首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial NADH-cytochrome b5 reductase (Mcr1p) is encoded by a single nuclear gene and imported into two different submitochondrial compartments: the outer membrane and the intermembrane space. We now show that the amino-terminal 47 amino acids suffice to target the Mcr1 protein to both destinations. The first 12 residues of this sequence function as a weak matrix-targeting signal; the remaining residues are mostly hydrophobic and serve as an intramitochondrial sorting signal for the outer membrane and the intermembrane space. A double point mutation within the hydrophobic region of the targeting sequence virtually abolishes the ability of the precursor to be inserted into the outer membrane but increases the efficiency of transport into the intermembrane space. Import of Mcr1p into the intermembrane space requires an electrochemical potential across the inner membrane, as well as ATP in the matrix, and is strongly impaired in mitochondria lacking Tom7p or Tim11p, two components of the translocation machineries in the outer and inner mitochondrial membranes, respectively. These results indicate that intramitochondrial sorting of the Mcr1 protein is mediated by specific interactions between the bipartite targeting sequence and components of both mitochondrial translocation systems.  相似文献   

2.
Cytochrome P450 2E1 (CYP2E1) plays an important role in alcohol-induced toxicity and oxidative stress. Recently, we showed that this predominantly microsomal protein is also localized in rat hepatic mitochondria. In this report, we show that the N-terminal 30 amino acids of CYP2E1 contain a chimeric signal for bimodal targeting of the apoprotein to endoplasmic reticulum (ER) and mitochondria. We demonstrate that the cryptic mitochondrial targeting signal at sequence 21-31 of the protein is activated by cAMP-dependent phosphorylation at Ser-129. S129A mutation resulted in lower affinity for binding to cytoplasmic Hsp70, mitochondrial translocases (TOM40 and TIM44) and reduced mitochondrial import. S129A mutation, however, did not affect the extent of binding to the signal recognition particle and association with ER membrane translocator protein Sec61. Addition of saturating levels of signal recognition particle caused only a partial inhibition of CYP2E1 translation under in vitro conditions, and saturating levels of ER resulted only in partial membrane integration. cAMP enhanced the mitochondrial CYP2E1 (referred to as P450MT5) level but did not affect its level in the ER. Our results provide new insights on the mechanism of cAMP-mediated activation of a cryptic mitochondrial targeting signal and regulation of P450MT5 targeting to mitochondria.  相似文献   

3.
A mutation in the mitochondrial targeting sequence was characterized in a male patient with X chromosome-linked pyruvate dehydrogenase E1 alpha deficiency. The mutation was a base substitution of G by C at nucleotide 134 in the mitochondrial targeting sequence of the PDHA1 gene, resulting in an arginine-to-proline substitution at codon 10 (R10P). Pyruvate dehydrogenase activity in cultured skin fibroblasts was 28% of the control value, and immunoblot analysis revealed a decreased level of pyruvate dehydrogenase E1 alpha immunoreactivity. Chimeric constructs in which the normal and mutant pyruvate dehydrogenase E1 alpha targeting sequences were attached to the mitochondrial matrix protein ornithine transcarbamylase were synthesized in a cell free translation system, and mitochondrial import of normal and mutant proteins was compared in vitro. The results show that ornithine transcarbamylase targeted by the mutant pyruvate dehydrogenase E1 alpha sequence was translocated into the mitochondrial matrix at a reduced rate, suggesting that defective import is responsible for the reduced pyruvate dehydrogenase level in mitochondria. The mutation was also present in an affected brother and the mildly affected mother. The clinical presentations of this X chromosome-linked disorder in affected family members are discussed. To our knowledge, this is the first report of an amino acid substitution in a mitochondrial targeting sequence resulting in a human genetic disease.  相似文献   

4.
The Saccharomyces cerevisiae F1-ATPase beta subunit precursor contains redundant mitochondrial protein import information at its NH2 terminus (D. M. Bedwell, D. J. Klionsky, and S. D. Emr, Mol. Cell. Biol. 7:4038-4047, 1987). To define the critical sequence and structural features contained within this topogenic signal, one of the redundant regions (representing a minimal targeting sequence) was subjected to saturation cassette mutagenesis. Each of 97 different mutant oligonucleotide isolates containing single (32 isolates), double (45 isolates), or triple (20 isolates) point mutations was inserted in front of a beta-subunit gene lacking the coding sequence for its normal import signal (codons 1 through 34 were deleted). The phenotypic and biochemical consequences of these mutations were then evaluated in a yeast strain deleted for its normal beta-subunit gene (delta atp2). Consistent with the lack of an obvious consensus sequence for mitochondrial protein import signals, many mutations occurring throughout the minimal targeting sequence did not significantly affect its import competence. However, some mutations did result in severe import defects. In these mutants, beta-subunit precursor accumulated in the cytoplasm, and the yeast cells exhibited a respiration defective phenotype. Although point mutations have previously been identified that block mitochondrial protein import in vitro, a subset of the mutations reported here represents the first single missense mutations that have been demonstrated to significantly block mitochondrial protein import in vivo. The previous lack of such mutations in the beta-subunit precursor apparently relates to the presence of redundant import information in this import signal. Together, our mutants define a set of constraints that appear to be critical for normal activity of this (and possibly other) import signals. These include the following: (i) mutant signals that exhibit a hydrophobic moment greater than 5.5 for the predicted amphiphilic alpha-helical conformation of this sequence direct near normal levels of beta-subunit import (ii) at least two basic residues are necessary for efficient signal function, (iii) acidic amino acids actively interfere with import competence, and (iv) helix-destabilizing residues also interfere with signal function. These experimental observations provide support for mitochondrial protein import models in which both the structure and charge of the import signal play a critical role in directing mitochondrial protein targeting and import.  相似文献   

5.
The evolution of uricoteley as a mechanism for hepatic ammonia detoxication in vertebrates required targeting of glutamine synthetase (GS) to liver mitochondria in the sauropsid line of descent leading to the squamate reptiles and archosaurs. Previous studies have shown that in birds and crocodilians, sole survivors of the archosaurian line, hepatic GS is translated without a transient, N-terminal targeting signal common to other mitochondrial matrix proteins. To identify a putative internal targeting sequence in the avian enzyme, the amino acid sequence of chicken liver GS was derived by a combination of sequencing of cloned cDNA, direct sequencing of mRNA, and sequencing of polymerase chain reaction (PCR) products amplified from reverse-transcribed mRNA. Analysis of the first 20 or so N-terminal amino acids of the derived sequence for the chicken enzyme shows that they are devoid of acidic amino acids, contain several hydroxy amino acids, and can be predicted to form a positively charged, amphipathic helix, all of which are characteristic properties of mitochondrial targeting signals. A comparison of the N-terminus of chicken GS with the N-termini of cytosolic mammalian GSs indicates that at least three amino acid replacements may have been responsible for converting the N-terminus of the cytosolic mammalian enzyme into a mitochondrial targeting signal. Two of these, His15 and Lys19, result in additional positive charges, as well as in changes in hydrophilicity. Both could have resulted from third-base-codon substitutions. A third replacement, Ala12, may contribute to the helicity of the N-terminus of the chicken enzyme. The N-terminus of the cytosolic chicken brain GS (positions 1-36) was found to be identical to that of the liver enzyme. The complete sequence of chicken retinal GS is also identical to that of the liver enzyme. GS is coded by a single gene in birds, so these sequence data suggest that, unlike the situation in other tissue-specific compartmental isozymes, differential targeting of avian GS to the mitochondrial or cytosolic compartments is not dependent on the sequence of the primary translation product of its mRNA but may involve some other tissue-specific factor(s).  相似文献   

6.
Fusions between the TRM1 gene of Saccharomyces cerevisiae and COXIV or DHFR were made to examine the mitochondrial targeting signals of N2,N2-dimethylguanosine-specific tRNA methyltransferase [tRNA (m2(2)G)dimethyltransferase]. This enzyme is responsible for the modification of both mitochondrial and cytoplasmic tRNAs. We have previously shown that two forms of the enzyme are translated from two in-frame ATGs in this gene, that they differ by a 16-amino-acid amino-terminal extension, and that both the long and short forms are imported into mitochondria. Results of studies to test the ability of various TRM1 sequences to serve as surrogate mitochondrial targeting signals for passenger protein import in vitro and in vivo showed that the most efficient signal derived from tRNA (m2(2)G)dimethyltransferase included a combination of sequences from both the amino-terminal extension and the amino terminus of the shorter form of the enzyme. The amino-terminal extension itself did not serve as an independent mitochondrial targeting signal, whereas the amino terminus of the shorter form of tRNA (m2(2)G)dimethyltransferase did function in this regard, albeit inefficiently. We analyzed the first 48 amino acids of tRNA (m2(2)G)dimethyltransferase for elements of primary and secondary structure shared with other known mitochondrial targeting signals. The results lead us to propose that the most efficient signal spans the area around the second ATG of TRM1 and is consistent with the idea that there is a mitochondrial targeting signal present at the amino terminus of the shorter form of the enzyme and that the amino-terminal extension augments this signal by extending it to form a larger, more efficient mitochondrial targeting signal.  相似文献   

7.
We have investigated mechanisms of mitochondrial targeting of the phenobarbital-inducible hepatic mitochondrial P450MT4, which cross-reacts with antibody to microsomal P4502B1. Results show that P4502B1 and P450MT4 have identical primary sequence but different levels of phosphorylation and secondary structure. We demonstrate that P4502B1 contains a chimeric mitochondrial and endoplasmic reticulum (ER) targeting signal at its N-terminus. Inducers of cAMP and protein kinase A-mediated phosphorylation of P4502B1 at Ser128 activate the signal for mitochondrial targeting and modulate its mitochondrial or ER destination. S128A mutation inhibits in vitro mitochondrial transport and also in vivo mitochondrial targeting in COS cells. A fragment of P4502B1 containing the N-terminal signal and the phosphorylation site could drive the transport of dihydrofolate reductase (DHFR) into mitochondria. Ser128 phosphorylation reduced the affinity of 2B1 protein for binding to SRP, but increased the affinity of the 2B1-DHFR fusion protein for binding to yeast mitochondrial translocase proteins, TOM40 and TIM44, and matrix Hsp70. We describe a novel regulatory mechanism by which cAMP modulates the targeting of a protein to two distinct organelles.  相似文献   

8.
Cytochrome P450 2E1 (CYP2E1) lacking the hydrophobic NH(2)-terminal hydrophobic transmembrane domain is specifically targeted to mitochondria, where it is processed to a soluble and catalytically active form (Delta2E1) with a mass of about 40 kDa. Small amounts of Delta2E1 were also observed in mitochondria isolated from rat liver, indicating that this form of CYP2E1 is also present in vivo. In the present study the mitochondrial targeting signal was identified and characterized by the use of several NH(2)-terminally truncated and mutated forms of CYP2E1 that were expressed in the mouse H2.35 hepatoma cell line. Two potential mitochondrial targeting sequences were identified in the NH(2) terminus of CYP2E1. Deletion of the first potential mitochondrial targeting sequence located between amino acids 50 and 65, as in Delta(2-64)2E1, still resulted in mitochondrial targeting and processing, but when, in addition to the first, the second potential mitochondrial targeting sequence located between amino acids 74 and 95 was also deleted, as in Delta(2-95)2E1, the mitochondrial targeting was abolished. Mutation of the four positively charged Arg and Lys residues present in this sequence to neutral Ala residues resulted in the abrogation of mitochondrial targeting. Deletion of a hydrophobic stretch of amino acids between residues 76 and 83 also abolished mitochondrial targeting and import. Once imported in the mitochondria, these constructs were further processed to the mature protein Delta2E1. It is concluded that mitochondrial targeting of CYP2E1 is mediated through a sequence located between residues 74 and 95 and that positively charged residues as well as a hydrophobic stretch present in the beginning of this sequence are essential for this process.  相似文献   

9.
We have determined the cDNA sequence encoding bovine mitochondrial ATP-dependent Lon protease. Since the 5'-end region of the cDNA was highly GC-rich and thus could not be amplified by the 5'-RACE method, a genomic DNA fragment containing an in-frame ATG was isolated and sequenced. The translated amino acid sequence contained 961 amino acids with a calculated molecular weight 106,665. Sequence similarities of the bovine enzyme to human and E. coli orthologs were 92 and 27%, respectively. The N-terminal amino acid sequence seemed to be a mitochondrial targeting signal. To determine the cleavage site of the signal sequence we analyzed the mature enzyme purified from bovine adrenocortical mitochondria. Analysis of CNBr-digested peptides revealed that the N-terminus was heterogeneous. We suggest that nonspecific aminopeptidase might remove several amino acids from the N-terminus after mitochondrial processing peptidase has cleaved Gly(67)-Leu(68) or Leu(68)-Trp(69).  相似文献   

10.
We describe here evidence of congenital enzyme mistargeting induced not by abnormalities in the signal sequence. We examined the molecular mechanism of hereditary ornithine aminotransferase (OAT) deficiency causing gyrate atrophy of the choroid and retina (GACR). Nucleotide sequencing of OAT cDNA generated from a GACR patient's mRNA revealed a single base change from C to G at position 268, resulting in an amino acid substitution of neutral Gln(CAA) with negatively charged Glu(GAA) at position 90 (Q90E). Immunohistochemical and transient expression analyses suggested expression of a defective labile OAT in the patient's tissues. However, high-level expression and immunocytochemical analyses elucidated that Q90E OAT (the patient's OAT) was localized within the limits of cytoplasmic free ribosomes in precursor form without any mitochondrial entry, indicating that the patient's precursor OAT was synthesized and rapidly degraded because of accumulation in the cytosol. It is interesting that, although the mutation site (Q90E) in this GACR patient's OAT was within the coding sequence of the mature protein, the precursor exhibited loss of mitochondrial targeting function. These findings suggest that not only the signal sequence but a critical part of the mature sequence plays an essential role in mitochondrial entry of the OAT precursor protein.  相似文献   

11.
We have investigated the signal sequence for mitochondrial transport of mutants (I12T, 78insC, IVS2-2a-->c, 338G-->C, R152C, 470A-->C, and L401F) and the wild type protoporphyrinogen oxidase (PPOX), which is the penultimate enzyme in the heme biosynthesis. We constructed the corresponding green fluorescent protein fusion proteins and studied their intracellular localization in COS-1 cells. We showed that 28 amino acids in the amino terminus of PPOX contain an independently functioning signal for mitochondrial targeting. The experiments with amino-terminally truncated green fluorescent protein fusion proteins revealed that amino acids 25-477 of PPOX contained an additional mitochondrial targeting signal(s). We constructed a structural model for the interaction between the amino-terminal end of PPOX and the putative mitochondrial receptor protein Tom20. The model suggests that leucine and isoleucine residues Leu-8, Ile-12, and Leu-15 forming an alpha-helical hydrophobic motif, LXXXIXXL, were crucial for the recognition of the targeting signal. The validity of the model was tested using mutants L8Q, I12T, and L15Q disrupting the hydrophobic surface of the LXXXIXXL helix. The results from in vitro expression studies and molecular modeling were in accordance supporting the hypothesis that the recognition of the mitochondrial targeting signal is dependent on hydrophobic interactions between the targeting signal and the mitochondrial receptor.  相似文献   

12.
The MWFE subunit of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) is a small, essential membrane protein of 70 amino acids that is made in the cytosol, imported into mitochondria, and assembled without further proteolytic processing. The experiments identify the first approximately 30 amino acids as a minimal mitochondrial targeting sequence, and establish its orientation in the inner membrane and in complex I. This sequence has a highly conserved glutamate at position 4, which is not typical of a mitochondrial targeting signal. However, it is not essential for MWFE function. Within this sequence there is also a 'stop-transfer' signal. The membrane anchor cannot be replaced by that from another subunit within complex I.  相似文献   

13.
The sorting of homologous proteins between two separate intracellular organelles is a major unsolved problem. 3-Oxoacyl-CoA thiolase is localized in mitochondria and peroxisomes, and provides a good system for the study on the problem. Unlike most mitochondrial matrix proteins, mitochondrial 3-oxoacyl-CoA thiolase in rats is synthesized with no transient presequence and possess information for mitochondrial targeting and import in the mature protein. Two overlapping cDNA clones contained an open reading frame encoding a polypeptide of 397 amino acid residues (predicted Mr = 41,868), a 5' untranslated sequence of 164 bp, a 3' untranslated sequence of 264 bp and a poly(A) tract. The amino acid sequence of the mitochondrial thiolase is 37% identical with that of the mature portion of rat peroxisomal 3-oxoacyl-CoA thiolase precursor. These results suggest that the two thiolases have a common origin and obtained information for targeting to respective organelles during evolution. Two portions in the mitochondrial thiolase that may serve as a mitochondrial targeting signal are presented.  相似文献   

14.
The karyophilic protein N1 (590 amino acids) is an abundant soluble protein of the nuclei of Xenopus laevis oocytes where it forms defined complexes with histones H3 and H4. The amino acid sequence of this protein, as deduced from the cDNA, reveals a putative nuclear targeting signal as well as two acidic domains which are candidates for the interaction with histones. Using two different histone binding assays in vitro we have found that the deletion of the larger acidic domain reduces histone binding drastically to a residual value of approximately 15% of the complete molecule, whereas removal of the smaller acidic domain only slightly reduces histone complex formation in solution, but infers more effectively with binding to immobilized histones. In the primary structure of the protein both histone-binding domains are distant from the conspicuous nuclear accumulation signal sequence (residues 531-537) close to the carboxy terminus which is very similar to the SV40 large T-antigen nuclear targeting sequence. Using a series of N1 mutants altered by deletions or point mutations we show that this signal is required but not sufficient for nuclear accumulation of protein N1. The presence of an additional, more distantly related signal sequence in position 544-554 is also needed to achieve a level of nuclear uptake equivalent to that of the wild-type protein. Results obtained with point mutations support the concept of two nuclear targeting sequences and emphasize the importance of specific lysine and arginine residues in these signal sequences.  相似文献   

15.
Tail-anchored proteins are a group of membrane proteins oriented with their amino terminus in the cytoplasm and their carboxy terminus embedded in intracellular membranes. This group includes the apoptosis-mediating proteins of the Bcl-2 family as well as the vesicle targeting proteins of the SNARE group, among others. A stretch of hydrophobic amino acids at the extreme carboxy terminus of these proteins serves both as a membrane anchor and as a targeting signal. Tail-anchored proteins are differentially targeted to either the endoplasmic reticulum or the mitochondrial outer membrane and the mechanism which accomplishes this selective targeting is poorly understood. Here we define important characteristics of the signal/anchor region which directs proteins to the mitochondrial outer membrane. We have created an artificial sequence consisting of a stretch of 16 leucines bounded by positively charged amino acids. Using this template we demonstrate that moderate hydrophobicity distinguishes the mitochondrial tail-anchor sequence from that of the endoplasmic reticulum tail-anchor sequence. A change as small as introduction of a single polar residue into a sequence that otherwise targets to the endoplasmic reticulum can substantially switch targeting to the mitochondrial outer membrane. Further we show that a mitochondrially targeted tail-anchor has a higher propensity for the formation of alpha-helical structure than a sequence directing tail-anchored proteins to the endoplasmic reticulum.  相似文献   

16.
We have previously shown that the human equilibrative nucleoside transporter 1 (hENT1) is expressed and functional in the mitochondrial membrane and that this expression enhances the mitochondrial toxicity of the nucleoside drug, fialuridine (FIAU) (Lai, Y., Tse, C. M., and Unadkat, J. D. (2004) J. Biol. Chem. 279, 4490-4497). Here we report on identification of the mitochondrial targeting sequence of hENT1. Using confocal microscopy and different truncated and point mutants of hENT1-YFP (yellow fluorescent protein) expressed in Madin-Darby canine kidney cells, we identified amino acid residues Pro(71),Glu(72), and Asn(74) (the PEXN motif) of hENT1 as important in mitochondrial targeting of hENT1. Identification of this mitochondrial targeting sequence provides a possible explanation for the dramatic difference in mitochondrial toxicity of FIAU between humans and rodents. Although the mouse ENT1 (mENT1), expressed in Madin-Darby canine kidney cells, can transport FIAU, confocal microscopy showed that mENT1-GFP (green fluorescent protein) was not localized to the mitochondria. Consistent with this observation, mitochondria isolated from mouse livers did not transport FIAU. Sequence alignment of hENT1, mENT1, and rat ENT1 (rENT1) showed that the PEXN motif of hENT1 was substituted with a PAXS motif in both mENT1 and rENT1. Substitution of PAXS in mENT1 with PEXN (to create mENT1-PEXN-GFP) and of PEXN in hENT1 with PAXS (to create hENT1-PAXS-YFP) resulted in partial mitochondrial localization of mENT1-PEXN-GFP and loss of mitochondrial localization of hENT1-PAXS-YFP. This is the first time that the mitochondrial targeting signal of hENT1 has been identified. Our data suggest that the lack of mitochondrial toxicity of FIAU in mice is due to the lack of mENT1 targeting to and expression in the mitochondria.  相似文献   

17.
18.
Intracellular delivery of the mitochondrial F1-ATPase beta-subunit precursor from the cytoplasm into the matrix of mitochondria is prevented by deletion of its mitochondrial import signal, a basic amphipathic alpha-helix at its amino terminus. Using a complementation assay, we have selected spontaneous mutations which restore the correct in vivo localization of the protein containing the import signal deletion. Analysis of these mutations revealed that different functional surrogate mitochondrial targeting signals formed within a narrow region of the extreme amino terminus of the import signal deleted beta-subunit. These modifications specifically replace different acidic residues with neutral or basic residues to generate a less acidic amphipathic helix within a region of the protein which is accessible for interaction with the membrane surface. The observations of this study confirm the requirement for amphipathicity as part of the mitochondrial import signal and suggest how mitochondrial targeting signals may have evolved within the extreme amino terminus of mitochondrial proteins.  相似文献   

19.
The BCS1 protein is anchored in the mitochondrial inner membrane via a single transmembrane domain and has an N(out)-C(in) topology. Unlike the majority of nuclear encoded mitochondrial preproteins, the BCS1 protein does not contain an N-terminal targeting sequence. A positively charged segment of amino acids which is located immediately C-terminal to the transmembrane domain acts as an internal targeting signal. In order to function, we postulate that this sequence co-operates with the transmembrane domain to form a tight hairpin loop structure. This loop is translocated across the inner membrane via the MIM/mt-Hsp70 machinery in a membrane potential-dependent manner. This novel mechanism of import and sorting of the BCS1 protein is proposed to represent a more general mechanism used by a number of inner membrane proteins.  相似文献   

20.
Mitochondrial import signals have been shown to function in many steps of mitochondrial protein import. Previous studies have shown that the F1-ATPase beta-subunit precursor (pre-F1beta) of the yeast Saccharomyces cerevisiae contains an extended, functionally redundant mitochondrial import signal at its amino terminus. However, the full significance of this functionally redundant targeting sequence has not been determined. We now report that the extended pre-F1beta signal acts to maintain the precursor in an import-competent conformation prior to import, in addition to its previously characterized roles in mitochondrial targeting and translocation. We found that this extended signal is required for the efficient posttranslational mitochondrial import of pre-F1beta both in vivo and in vitro. To determine whether the pre-F1beta signal directly influences precursor conformation, fusion proteins that contain wild-type and mutant forms of the pre-F1beta import signal attached to the model passenger protein dihydrofolate reductase (DHFR) were constructed. Deletions that reduced the import signal to a minimal functional unit decreased both the half-time of precursor folding and the efficiency of mitochondrial import. To confirm that the reduced mitochondrial import associated with this truncated signal was due to a defect in its ability to maintain DHFR in a loosely folded conformation, we introduced structurally destabilizing missense mutations into the DHFR passenger to block precursor folding independently of the import signal. We found that the truncated signal imported this destabilized form of DHFR as efficiently as the intact targeting signal, indicating that the primary defect associated with the minimal signal is an inability to maintain the precursor in a loosely folded conformation. Our results suggest that the loss of this intramolecular chaperone function leads to defects in the early stages of the import process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号