首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A non-self-replicating segment (1370 base pairs) of plasmid R6K was cloned in E. coli and shown to trans-complement temperature-sensitive replication mutants of this plasmid. This segment contains the gene which codes for a protein required for initiation of replication of the plasmid, and was used as a helper in a functional assay for an origin of replication in R6K derivatives. A 420 bp fragment, derived from R6K DNA, was shown to carry a functional origin since it was capable of replicating as a plasmid in E. coli cells carrying the helper segment either on the host chromosome or on a plasmid Col E1 derivative. The copy number of the origin fragment in cells carrying the helper segment on the chromosome is essentially the same as the copy number of R6K. A model for the positive regulation of plasmid R6K replication is presented.  相似文献   

3.
Summary An analysis was carried out on the replication functions within a 2.3 kilobase (kb) segment of the F plasmid which contains an origin (ori S) of replication and is capable of autonomous replication inEscherichia coli. Two separable regions were delineated for this segment: an origin region of approximately 1,140 bp in length and a segment of approximately 1,400 bp that functionsin trans to support replication of the origin region. The trans-acting segment is functional as part of an F replicon or when inserted into theE. coli chromosome. A prominent feature of the trans-acting segment is a coding sequence for a 29 K protein (Murotsu et al. 1981).  相似文献   

4.
In the region of plasmid F DNA with coordinates 52,2-55,8 kb, the chr ("chromosome replication") locus has been revealed. A failure in the functioning of this locus in the integrated plasmid, which leads to a temperature-sensitive disturbance in chromosome replication of the Hfr strain and to the changes in its sensitivity to some membranotropic agents. Integration of an F segment containing the chr+ allele into the chromosome of an F-like derivative of such Hfr strain (retaining a mutant part of the F DNA), results in formation of temperature-resistant clones. In these clones, chromosomal replication is controlled by the plasmid replicon at the elevated temperature. It has been concluded that the F plasmid can control chromosome replication of the dna+ HfrC strain of Escherichia coli K-12 and that the product of the chr gene is a membrane protein involved in chromosomal replication.  相似文献   

5.
L I Baranovskaia 《Genetika》1984,20(10):1708-1713
Kinetics of DNA replication in genetically non-active X chromosome was studied in peripheral lymphocytes and skin fibroblasts from four phenotypically normal women and one fetus using BrdU 33258 Hoechst-Giemsa techniques. The localization of the earliest replicated chromosomal segment was shown to be unstable, varying from cell to cell in both lymphocytes and fibroblasts of all persons examined. Several variants of replication sequence in the X chromosome were found in both types of cells. The variants revealed were classified, according to Willard. The statistically significant differences in replication sequence were found between blood lymphocytes and skin fibroblasts in two individuals. The problem of tissue specificity in replication kinetics of the genetically non-active X chromosome is discussed.  相似文献   

6.
Summary Eight X autosome translocations were studied with replication banding to localize spreading of late replication into the autosomal segments. Partial spreading into the autosomal segment was seen in four translocations and no spreading of late replication was seen in four translocations. In those translocations with partial spreading of late replication into the autosomal segment, late replication did not always spread continuously from the X chromosome breakpoint throughout the autosome. Instead, it appeared to skip some bands and affect others. The data on the pattern of replication, taken to indicate also a spread of inactivation into these autosomal segments, correlated well with the clinical data in most cases and suggest that spreading of late replication is often incomplete and may be discontinuous.  相似文献   

7.
Summary Early replication of prometaphasic human sex chromosomes was studied with the bromodeoxyuridine (BrdU)-replication technique. The studies reveal that two distal segments of Xp, including bands Xp 22.13 and Xp 22.3, replicate early in S-phase and therefore may not be subject to random inactivation. Furthermore, the replication of these distal segments of Xp occurs synchronously with those of the short arm of the Y chromosome including bands Yp 11.2 and Yp 11.32. These segments of Xp and Yp correspond well to the pairing segment of the X and Y chromosomes where a synaptonemal complex forms at early pachytene of human spermatogenesis. The homologous early replication of Yp and the distal portion of Xp may be interpreted as a remnant left untouched by the differentiation of heteromorphic sex chromosomes from originally homomorphic autosomes. A third early replicating segment is situated on the long arm of the X chromosome and corresponds to band Xq 13.1. This segment may be correlated with the X-inactivation center postulated by Therman et al. (1979).  相似文献   

8.
Replication pattern of the X chromosome 2B region translocated to the pericentric heterochromatin in the 2L chromosome within the T(1; 2) dorvar7 rearrangement which causes position effect was studied. It was found that this pattern is affected by the 2B region morphology. When normal, i.e. with decondensed bands in this region, it completes replication early. But after compaction, i.e. fusion of bands in the 2B region into dense block, due to position effect, its late replication was observed, together with the most late replicating intercalary heterochromatin regions in the X chromosome and the 75C-80A-C segment of the 3L chromosome. Possible mechanisms of replication delay and their role in promoting the position effect are discussed.  相似文献   

9.
In Streptomyces coelicolor, replication is initiated by the DnaA protein in the centrally located oriC region and proceeds bidirectionally until the replication forks reach the ends of the linear chromosome. We identified three clusters of DnaA boxes (H69, H24, and D78) which are in a relatively short segment of the chromosome centered on the oriC region. Of the clusters analyzed, D78 exhibited the highest affinity for the DnaA protein; the affinity of DnaA for the D78 cluster was about eightfold higher than the affinity for oriC. The high-affinity DnaA boxes appear to be involved in the control of chromosome replication. Deletion of D78 resulted in more frequent chromosome replication (an elevated ratio of origins to chromosome ends was observed) and activated aerial mycelium formation, leading to earlier colony maturation. In contrast, extra copies of D78 (delivered on a plasmid) caused slow colony growth, presumably because of a reduction in the frequency of initiation of chromosome replication. This suggests that the number of high-affinity DnaA boxes is relatively constant in hyphal compartments and that deletion of D78 therefore permits an increased copy number of either the chromosomal origin region or a plasmid harboring the D78 cluster. This system conceivably influences the timing of decisions to initiate aerial mycelial formation and sporulation.  相似文献   

10.
Summary A child with severe hypospadias is presented, whose karyotype showed in about 11% of mitoses of peripheral blood one member of chromosome pair No. 2 with a non-condensed region near the centromere. The non-condensed segment does not show late replication, however, it is situated very close to the late replicating segment of the long arms of chromosome No. 2. The nature and possible implications of this kind of aberration are discussed. It is held that non-condensation can produce localized chromosome breaks by a mechanism possibly different from any of the classical breakage mechanisms.  相似文献   

11.
Cell cycle progression in Caulobacter is governed by a multilayered regulatory network linking chromosome replication with polar morphogenesis and cell division. Temporal and spatial regulation have emerged as the central themes, with the abundance, activity and subcellular location of key structural and regulatory proteins changing over the course of the cell cycle. An additional layer of complexity was recently uncovered, showing that each segment of the chromosome is located at a specific cellular position both during and after the completion of DNA replication, raising the possibility that this positioning contributes to temporal and spatial control of gene expression.  相似文献   

12.
Summary X-inactivation patterns were studied by replication analyses both in lymphocytes and skin fibroblasts of two patients carrying balanced X-autosome translocations, t(X;10)-(pter;q11) and t(X;17)(q11;q11), and one patient with an unbalanced translocation t(X;22)(p21;q11). Preferential late replication of the normal X chromosome was found in lymphocytes of both patients carrying balanced translocations and in skin fibroblasts of the patient carrying the translocation t(X;17). However, skin fibroblasts of the patient with a translocation t(X;10) showed preferential late replication of the abnormal der(X) chromosome with no spreading of late replication to the autosomal segment. In the case of unbalanced translocation t(X;22) there was preferential late replication of the der(X) chromosome both in lymphocytes and skin fibroblasts. The abnormal phenotype of the patients is discussed in relation to the observed X-inactivation patterns and the variability of the patterns in different tissues.  相似文献   

13.
14.
The initiation of the DNA replication cycle in Escherichia coli requires protein synthesis. Marunouchi &; Messer (1973) have hypothesized that an additional protein synthesis step is required for the replication of the terminal segment of the chromosome, and that replication of this segment is a prerequisite for subsequent cell division. We have not confirmed the existence of a unique terminal segment using a protocol designed to label the hypothesized segment with [3H]dThd2. Our protocol avoids the increased incorporation of [3H]dThd into DNA caused by abrupt increases in temperature, a complication implicit in the technique of Marunouchi &; Messer (1973).Treatment with nalidixic acid (an inhibitor of semiconservative DNA synthesis) in sufficient concentration to prevent replication of the postulated terminal segment prevents cell division but also causes loss of viability. This makes it difficult to correlate the effect of nalidixic acid on cell division with DNA synthesis inhibition alone.  相似文献   

15.
T Ogura  S Hiraga 《Cell》1983,32(2):351-360
Plasmids that replicate using the replication origin (oriC) of the E. coli chromosome are not stably inherited through cell division, but can be stabilized by joining with a particular segment of F plasmid that presumably provides the partition function. The segment necessary for stabilization has been located within a 3.0 kb segment outside of the region essential for autonomous replication of the F plasmid. This segment contains three functionally distinct regions: two of them (designated sopA and sopB) specify gene products that act in trans, whereas the third region (sopC) acts in cis. All three functions seem to be essential for normal partition of the plasmid into daughter cells during cell division. The cis-acting region also specifies plasmid incompatibility.  相似文献   

16.
A revision of the linkage map of the Bacillus subtilis 168 chromosome has been undertaken with the use of the generalized transducing phage PBS1. The mapping of four new markers (narB1, mtlB1, aroI906, and tre-12) has allowed a determination of the relative orientation of the purB-dal segment and its linkage with the lin markers. The chromosomal segment comprised between the sacQ36 and gtaA12 markers has been linked with the narA1, ctrA1, and sacA321 markers. The recA1 marker has been mapped relative to the thyA and citB17 markers. Indications of linkage have been found between the tre-12 and catA markers and the aroG932 and sacQ36 markers. According to these results, a circular genetic map of the chromosome of B. subtilis 168 is presented. Taken together, the transduction data and the order of marker replication determined by Harford in the accompanying paper support strongly the hypothesis of a symmetrical and fully bidirectional mode of replication for the B. subtilis 168 chromosome.  相似文献   

17.
18.
S. Dash  P. A. Peterson 《Genetics》1994,136(2):653-671
A model of En transposition during chromosome replication is presented following a study of somatic events associated with the transposition of En in the endosperm tissue of the maize kernel. Two supporting assays, the excision and the postexcision events, were used in following these events. The excision of the En transposon has been monitored in the starch-producing endosperm tissue by using the wx-844 autonomously mutable allele, and events after excision have been monitored by using various reporter alleles of the En-I (Spm-dSpm) system. The initial observations revealed an unusually large amount of loss of the En transposon following its excision from the wx-844 allele. Subsequent analysis of the somatic events using the a2-m1 reporter allele to monitor the dosage of En suggested that the large amount of loss would result from the transposition of En during chromosome replication. Transposition of En from a replicated segment of the chromosome to another site that has also undergone replication explains most of the somatic events observed.  相似文献   

19.
Fluorescence in situ hybridization (FISH) analysis has revealed the subcellular localization of specific chromosomal segments and plasmid molecules during the cell division cycle in Escherichia coli: the replication origin (oriC) segments on the chromosome are localized at nucleoid borders, and actively partitioning mini-F plasmid molecules are localized at the 1/4 and 3/4 positions of the cell. In contrast, mini-F plasmid molecules lacking the sopABC segment are randomly localized in cytoplasmic areas at cell poles. In this study, we analysed the subcellular localization of an oriC plasmid that contains the minimum E. coli chromosomal replication origin and its flanking regions. These oriC plasmid molecules were mainly localized in cytosolic areas at cell poles. On the other hand, oriC plasmid DNA molecules carrying the sopABC segment of F plasmid were localized at cell quarter sites, as were actively partitioning mini-F plasmid DNA molecules. Therefore, we conclude that oriC itself and its flanking regions are not sufficient for positioning the replication origin domain of the E. coli chromosome within the cell.  相似文献   

20.
D. G. Bedo 《Chromosoma》1982,87(1):21-32
Non banded sex chromosome elements have been identified in polytene trichogen cells of Lucilia cuprina using Y-autosome translocations, C-banding and Quinacrine fluorescence. The X chromosome is an irregular granular structure while the much smaller Y chromosome has both a dense darkly stained and a loosely organised segment. The X and Y chromosomes are underreplicated in polytene cells but comparison of C- and Q-banding characteristics of sex chromosomes in diploid and polytene tissues indicates that selective replication of non C-banding material occurs in both the sex chromosomes. Brightly fluorescing material in the Y chromosome is replicated to such an extent that it consists of half the polytene element, while the C-banding material, which makes up most of the diploid X chromosome, is virtually unreplicated. Differential replication also occurs in autosomes. In XXY males, and in males carrying a duplication of the X euchromatic region, a short uniquely banded polytene chromosome is formed. It is suggested that in males carrying two doses of X euchromatin a dosage compensation mechanism operates in which genes in one copy are silenced by forming a banded polytene chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号