1 and inactivation of RhoA in response to PDGF. Overexpression of a constitutively active mutant of Rap1 (Rap1-CA) and knockdown of SPA-1, a Rap1 GTPase-activating protein that was negatively regulated by afadin by virtue of binding to it, in afadin-knockdown NIH3T3 cells restored the formation of leading edge structures and the reduction of the PDGF-induced activation of Rac1 and inactivation of RhoA, suggesting that the inactivation of Rap1 by SPA-1 is responsible for inhibition of the formation of leading edge structures. The effect of Rap1-CA on the restoration of the formation of leading edge structures and RhoA inactivation was diminished by additional knockdown of ARAP1, a Rap-activated Rho GAP, which localized at the leading edges of moving NIH3T3 cells. These results indicate that afadin regulates the cyclical activation and inactivation of Rap1, Rac1, and RhoA through SPA-1 and ARAP1.Cell migration is a spatiotemporally regulated process involving the formation and disassembly of protrusions, such as filopodia and lamellipodia, ruffles, focal complexes, and focal adhesions. At the leading edges of moving cells, the continuous formation and disassembly of these protrusive structures are tightly regulated by the actions of the Rho family small G proteins, including RhoA, Rac1, and Cdc42. RhoA regulates the formation of stress fibers and focal adhesions, whereas Rac1 and Cdc42 regulate the formation of lamellipodia and filopodia, respectively (1, 2). In addition, both Rac1 and Cdc42 regulate the formation of focal complexes (3, 4). In order to have cells keep moving, each member of the Rho family small G proteins should cyclically be active and inactive as these leading edge structures are dynamically formed and disassembled. Rac1 and Cdc42 must be activated and RhoA must be inactivated at focal complexes, and vice versa at focal adhesions. Thus, the cyclical activation and inactivation of the Rho family small G proteins are critical for turnover of the transformation of focal complexes into focal adhesions during cell movement. The activities of these small G proteins are tightly regulated by guanine nucleotide exchange factors and GTPase-activating proteins (GAPs).2 It is likely that signals from receptors and integrins cooperatively regulate the dynamics of this spatial and temporal activation and inactivation of the Rho family small G proteins. However, the molecular mechanisms of their cyclical activation and inactivation through the regulation of guanine nucleotide exchange factors and GAPs at the leading edges remain largely unknown.We recently showed that platelet-derived growth factor (PDGF) receptor (PDGFR), integrin αvβ3, and Necl-5 associate with each other and form a complex and that this complex is clustered at the leading edges of directionally moving NIH3T3 cells in response to PDGF (5, 6). We also demonstrated that PDGF induces the activation of Rap1, which then induces the activation of Rac1 (7). Overexpression of Rap1GAP to inactivate Rap1 inhibits the PDGF-induced formation of leading edge structures, cell movement, and activation of Rac1, suggesting that, in addition to the activation of Rap1, the subsequent activation of Rac1 and presumably the inactivation of RhoA may be critical for the PDGF-induced migration of NIH3T3 cells.Afadin is a nectin- and F-actin-binding protein that is involved in the formation of adherens junctions in cooperation with nectin and cadherin (8). Afadin has multiple domains: two Ras association (RA) domains, a forkhead-associated domain, a dilute domain, a PSD-95-Dlg-1-ZO-1 domain, three proline-rich domains, and an F-actin-binding domain at the C terminus and localizes to adherens junctions in epithelial cells (9). Afadin-knock-out mice showed impaired formation of the cell-cell junction during embryogenesis (10, 11). Although Ras small G protein was initially identified as an interacting molecule with the RA domain of afadin (12), other studies demonstrate that afadin binds GTP-bound Rap1 with a higher affinity than GTP-bound Ras or GTP-bound Rap2 (13, 14). In addition to the functional role of afadin in the organization of cell-cell adhesion, we recently found that, in NIH3T3 cells that do not form cell-cell junctions, afadin did not associate with nectin, localized at the leading edges during cell movement, and was involved in their directional, but not random, movement. The interaction of afadin with Rap1 at the leading edge was necessary for the PDGF-induced directional movement of NIH3T3 cells. Thus, in addition to that in the formation of adherens junctions, afadin plays another role in directional cell movement in NIH3T3 cells.In a series of studies using afadin-knockdown NIH3T3 cells, we found that neither lamellipodia, ruffles, nor focal complexes are formed, suggesting that Rap1 may be inactivated and, conversely, RhoA may be activated in the reduced state of afadin. Here we first examined this possibility and found that Rap1 is indeed inactivated, whereas RhoA is activated in afadin-knockdown NIH3T3 cells. To understand the mechanisms of how the activities of Rap1 and RhoA are regulated in afadin-knockdown NIH3T3 cells, we searched for afadin-interacting proteins that could potentially regulate Rap1 activity and sought Rap1 targets that might regulate RhoA activity. We focused on SPA-1 and ARAP1 and found that these proteins coordinately regulate the activities of these small G proteins. SPA-1 is a GAP for Rap1 that interacts with afadin (15), whereas ARAP1 is a Rho GAP that binds Rap1 and could be activated by virtue of this binding (16). We describe here how afadin regulates the cyclical activation and inactivation of Rap1, Rac1, and RhoA through SPA-1 and ARAP1 at the leading edges of moving NIH3T3 cells. We conclude that afadin is critical for the coordinated regulation of the activation of Rap1 and Rac1 and subsequent inactivation of RhoA necessary for cell movement.  相似文献   

4.
The nectin cell adhesion molecules interact in trans with each other through their extracellular regions and with afadin through their cytoplasmic tails, forming adherens junctions in cooperation with cadherins. In a single cell, Necl-5 (nectin-like molecule-5) localizes at the leading edge and regulates directional cell movement in response to a chemoattractant. In such a single cell, afadin also localizes at the leading edge without interacting with nectins or Necl-5. It remains unknown how the nectin-nectin and nectin-afadin interactions are initiated when moving cells contact each other to initiate the formation of adherens junctions. We show here that the Necl-5-nectin interaction induced by cell-cell contact enhances the nectin-afadin interaction. This interaction then enhances the nectin-nectin interaction, which further enhances the nectin-afadin interaction in a positive feedback manner. Thus, the Necl-5-nectin, nectin-nectin, and nectin-afadin interactions cooperatively increase the clustering of the nectin-afadin complex at the cell-cell contact sites, promoting the formation of the nectin-based cell-cell adhesion.  相似文献   

5.
Contact inhibition of cell movement and proliferation is critical for proper organogenesis and tissue remodeling. We show here a novel regulatory mechanism for this contact inhibition using cultured vascular endothelial cells. When the cells were confluently cultured, Necl-4 was up-regulated and localized at cell–cell contact sites where it cis-interacted with the vascular endothelial growth factor (VEGF) receptor. This interaction inhibited the tyrosine-phosphorylation of the VEGF receptor through protein-tyrosine phosphatase, non-receptor type 13 (PTPN13), eventually reducing cell movement and proliferation. When the cells were sparsely cultured, Necl-4 was down-regulated but accumulated at leading edges where it inhibited the activation of Rho-associated protein kinase through PTPN13, eventually facilitating the VEGF-induced activation of Rac1 and enhancing cell movement. Necl-4 further facilitated the activation of extracellular signal-regulated kinase 1/2, eventually enhancing cell proliferation. Thus, Necl-4 serves as a novel regulator for contact inhibition of cell movement and proliferation cooperatively with the VEGF receptor and PTPN13.  相似文献   

6.
Integrin alphavbeta3 has an important role in the proliferation, survival, invasion and migration of vascular endothelial cells. Like other integrins, alphavbeta3 can exist in different functional states with respect to ligand binding. These changes involve both affinity modulation, by which conformational changes in the integrin heterodimer govern affinity for individual extracellular matrix proteins, and avidity modulation, by which changes in lateral mobility and integrin clustering affect the binding of cells to multivalent matrices. Here we have used an engineered monoclonal antibody Fab (antigen-binding fragment) named WOW-1, which binds to activated integrins alphavbeta3 and alphavbeta5 from several species, to investigate the role of alphavbeta3 activation in endothelial cell behaviour. Because WOW-1 is monovalent, it is insensitive to changes in integrin clustering and therefore reports only changes in affinity. WOW-1 contains an RGD tract in its variable region and binds only to unoccupied, high-affinity integrins. By using WOW-1, we have identified the selective recruitment of high-affinity integrins as a mechanism by which lamellipodia promote formation of new adhesions at the leading edge in cell migration.  相似文献   

7.
Ogita H  Takai Y 《IUBMB life》2006,58(5-6):334-343
Nectins and nectin-like molecules (Necls) are immunoglobulin-like cell adhesion molecules that constitute families containing four and five members, respectively. All members, except for Necl-5, trans-interact homophilically. Furthermore, all members, including Necl-5, trans-interact heterophilically with their respective specific partners among the members. Necl-5 regulates cell movement and proliferation cooperatively with integrin alphavbeta3 and growth factor receptors. Nectins function as cell-cell adhesion molecules at a variety of cell-cell junctions, including adherens junctions, and regulate the initial step of cell-cell junction formation. Nectins and integrin alphavbeta3 are further involved in the cross-talk between cell-matrix and cell-cell junctions. Thus, both nectin and Necl family members play important roles in fundamental cellular functions, including cell adhesion, polarization, movement, and proliferation.  相似文献   

8.
Thy-1 is an abundant neuronal glycoprotein of poorly defined function. We recently provided evidence indicating that Thy-1 clusters a beta3-containing integrin in astrocytes to induce tyrosine phosphorylation, RhoA activation and the formation of focal adhesions and stress fibers. To date, the alpha subunit partner of beta3 integrin in DI TNC1 astrocytes is unknown. Similarly, the ability of neuronal, membrane-bound Thy-1 to trigger astrocyte signaling via integrin engagement remains speculation. Here, evidence that alphav forms an alphavbeta3 heterodimer in DI TNC1 astrocytes was obtained. In neuron-astrocyte association assays, the presence of either anti-alphav or anti-beta3 integrin antibodies reduced cell-cell interaction demonstrating the requirement of both integrin subunits for this association. Moreover, anti-Thy-1 antibodies blocked stimulation of astrocytes by neurons but not the binding of these two cell types. Thus, neuron-astrocyte association involved binding between molecular components in addition to the Thy-1-integrin; however, the signaling events leading to focal adhesion formation in astrocytes depended exclusively on the latter interaction. Additionally, wild-type (RLD) but not mutated (RLE) Thy-1 was shown to directly interact with alphavbeta3 integrin by Surface Plasmon Resonance analysis. This interaction was promoted by divalent cations and was species-independent. Together, these results demonstrate that the alphavbeta3 integrin heterodimer interacts directly with Thy-1 present on neuronal cells to stimulate astrocytes.  相似文献   

9.
In normal epithelial cells, integrin α(6)β(4) is abundantly expressed and forms hemidesmosomes, which is a cellular structure that mediates cell-extracellular matrix binding. In many types of cancer cells, integrin α(6)β(4) is up-regulated, laminin is cleaved, and hemidesmosomes are disrupted, eventually causing an enhancement of cancer cell movement and facilitation of their invasion. We previously showed that the immunoglobulin-like cell adhesion molecule Necl-2 (Nectin-like molecule 2), known as a tumor suppressor, inhibits cancer cell movement by suppressing the ErbB3/ErbB2 signaling. We show here that Necl-2 interacts in cis with integrin α(6)β(4). The binding of Necl-2 with integrin β(4) was mediated by its extracellular region. In human colorectal adenocarcinoma Caco-2 cells, integrin α(6)β(4) was localized at hemidesmosomes. Small interfering RNA-mediated suppression of Necl-2 expression enhanced the phorbol ester-induced disruption of the integrin α(6)β(4) complex at hemidesmosomes, whereas expression of Necl-2 suppressed the disruption of this structure. These results indicate that tumor-suppressive functions of Necl-2 are mediated by the stabilization of the hemidesmosome structure in addition to the inhibition of the ErbB3/ErbB2 signaling.  相似文献   

10.
We evaluated cellular mechanisms involved in the activation pathway of matrix prometalloproteinase-2 (pro-MMP-2), an enzyme implicated in the malignant progression of many tumor types. Membrane type-1 matrix metalloproteinase (MT1-MMP) cleaves the N-terminal prodomain of pro-MMP-2 thus generating the activation intermediate that then matures into the fully active enzyme of MMP-2. Our results provide evidence on how a collaboration between MT1-MMP and integrin alphavbeta3 promotes more efficient activation and specific, transient docking of the activation intermediate and, further, the mature, active enzyme of MMP-2 at discrete regions of cells. We show that coexpression of MT1-MMP and integrin alphavbeta3 in MCF7 breast carcinoma cells specifically enhances in trans autocatalytic maturation of MMP-2. The association of MMP-2's C-terminal hemopexin-like domain with those molecules of integrin alphavbeta3 which are proximal to MT1-MMP facilitates MMP-2 maturation. Vitronectin, a specific ligand of integrin alphavbeta3, competitively blocked the integrin-dependent maturation of MMP-2. Immunofluorescence and immunoprecipitation studies supported clustering of MT1-MMP and integrin alphavbeta3 at discrete regions of the cell surface. Evidently, the identified mechanisms appear to be instrumental to clustering active MMP-2 directly at the invadopodia and invasive front of alphavbeta3-expressing cells or in their close vicinity, thereby accelerating tumor cell locomotion.  相似文献   

11.
Endothelial cell migration, a key process in angiogenesis, requires the coordinated integration of motogenic signals elicited by the adhesion of endothelial cells to extracellular matrices and by angiogenic cytokines such as the vascular endothelial growth factor (VEGF). In this study, we found that addition of VEGF to human umbilical vein endothelial cells cultivated on vitronectin triggers a synergistic interaction between the VEGF receptor VEGFR2 and the clustered integrin receptor alphavbeta3. The interaction between VEGFR2 and alphavbeta3 is required for full phosphorylation of VEGFR2 and to drive the activation of motogenic pathways involving focal adhesion kinase (FAK) and stress-activated protein kinase-2/p38 (SAPK2/p38). The signal emanating from the VEGFR2 and alphavbeta3 interaction and leading to SAPK2/p38 activation proceeds directly from VEGFR2. The chaperone Hsp90 is found in a complex that coprecipitates with inactivated VEGFR2, and the association is increased by VEGF and decreased by geldanamycin, a specific inhibitor of Hsp90-mediated events. Geldanamycin also impairs the phosphorylation of FAK that results from the interaction between VEGFR2 and alphavbeta3, and this is accompanied by an inhibition of the recruitment of vinculin to VEGFR2. We conclude that a necessary cross talk should occur between VEGFR2 and the integrin alphavbeta3, to transduce the VEGF signals to SAPK2/p38 and FAK and that Hsp90 is instrumental in the building up of focal adhesions by allowing the phosphorylation of FAK and the recruitment of vinculin to VEGFR2.  相似文献   

12.
Opsonization of apoptotic cells facilitates recognition by phagocytes for the rapid clearance of potentially inflammatory cellular material. The secreted glycoprotein Milk Fat Globule Factor-E8 (MFG-E8) is a member of this family of bridging molecules and is believed to bind phosphatidylserine (PS) on the dying cell, linking it to integrin receptors on the phagocyte. Here we report the characterization of a functional signaling module involving MFG-E8, alphavbeta5 integrin, and DOCK180 for the activation of Rac1. We show that MFG-E8 and DOCK180 are both expressed in phagocytic-competent primary immature dendritic cells (DCs) and DC2.4 cells, and are potently down-regulated upon DC maturation, consistent with their role in phagocytosis and antigen capture. Coexpression of MFG-E8 with alphavbeta5 integrin potentiated integrin-mediated Rac1 activation, which was abrogated by mutagenesis in the RGD motif in MFG-E8. Moreover, expression of antisense DOCK180 abrogated MFG-E8-alphavbeta5-mediated Rac activation and impaired the phagocytosis of apoptotic cells. These data demonstrate a biochemical link between an opsonin of apoptotic cells, the alphavbeta5 integrin, and the Crk-DOCK180-Rac1 pathway, and importantly, show that MFG-E8 and DOCK180 are expressed according to the functional status of the phagocyte.  相似文献   

13.
During cell migration, the physical link between the extracellular substrate and the actin cytoskeleton mediated by receptors of the integrin family is constantly modified. We analyzed the mechanisms that regulate the clustering and incorporation of activated alphavbeta3 integrins into focal adhesions. Manganese (Mn2+) or mutational activation of integrins induced the formation of de novo F-actin-independent integrin clusters. These clusters recruited talin, but not other focal adhesion adapters, and overexpression of the integrin-binding head domain of talin increased clustering. Integrin clustering required immobilized ligand and was prevented by the sequestration of phosphoinositole-4,5-bisphosphate (PI(4,5)P2). Fluorescence recovery after photobleaching analysis of Mn(2+)-induced integrin clusters revealed increased integrin turnover compared with mature focal contacts, whereas stabilization of the open conformation of the integrin ectodomain by mutagenesis reduced integrin turnover in focal contacts. Thus, integrin clustering requires the formation of the ternary complex consisting of activated integrins, immobilized ligands, talin, and PI(4,5)P2. The dynamic remodeling of this ternary complex controls cell motility.  相似文献   

14.
Integrin-mediated cell-matrix adhesion plays an important role in control of cell behavior. We report here that MIG-2, a widely expressed focal adhesion protein, interacts with beta1 and beta3 integrin cytoplasmic domains. Integrin binding is mediated by a single site within the MIG-2 FERM domain. Functionally, the MIG-2/integrin interaction recruits MIG-2 to focal adhesions. Furthermore, using alphaIIbbeta3 integrin-expressing Chinese hamster ovary cells, a well described model system for integrin activation, we show that MIG-2 promotes integrin activation and enhances cell-extracellular matrix adhesion. Although MIG-2 is expressed in many cell types, it is deficient in certain colon cancer cells. Expression of MIG-2, but not of an integrin binding-defective MIG-2 mutant, in MIG-2-null colon cancer cells strengthened cell-matrix adhesion, promoted focal adhesion formation, and reduced cell motility. These results suggest that the MIG-2/integrin interaction is an important element in the cellular control of integrin-mediated cell-matrix adhesion and that loss of this interaction likely contributes to high motility of colon cancer cells.  相似文献   

15.
Functions of small GTPases in integrin expression were investigated when the interaction of nonadherent human colon carcinoma 201 cells with the extracellular matrix (ECM) was examined. By transfection of the constitutively active form of a small GTPase Rac1, Rac V12, adhesion of cells to the ECM increased with concomitant cell spreading and formation of membrane ruffles. Activated Cdc42 and Cdc42 V12, but not wild-type Rac1, Cdc42, or RhoA, also induced the adhesion and spreading of Colo201 cells. This adhesion is integrin beta4 dependent since an antibody for integrin beta4 inhibited the RacV12-dependent cell adhesion and numbers of adhesive cells on laminin-coated plates exceeded those on collagen- and fibronectin-coated plates. By immunofluorescence, in addition to clustering of integrin molecules, expression of integrin alpha6beta4 on the cell surface of Rac V12- and Cdc42 V12-expressing cells was selectively up-regulated without an increase in biosynthesis of alpha6beta4 integrin. Treatment of Rac V12-expressing cells with wortmannin or LY294002, specific inhibitors of phosphoinositide 3-OH kinase, decreased the up-regulated alpha6beta4 and cell adhesion. In light of this evidence, we propose that the regulation of integrin alpha6beta4 expression induced by Rac1 and Cdc42 may play an important role in cell adhesion and tumorigenesis of colon carcinoma cells.  相似文献   

16.
Immunoglobulin-like Necl-5/Tage4/poliovirus receptor (PVR)/CD155, originally identified as the PVR, has been shown to be up-regulated in cancer cells and to enhance growth factor-induced cell movement and proliferation. In addition, Necl-5 heterophilically trans-interacts with nectin-3, a cell-cell adhesion molecule known to form adherens junctions in cooperation with cadherin. We show here that Necl-5 was down-regulated from cell surface upon cell-cell contacts in NIH3T3 cells. This down-regulation of Necl-5 was initiated by its interaction with nectin-3 and was mainly mediated by clathrin-dependent endocytosis. Then, the down-regulation of Necl-5 induced in this way reduced movement and proliferation of NIH3T3 cells. These results indicate that the down-regulation of Necl-5 induced by its interaction with nectin-3 upon cell-cell contacts may be at least one mechanism underlying contact inhibition of cell movement and proliferation.  相似文献   

17.
Alphavbeta3 integrin is a crucial factor involved in a variety of physiological processes, such as cell growth and migration, tumor invasion and metastasis, angiogenesis, and wound healing. Alphavbeta3 integrin exerts its effect by regulating endothelial cell (EC) migration, proliferation, and survival. Inhibiting the function of alphavbeta3 integrin, therefore, represents a potential anti-cancer, anti-thrombotic, and anti-inflammatory strategy. In this study, we tested an RNA aptamer, Apt-alphavbeta3 that binds recombinant alphavbeta3 integrin, for its ability to bind endogenous alphavbeta3 integrin on the surface of cells in culture and to subsequently affect cellular response. Our data illustrate that Apt-alphavbeta3 binds alphavbeta3 integrin expressed on the surface of live HUVECs. This interaction significantly decreases both basal and PDGF-induced cell proliferation as well as inhibition of cell adhesion. Apt-alphavbeta3 can also reduce PDGF-stimulated tube formation and increase HUVEC apoptosis through inhibition of FAK phosphorylation pathway. Our results demonstrate that by binding to its target, Apt-alphavbeta3 can efficiently inhibit human EC proliferation and survival, resulting in reduced angiogenesis. It predicts that Apt-alphavbeta3 could become useful in both tumor imaging and the treatment of tumor growth, atherosclerosis, thrombosis, and inflammation.  相似文献   

18.
Cell movement is an important cellular function not only in physiological but also in pathological conditions. Although numerous studies have been conducted to reveal the mechanism of cell movement, the full picture has yet to be depicted, likely due to the complex features of cell movement. We show here that the scaffold protein afadin dilute domain-interacting protein (ADIP), an afadin-binding protein, is involved in the regulation of cell movement. ADIP localized at the leading edge of moving cells in response to platelet-derived growth factor (PDGF) and was required for the formation of the leading edge and the promotion of cell movement. Impaired cell movement observed in ADIP knockdown cells was not rescued by expression of an ADIP mutant that is incapable of binding to afadin, leading to the notion that the function of ADIP in moving cells depends on its interaction with afadin. Knockdown of ADIP as well as knockdown of afadin inhibited the activation of the small G protein Rac, which is important for the formation of the leading edge and the promotion of cell movement. Furthermore, ADIP interacted with Vav2, a GDP/GTP exchange factor for Rac, in a Src phosphorylation-dependent manner, suggesting that ADIP mediates the activation of Rac through Vav2. These results indicate that ADIP plays an essential role in PDGF-induced cell movement by interacting with afadin and Vav2 and regulating the activation of Rac.  相似文献   

19.
Recently we showed that signaling across beta3-integrin leads to activation of calpain and formation of integrin clusters that are involved in Rac activation. The subsequent activation of Rac and Rho leads to the formation of focal complexes and focal adhesions, respectively. The goal of the present study was to determine whether different proteins link the integrin to the cytoskeleton in the different complexes. We show that talin is present in focal adhesions but not in the calpain-induced clusters. alpha-Actinin colocalized with integrin at various sites, including the calpain-induced clusters. Skelemin, a protein shown recently to interact with beta1- and beta3-integrin in vitro, colocalized with integrin in calpain-induced clusters but was absent from focal adhesions. Cells transiently expressing skelemin C2 motifs, which contain the integrin binding site, failed to form integrin clusters or to spread on a substrate for beta1- and beta3-integrins. These results 1) suggest a dynamic reorganization of integrin complexes during cell spreading, 2) show that different cytoskeletal proteins link integrins in different complexes, and 3) demonstrate that skelemin is responsible for linking integrin to the calpain-induced clusters, and 4) show that the integrin-skelemin interaction is essential for transmission of signals leading to the initial steps of cell spreading.  相似文献   

20.
Previous studies have shown that the adhesion protein, vitronectin, directs the localization of urokinase-type plasminogen activator (uPA) to areas of cell-substrate adhesion, where uPA is thought to regulate cell migration as well as pericellular proteolysis. In the present study, HT-1080 cell lines expressing either wild-type vitronectin or vitronectin containing a single amino-acid substitution in the integrin binding domain were used to assess whether ligation of the alphavbeta5 integrin was required for uPA localization to focal adhesions. The synthesis of wild-type vitronectin by HT-1080 cells adherent to either collagen or fibronectin resulted in the redistribution of both the alphavbeta5 integrin as well as uPA to focal adhesion structures. In contrast, cells synthesizing mutant vitronectin, containing the amino-acid substitution in the integrin binding domain, were unable to direct the redistribution of either alphavbeta5 or uPA to focal adhesions. Recombinant forms of wild-type and mutant vitronectin were prepared in a baculovirus system and compared for their ability to direct the redistribution of vitronectin integrin receptors as well as uPA on human skin fibroblasts. In the absence of vitronectin, fibroblast cells adherent to fibronectin assemble focal adhesions which contain the beta1 integrin but do not contain uPA. Addition of recombinant wild-type, but not mutant, vitronectin to fibroblasts adherent to fibronectin resulted in the redistribution of alphavbeta3, alphavbeta5, and uPA into focal adhesions. However, when cells were plated directly onto antibodies directed against either the alphavbeta3 or alphavbeta5 integrins, uPA was not localized on the cell surface. These data indicate that ligation of vitronectin integrin receptors is necessary but not sufficient for the localization of uPA to areas of cell matrix adhesion, and suggest that vitronectin may promote cell migration by recruiting vitronectin integrin receptors and components of the plasminogen activator system to areas of cell matrix contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号