首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes in rate of protein synthesis and cell division and the distribution of polyribosomes and globin mRNA on the polyribosomes of Friend erythroleukemia (FL) cells exposed to 2% DMSO and maintained at low cell density, were examined at different times after exposure to DMSO. The rate of protein synthesis and the capacity of cells to divide declined in concert to 50% of the level found in untreated cell cultures at 24 hours after exposure. Thereafter these rates recovered to 70% of the rate found in untreated control cultures until 96 hours post-exposure and then irreversibly declined as the cells lost the capacity to divide. The proportion of ribosomes present as polyribosomes in cells exposed to DMSO paralleled the capacity of these cells to synthesize protein. The distribution of polyribosomes analyzed by sedimentation in sucrose gradients demonstrated that a discrete, abundant class of polyribosomes composed of pentamers to heptamers appeared as early as 48 hours after exposure to DMSO. The appearance of an abundant class of polyribosomes was correlated with globin synthesis by demonstrating that a discrete class of polyribosomes arises in cells treated with the inducers hexamethylene bisacetamide and hemin.  相似文献   

2.
The defective step which leads human adenovirus type 2 infection of African green monkey kidney cells (clone C14) to be abortive and its complementation in simian virus 40-transformed cells (clone T22) were studied by comparing the synthesis and function of macromolecules in these cell lines. Neither a quantitative nor a qualitative difference was detected in virus DNA replication and in virus mRNA synthesis in these cells, while a definite difference was observed in protein synthesis. The capsid proteins, such as hexon or penton, were synthesized in T22 cells but not in C14 cells. Inability of polyribosomes to synthesize the capsid proteins in C14 cells infected with adenovirus type 2 may not be due to a defect in elongation of nascent polypeptides or their release, since nascent polypeptides pulse-labelled with [3H]leucine were completely released from polyribosomes after the chase. The electrophoretic analysis of proteins synthesized in vitro with polyribosomes from either infected T22 or C14 cells using the pH 5 enzyme and S100 fraction from T22 cells revealed that hexon was synthesized with polyribosomes from T22 cells but not from C14 cells, thereby suggesting that the defect is not ascribed to a component in the pH 5 enzyme and S100 fraction, but resides in polyribosomes. The analysis of late adenovirus mRNA associated with polyribosomes in the infected T22 and C14 cells by hybridization competition or by sedimentation revealed that all the species of virus mRNA were present in the cytoplasm of these cells; however, certain species of virus mRNA larger than 20 S were absent in polyribosomes of the infected C14 cells. Sedimentation analysis of late adenovirus mRNA following separation on poly(U)-Sepharose or by membrane filtration gave the same results. These results suggest that the defect of C14 cells to support growth of adenoviruses is due to the inability of ribosomes to associate with certain species of late virus mRNA to form polyribosomes and suggest that a factor complementing this defect is induced by simian virus 40.  相似文献   

3.
RNA molecules from nuclear and cytoplasmic polyribosomes of adenovirus-infected HeLa cells were compared by hybridization to analyse the sequence content. Nuclear polyribosomes were released by exposure of intact detergent-washed nuclei to poly(U) and purified. Cytoplasmic polyribosomes were also purified from the same cells. To show that nuclear polyribosomes contain ribosomes linked by mRNA, polyribosomes were labelled with methionine and uridine in the presence of actinomycin D in adenovirus-infected cells. Purified nuclear polyribosomes were treated with EDTA under conditions which dissociate polyribosomes into ribosomes and subunits with a simultaneous release of mRNA, and sedimented. The treatment dissociated these polyribosomes, releasing the mRNA from them. Radiolabelled total RNA from each polyribosome population was fractionated in sucrose gradients into several pools or hybridized to intact adenovirus DNA to select virus-specific RNA. Sucrose-gradient-fractionated pool-3 RNA (about 28S) and virus-specific RNA were then hybridized to fragments of adenovirus DNA cleaved by restriction endonucleases SmaI, HindIII and EcoRI by the Southern-blot technique and by filter hybridization. The results showed that nuclear RNA contained sequences, from about 0 to 18 map units, which were essentially absent from cytoplasmic RNA. Furthermore, the amount of virus-specific RNA for a particular sequence was also different in the two populations.  相似文献   

4.
Zein synthesis accompanied an increase in large polyribosomes of maize (Zea mays) endosperm cells. The two classes of polyribosomes (free and membrane-bound) had dissimilar size class distributions. Membrane-bound polyribosomes were predominantly large size classes, which were not found in free polyribosomes. The ratio of large membrane-bound polysomes to total membrane-bound polysomes was highest when zein was being synthesized. Appearance of the large polysomes correlated with the onset of zein accumulation in vivo. These large size classes were nearly absent in the opaque-2 mutant at all stages of endosperm development. Similarly, rRNA content was reduced in the mutant from that in normal endosperm development. These differences were associated with reduced in vitro synthesis and in vivo accumulation of zein.  相似文献   

5.
mRNA containing type C endogenous virus-specific sequences was indentified in JLS-V9 cells (an uninfected BALB/c-derived cell line) by annealing extracted RNA with 3H-labeled virus-specific DNA. The criterion for virus-specific RNA being mRNA was that it co-sedimented with polyribosomes in a sucrose gradient and that it changed to lower sedimentation value if polyribosomes were disagregated prior to centrifugation. It was not possible to identify virus-specific mRNA in unfractionated cytoplasm from JLS-V9 cells since large amounts of virus-specific ribonucleoprotein which was not mRNA had sedimentation values similar to polyribosomes and obscured the analysis. Virus-specific mRNA could be readily identified in polyribosomes which had been purified through a step gradient of 1 and 2 M sucrose, and consisted of two species with sedimentation values of 38S and 27S. The amount of virus-specific RNA in different JLS-V9 cell fractions was quantitated in comparison to cell fractions obtained from M-MuLV clone no. 1 cells (a line of NIH 3T3 cells producing Moloney murine leukemia virus). Approximately 40% of the total virus-specific mRNA was recovered in the purified polyribosomes in M-MuLV no. 1 cells. The amount of virus-specific RNA on polyribosomes appeared to be quite similar for JLS-V9 cells and M-MuLV clone no.1 cells .In contrast, the level of virus-specific protein in JLS-V9 cells (as monitored by radioimmunoassay of the internal structural protein p30) was less than 2% the level in the M-MuLV clone no. 1 cells.  相似文献   

6.
When NIH/3T3 mouse fibroblasts were infected with the Moloney strain of murine leukemia virus, part of the viral genome RNA molecules were detected in polyribosomes of the infected cells early in the infectious cycle. The binding appears to be specific, since we could demonstrate the release of viral RNA from polyribosomes with EDTA. Moreover, when infection occurred in the presence of cycloheximide, most viral RNA molecules were detected in the free cytoplasm. Size analysis on polyribosomal viral RNA molecules indicated that two size class molecules, 38S and 23S, are present in polyribosomes at 3 h after infection. Analysis of the polyriboadenylate [poly(rA)] content of viral RNA extracted from infected polyribosomes demonstrated that such molecules bind with greatest abundance at 3 h after infection, as has been detected with total viral RNA. No molecules lacking poly(rA) stretches could be detected in polyribosomes. Furthermore, when a similar analysis was performed on unbound molecules present in the free cytoplasm, identical results were obtained. We conclude that no selection towards poly(rA)-containing viral molecules is evident on binding to polyribosomes. These findings suggest that the incoming viral genome of the Moloney strain of murine leukemia virus may serve as a messenger for the synthesis of one or more virus-specific proteins early after infection of mouse fibroblasts.  相似文献   

7.
The membrane-bound polyribosomes in Ehrlich ascites tumor cells can be separated into a loosely bound and a tightly bound fraction by means of a high salt treatment. Both membrane fractions as well as the free polyribosomes in the supernatant synthesize about the same set of proteins, suggesting a close relationship between these polyribosome fractions in the Ehrlich cell. Relatively high concentrations of cycloheximide do not prevent newly synthesized poly(A)-containing mRNA from entering the tightly bound polyribosome fraction. Nor had treatment of the cells with puromycin in the presence of cycloheximide, which released about 70% of the nascent chains, any significant effect on the entrance of newly synthesized mRNA into tightly bound polyribosomes. These results suggest that in ehrlich ascites tumor cells nascent polypeptide chains are not involved in the binding of polyribosomes to membranes.  相似文献   

8.
In the process of protein synthesis, the translating ribosomes of eukaryotic cells form polyribosomes that are found to be multiplex functional complexes possessing elements of ordered spatial organization. As revealed by a number of electron microscopy studies, the predominant visible configurations of the eukaryotic polyribosomes are circles (circular polyribosomes) and two-stranded formations (so-called double-row polyribosomes). The “long” (i.e. heavy loaded) polyribosomes are usually represented by double-row structures, which can be interpreted as either topologically circular (“col-lapsed rings”), or topologically linear (zigzags or helices). In the present work we have analyzed the mRNA path within the eukaryotic polyribosomes, isolated from a wheat germ cell-free translation system, by integrating two approaches: the visualization of mRNA ends in polyribosomes by marking them with gold nanoparticles (3′-end) and initiating 40S subunits (5′-end), as well as by the cryoelectron tomography. Examination of the location of the mRNA markers in polyribosomes and mutual orientation of ribosomes in them has shown that the double-row polyribosomes of the same sample can have both circular and linear arrangements of their mRNA.  相似文献   

9.
Polyribosomes in rat-liver preparations   总被引:2,自引:1,他引:1  
1. The distribution of rat-liver polyribosomes in sucrose density gradients has been investigated with regard to the effects of the preparative procedures and the physiological and pathological condition of the animal. 2. By using carefully defined conditions, three principal polyribosomal fractions have been isolated with S(20,w) values of 340, 275 and 225s in addition to the dimerized 120s and single 80s ribosomes. 3. The polyribosomes were very sensitive to treatment with ribonuclease and to mechanical stresses. 4. Incubation of dispersed hepatic cells and also cell-free preparations with puromycin in the presence of ATP and phosphoenolpyruvate caused rapid partial degradation of the polyribosomes. Treatment of the dispersed cells with actinomycin D also degraded the polyribosomes. 5. The liver polyribosomes of rats not raised under pathogen-free conditions and possibly of rats with an arthritic syndrome may be more fragile than those of healthy pathogen-free animals. 6. Treatment of pathogen-free rats with drugs stimulating liver anabolism profoundly affected the distribution of polyribosomes in sucrose density gradients.  相似文献   

10.
During the terminal stages of differentiation nucleated erythroid cells from the fetal mouse synthesize hemoglobin at a lower rate because after the last cycle of cell division about half of their polyribosomal structures are rendered inactive for protien synthesis though they maintain their aggregated shape. Partially inactive polyribosomes are tested in comparison with normal polyribosomes for the capacity to support polypeptide chain synthesis in cell-free conditions. The following observations are made: a) no difference is found for the profile on sucrose density gradients; b) partially inactive polyribosomes carry growing polypeptide chains in reduced amounts in comparison with active polyribosomes; c) partially inactive polyribosomes are not capable to release "run off" 80 S ribosomal monomers and to dissociate to active ribosomal subunits. These data are interpreted as the evidence for a block of chain termination producing inactivation of polyribosomes during the late maturation of nucleated erythroid cells.  相似文献   

11.
We describe experiments which demonstrate that shortly after infection of Friend erythroleukemia cells with herpes simplex virus (HSV), polyribosomes dissociate and cellular mRNA degrades. Analysis of infected cell extracts on sucrose density gradients demonstrates that the majority of the polyribosomes have dissociated to monoribosomes at 2 h postinfection. Physical measurements of infected-cell RNAs support this conclusion and demonstrate that the polyadenylated RNAs decrease in size. The degradation of mRNA is apparently a stochastic process as judged by the failure to detect a shift in the Crt1/2 when polyadenylated RNA extracted from infected cells at different times is hybridized to globin complementary DNA. In experiments designed to determine whether dissociation of polyribosomes is sufficient to cause degradation of globin mRNA, the amount of globin mRNA in uninfected cells did not change when cells were treated with NaF or pactamycin at concentrations sufficient to dissociate all polyribosomes. In cells infected with UV-irradiated virus polyribosomes dissociate but globin mRNA does not degrade, suggesting that it is possible to separate dissociation from degradation.  相似文献   

12.
The treatment of yeast with thiopyronine (TP) caused a degradation of polyribosomes, even if the cells were not illuminated. In contrast, no differences in the polyribosome profiles of illuminated and unilluminated cells could be seen. Likewise, in in vitro experiments, there was no degradation of polyribosomes caused by dark effect or photodynamic action. Cell-free protein synthesis was inhibited up to 75 per cent by the photodynamic effect when the complete system was treated, but only up to 40 per cent when the polyribosomes or enzyme fraction were treated. Since the enzyme fraction contained aminoacyltRNA-synthetases and tRNA, it was necessary to investigate separately the effect of TP on the enzyme and the tTNA. It was shown that the aminoacyl-tRNA-synthetase and not tRNA was effected by the photodynamic action in its biological activity.  相似文献   

13.
The kinetics of accumulation of poly(A+)mRNA in polyribosomes and the ratio: poly(A+)mRNA/(poly A-)mRNA were studied in regenerating mouse liver. It has been found, that the ratio: (poly A+)mRNA/(poly A-)mRNA was associated with the function of the cells: (poly A+)mRNA fraction has been decreased to 7% at 7 hours after partial hepatectomy and then reached the original value (25%) at 30-40 hours. The kinetics of accumulation of (poly A+)mRNA in polyribosomes during the transition from resting to growing state has revealed that both the lifetime and the presumable time of processing of the mRNAs of free and membranebound polyribosomes were decreased as compared to resting liver cells.  相似文献   

14.
A procedure has been developed for extracting membranes from bacterial cells under conditions that keep a large fraction of bacterial polyribosomes intact. Freeze-thawing spheroplasts in the presence of deoxyribonuclease, followed by differential centrifugation, permits a separation of free and membrane-associated polyribosomes. The latter fraction contains as much as 40% of cell ribosomal ribonucleic acid (RNA) and 55% of cell messenger RNA (mRNA). Nascent polypeptides were divided almost equally between the two fractions, but 70 to 80% of alkaline phosphatase nascent chains, detected both chemically and immunologically, were derived from polyribosomes associated with the bacterial membrane. Analysis of the fractions for mRNA specific for the lac and trp operons by RNA-deoxyribonucleic acid hydridization showed somewhat larger amounts on membrane than on free polyribosomes, but enrichment for nascent alkaline phosphatase (a secreted protein) on membranes was consistently greater, suggesting that polyribosomes making secreted proteins are more tightly bound to membranes. Electron micrographs of the membrane preparations show relatively intact membranes with clusters of polyribosomes on their inner surfaces.  相似文献   

15.
Polyribosome metabolism in Escherichia coli starved for an amino acid   总被引:3,自引:0,他引:3  
Most polyribosomes are inferred to be inert in starving cells, but some are in a dynamic state, since (1) messenger RNA continues to enter polyribosomes; (2) about 20 to 40% of the polyribosomes are labile after rifampycin addition; (3) β-galactosidase can be induced with a lag period no more than three times as long as in growing cells; and (4) the apparent rate of synthesis of protein chains, judged by the distribution of pulse-labeled protein between ribosomes and soluble protein, is about half that in growing cells.  相似文献   

16.
Incorporation kinetics of new synthesized mRNA into free and endoplasmic membrane-bound polyribosomes in the absence of normal translation (when protein synthesis in inhibited by 98% with cycloheximide) is studied. mRNA is found to incorporate into both free and bound polyribosomes. Relative content of new synthesized membrane-bound polyribosomes in the presence of cycloheximide within 2.5-4.5 hours is by 30-40% lower as compared with the control. This fact can be explained either by the absence of a growing peptide of a sufficient length, which is necessary for the formation of a part of membrane-bound polyribosomes, or by a restricted number of attachment sites on membranes as a result of delayed translation of mRNA in pre-existed polyribosomes. It is suggested that 1) the growing peptide in liver cells is responsible for the recognition of a membrane only under the formation of only one type of membrane-bound polyribosomes, or 2) the formation of all bound polyribosomes has a single mechanism and the growing peptide does not participates in the membrane recognition.  相似文献   

17.
18.
Methods have been derived which permit the isolation of undergraded polyribosomes from isolated rat liver cells. Under the conditions used the polyribosome profile of hepatocytes immediately after isolation was essentially identical with that from intact liver. However, during incubation of cells in complex physiological media there was a progressive dissociation of polyribosomes. The addition of a variety of factors that produce reaggregation of polyribosomes in rat liver in vivo did not prevent dissociation during cell incubations. Although large polyribosomes were lost most rapidly, the albumin-synthesizing capacity of isolated cells was not selectively lost when compared with total protein synthesis. The significance of these results for the use of isolated hepatocytes in the study of liver protein synthesis is discussed.  相似文献   

19.
Mild ribonuclease treatment of the membrane fraction of P3K cells released three types of membrane-bound ribosomal particles: (a) all the newly made native 40S subunits detected after 2 h of [3H]uridine pulse. Since after a 3-min pulse with [35S]methionine these membrane native subunits appear to contain at least sevenfold more Met-tRNA per particle than the free native subunits, they may all be initiation complexes with mRNA molecules which have just become associated with the membranes; (b) about 50% of the ribosomes present in polyribosomes. Evidence is presented that the released ribosomes carry nascent chains about two and a half to three times shorter than those present on the ribosomes remaining bound to the membranes. It is proposed that in the membrane-bound polyribosomes of P3K cells, only the ribosomes closer to the 3' end of the mRNA molecules are directly bound, while the latest ribosomes to enter the polyribosomal structures are indirectly bound through the mRNA molecules; (c) a small number of 40S subunits of polyribosomal origin, presumably initiation complexes attached at the 5' end of mRNA molecules of polyribosomes. When the P3K cells were incubated with inhibitors acting at different steps of protein synthesis, it was found that puromycin and pactamycin decreased by about 40% the proportion of ribosomes in the membrane fraction, while cycloheximide and anisomycin had no such effect. The ribosomes remaining on the membrane fraction of puromycin-treated cells consisted of a few polyribosomes, and of an accumulation of 80S and 60S particles, which were almost entirely released by high salt treatment of the membranes. The membrane-bound ribosomes found after pactamycin treatment consisted of a few polyribosomes, with a striking accumulation of native 60S subunits and an increased number of native 40S subunits. On the basis of the observations made in this and the preceding papers, a model for the binding of ribosomes to membranes and for the ribosomal cycle on the membranes is proposed. It is suggested that ribosomal subunits exchange between free and membrane-bound polyribosomes through the cytoplasmic pool of free native subunits, and that their entry into membrane-bound ribosomes is mediated by mRNA molecules associated with membranes.  相似文献   

20.
Peripheral blood of trout contained two populations of red cells: those with polyribosomes located in the cytoplasm, and those without polyribosomes. Starvation of trout for 30 days was accompanied by a proportional decline of the polyribosomal-containing (PRC) red cells. One week after a 15% bleeding of both fed and starved animals fed individuals showed a proportional decline of PRC red cells whilst starved fish showed a proportional increase of the same cell population. In fed individuals the bleeding response was accompanied by the appearance of many red cells with senescence-related characteristics. PRC cells in both groups of animals were arbitrarily subdivided into three subgroups according to the density of polyribosomes present. No statistically demonstrable differences were evident between the means of the three PRC cell groups of control animals and those subjected to starvation and bleeding. However, there was an apparent rise in the proportion of red cells with the highest density of polyribosomes as a result of both treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号