首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By use of carboxyfluorescein-loaded multilamellar liposomes prepared from synthetic phosphatidylcholine (PC) or sphingomyelin and cholesterol in a molar ratio of 1:1, we studied whether or not fatty acyl domain of the phospholipids affects the membrane-damaging action (or channel formation) of Staphylococcus aureus alpha-toxin on the phospholipid-cholesterol membranes. Our data indicated: (1) that toxin-induced carboxyfluorescein-leakage from the liposomes composed of saturated fatty acyl residue-carrying PC and cholesterol was decreased with increasing chain length of the acyl residues between 12 and 18 carbon atoms, although toxin-binding to the liposomes was not significantly affected by the length of fatty acyl residue; (2) that unsaturated fatty acyl residue in PC or sphingomyelin molecule conferred higher sensitivity to alpha-toxin on the phospholipid-cholesterol liposomes, compared with saturated fatty acyl residues; and (3) that hexamerization of alpha-toxin, estimated by SDS-polyacrylamide gel electrophoresis, occurred more efficiently on the liposomes composed of PC with shorter fatty acyl chain or unsaturated fatty acyl chain. Thus, hydrophobic domain of the phospholipids influences membrane-channel formation of alpha-toxin in the phospholipid-cholesterol membrane, perhaps by modulating packing of phospholipid, cholesterol and the toxin in membrane.  相似文献   

2.
The effect of Clostridium perfringens alpha-toxin on liposomes prepared from phosphatidylcholine (PC) containing the fatty acyl residues of 18 carbon atoms was investigated. The toxin-induced carboxyfluorescein (CF) leakage and phosphorylcholine release from multilamellar liposomes increased as the phase transition temperature of the phosphatidylcholines containing unsaturated fatty acyl residues decreased. However, there was no difference between the sensitivity of the different phosphatidylcholines solubilized by deoxycholate to the phospholipase C (PLC) activity of the toxin. However, the toxin did not hydrolyze solubilized distearoyl-l -α-phosphatidylcholine (DSPC) or phosphatidylcholine containing saturated fatty acyl residue, and caused no effect on liposomes composed of DSPC. These results suggest that the activity of the toxin is closely related to the membrane fluidity and double bond in PC. The N-terminal domain of alpha-toxin (AT1-246) and variant H148G did not induce CF leakage from liposomes composed of dioleoyl-l -α-phosphatidylcholine (DOPC). H148G bound to the liposomes, but AT1-246 did not. However, the C-terminal domain (AT251-370) conferred binding to liposomes and the membrane-damaging activity on AT1-246. These observations suggest that the membrane-damaging action of alpha-toxin is due to the binding of the C-terminal domain of the toxin to the double bond in the PC in the bilayer and hydrolysis of the PC by the N-terminal domain.  相似文献   

3.
Oat and rye plants were treated with either tetcyclacis (an experimental plant growth regulator), nuarimol (a fungicide) or gamma-ketotriazole (an experimental herbicide). These treatments reduced shoot growth and changed the lipid composition of the shoot plasma membranes. In oat, both tetcyclacis and nuarimol treatments increased plasma membrane cholesterol and increased the phosphatidylethanolamine/phosphatidylcholine (PE/PC) ratio, whereas gamma-ketotriazole treatment reduced cholesterol and the PE/PC ratio. In rye, all treatments reduced the PE/PC ratio. Generally, the sterol/phospholipid ratio was less in oat than in rye but the cholesterol/phospholipid ratio was greater. With all treatments in oat and rye, increases were observed in unsaturation of the phospholipid acyl chains. The fluidity of membranes was measured by steady-state fluorescence polarisation of the probe diphenylhexatriene; oat membranes were more fluid than rye. Membrane fluidity was greater in plasma membranes from plants treated with the xenobiotics than the controls. The results are discussed in the context of the effect of plasma membrane lipid composition on membrane fluidity, and it is concluded that there appears to be no overall simple relationship between membrane lipid composition and fluidity that holds for all treatments in both species.  相似文献   

4.
Cell lysis by staphylococcal alpha-toxin, a potent virulence factor of most pathogenic strains of Staphylococcus aureus, follows a three-step sequence: binding of toxin to the membrane, leaking of ions caused by membrane injury, and rupturing of the membrane caused by osmotic swelling. The membrane injury step is composed of two separate events, membrane penetration and membrane perturbation. The membrane penetration event involves conversion of the soluble toxin monomer into an amphipathic molecule, which inserts into the lipid bilayer of the membrane. The membrane perturbation event involves association of the toxin monomers, in the plane of the membrane, to form hexameric transmembrane pores. In this study, we demonstrate that, in an asolectin liposome system, controlling the pH of the external buffer permits these two events to be temporally resolved. Using Controlled-Pore Glass bead-purified alpha-toxin, four events are measured as a function of pH: (a) release of potassium from prelabeled asolectin vesicles, (b) conversion of the toxin to a globally hydrophobic molecule, (c) binding of detergent by the toxin, and (d) labeling of the toxin with photoactivable, radiolabeled, hydrophobic probes. Two of these events, potassium release and conversion to a net hydrophobic state, are paired in that, for the event to occur, each requires a pH of 4.6 or less. In contrast, photolabeling with the membrane probes PC I and PC II (where PC represents phosphatidylcholine) is easily detectable at pH values as high as 5.0 and 6.0. These results demonstrate that, as the pH is lowered, two distinct changes in the physical properties of alpha-toxin occur. The first, which occurs under mild acidic conditions, converts the toxin from a water-soluble molecule into an amphipathic molecule. The second, requiring relatively more acidic conditions, converts the amphipathic toxin molecule into a globally hydrophobic molecule. Correlated with these physical changes in the alpha-toxin molecule is the acquisition of two new biological properties. The conversion of alpha-toxin into an amphipathic conformation correlates with the acquisition of the biological property of the reversible penetration into the bilayer of the asolectin liposome membrane, as evidenced by labeling with the photoactivable probes. At lower pH, the conversion of the toxin into a globally hydrophobic molecule correlates with the biological property of causing damage to the cell membrane, as measured by the release of internal potassium ions, presumably by the formation of transmembrane hexamer pores.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The mechanism of membrane damage by staphylococcal alpha-toxin was studied using carboxyfluorescein (internal marker)-loaded multilamellar liposomes prepared from various phospholipids and cholesterol. Liposomes composed of phosphatidylcholine or sphingomyelin and cholesterol bound alpha-toxin and released carboxyfluorescein in a dose dependent manner, when they were exposed to alpha-toxin of concentrations higher than 1 or 8 micrograms/ml, respectively. In contrast, the other liposomes composed of phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol or phosphatidylinositol plus cholesterol were not susceptible to the toxin even at high concentrations up to 870 micrograms/ml. The insensitive liposomes containing either phosphatidylserine or phosphatidylglycerol were made sensitive to alpha-toxin by inserting phosphatidylcholine into the liposomal membranes. In addition, phosphorylcholine inhibited the toxin-induced marker release from liposomes. These results indicated that the choline-containing phospholipids are required for the interaction between alpha-toxin and liposomal membranes. Susceptibility of liposomes containing phosphatidylcholine or sphingomyelin increased with the increase in cholesterol contents of the liposomes. Based on these results, we propose that the choline-containing phospholipids are possible membrane components or structures responsible for the toxin-membrane interaction, which leads to damage of membranes. Furthermore, cholesterol may facilitate the interaction between alpha-toxin and membrane as a structural component of the membrane.  相似文献   

6.
The natural target of Staphylococcus aureus bicomponent γ-hemolysins are leucocyte cell membranes. Because a proteinaceous receptor has not been found yet, we checked for the importance of the different membrane lipid compositions by measuring the activity of the toxin on several pure lipid model membranes. We investigated the effect of membrane thickness, fluidity, and presence of nonbilayer lipids and found that the toxin pore-forming ability increased in the presence of phosphocholines with short saturated acyl chains or with unsaturated chains even though not short. An increase of activity was also evident in the presence of cone-shaped lipids like phosphatidylethanolamine or diphytanoylphosphatidylcholine, whereas cylindrical lipids, like sphingomyelin, did not favor the activity. All these results suggest that γ-hemolysins could bind to the bilayer only if the phosphatidylcholine (PC) head is freely accessible. This condition is satisfied by the concurrent presence of cholesterol and certain lipids, as highlighted by the so-called umbrella model (J. Huang and G. W. Feigenson, Biophys J 76:2142–2157, 1999). According to this model, cholesterol could help to a better exposition of PC head groups only if acyl chains are short or unsaturated. In fact, phosphatidylcholines with more than 13 carbon atoms acyl chains can cover cholesterol molecules; in this way, PC head groups pack tightly, rendering them inaccessible to the toxin, which thus shows a reduced pore-forming ability.  相似文献   

7.
It has been shown that the access of the alpha-toxin of Staphylococcus aureus to the target membrane and assembly of the hexamer can be monitored independently by respectively measuring the fluorescence energy transfer from the tryptophan residue(s) of the toxin to the dansylated phosphatidylethanolamine in the liposome membrane and the fluorescence increment of the toxin at 336 nm (Ikigai, H., and Nakae, T., (1987) J. Biol. Chem. 262, 2150-2155). Measurement of these parameters under various conditions showed the following results: when phosphatidylcholine (PC) liposomes composed of saturated fatty acids were mixed with the toxin, the fluorescence energy transfer occurred below, at, and above the transition temperature of the lipid, but the change of fluorescence at 336 nm was never detectable; when PC-liposomes containing unsaturated fatty acids were used, both the fluorescence energy transfer and the fluorescence increment of 336 nm were observed. These results suggested that the toxin-membrane interaction occurs in PC-membranes containing saturated and/or unsaturated fatty acids and that the oligomerization occurs only in the presence of PC containing unsaturated fatty acid(s). This conclusion was supported by the results of quantitative determination of the toxin-hexamer assembly and leakage of carboxyfluorescein from PC-liposomes under conditions similar to the above.  相似文献   

8.
Vesicles composed of phospholipids with different fatty acyl side chains have been utilized to examine the importance of the nonpolar membrane region for the prothrombin-converting activity of procoagulant phospholipid vesicles. Membranes composed of phosphatidylserine (PS) and phosphatidylcholine (PC) with unsaturated fatty acyl side chains were more active in prothrombin activation than membranes composed of phospholipids with saturated fatty acyl chains. This phenomenon was observed above the phase transition temperature, i.e., on membranes in the liquid-crystalline state. The prothrombin-converting activity of saturated phospholipids approached the activity of unsaturated phospholipids at high factor Va concentrations, which is indicative for a less favorable equilibrium constant for prothrombinase assembly on membrane surfaces composed of saturated phospholipids. The difference between saturated and unsaturated phospholipids was annulled on membranes with high mole percentages of PS. This may result from a compensating contribution of electrostatic forces to the binding equilibria involved in prothrombinase assembly. Additional effects on the prothrombin-converting activity were observed when membranes containing saturated phospholipids were studied below their phase transition temperature. In agreement with Higgins et al. [(1985) J. Biol. Chem. 260, 3604-3612], we found that the time required for the assembly of prothrombinase from membrane-bound factors Xa and Va is considerably prolonged on solid membranes. However, we also observed an effect of membrane fluidity on the steady-state rate of prothrombin activation. Kinetic experiments at saturating factor Va concentrations showed that the transition from the liquid-crystalline to the gel state caused a more than 9-fold decrease of the kcat of prothrombin activation without affecting the Km for prothrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Secondary structure and assembly mechanism of an oligomeric channel protein   总被引:21,自引:0,他引:21  
N Tobkes  B A Wallace  H Bayley 《Biochemistry》1985,24(8):1915-1920
The alpha-toxin of Staphylococcus aureus is secreted as a water-soluble, monomeric polypeptide (Mr 33 182) that can assemble into an oligomeric membrane channel. By chemical cross-linking, we have confirmed that the major form of the channel is a hexamer. The circular dichroism spectrum of this hexamer in detergent revealed that it contains a high proportion of beta-sheet that we deduce must lie within the lipid bilayer when the protein is associated with membranes. The circular dichroism spectrum of the monomeric toxin in the presence or absence of detergent was closely similar to the spectrum of the hexamer, suggesting that the secondary structure of the polypeptide is little changed on assembly. Results of experiments involving limited proteolysis of the monomer and hexamer are consistent with the idea that assembly involves the movement of two rigid domains about a hinge located near the midpoint of the polypeptide chain. The hydrophilic monomer is thereby converted to an amphipathic rod that becomes a subunit of the hexamer.  相似文献   

10.
alpha-Toxin, a lethal hemolytic toxin secreted by Staphylococcus aureus, forms ionic channels of large size in lipid membranes. To investigate the mechanism of channel assembly we have studied the kinetics of pore formation on small unilamellar vesicles. We have used two assays of vesicle permeabilization: one is the release of a fluorescent molecule trapped in their inner compartment; the other is the dissipation of an imposed potential. Both methods indicate that the kinetics are complex consisting of an initial delay followed by a non-linear relaxation. The dependence of the pore formation rate and the extent of permeabilization on the toxin/vesicle ratio indicates that aggregation of 4-10 preinserted toxin monomers underlies channel assembly. The pH dependence of permeabilization suggests that protonation of an acidic group of the toxin is a prerequisite to channel formation. Inclusion of cholesterol in the target vesicles potentiates alpha-toxin effects, in a dose-dependent way, possibly by facilitating its protonation. The location of the proton-binding site on the two adjacent aspartic acid residues in positions 127 and 128 of the toxin monomer is proposed.  相似文献   

11.
Vibrio cholerae hemolysin (HlyA) is a pore-forming toxin that exists in two stable forms: a hemolytically active water-soluble monomer with a native molecular weight of 65,000 and a hemolytically inactive SDS-stable heptamer with the configuration of a transmembrane diffusion channel. Transformation of the monomer into the oligomer is spontaneous but very slow in the absence of interaction with specific membrane components like cholesterol and sphingolipids. In this report, we show that mild disruption of the native tertiary structure of HlyA by 1.75 M urea triggered rapid and quantitative conversion of the monomer to an oligomer. Furthermore, the HlyA monomer when unfolded in 8 M urea refolded and reconstituted on renaturation into the oligomer biochemically and functionally similar to the heptamer formed in target lipid bilayer, suggesting that the HlyA polypeptide had a strong propensity to adopt the oligomer as the stable native state in preference to the monomer. On the basis of our results, we propose that (a) the hemolytically active HlyA monomer represents a quasi-stable conformation corresponding to a local free energy minimum and the transmembrane heptameric pore represents a stable conformation corresponding to an absolute free energy minimum and (b) any perturbation of the native tertiary structure of the HlyA monomer causing relaxation of conformational constraints tends to promote self-assembly to the oligomer with membrane components playing at most an accessory role.  相似文献   

12.
We have studied the kinetics of staphylococcal alpha-toxin oligomerisation in relation to membrane permeabilisation, using as targets cultured adrenocortical Y1 cells, rabbit red blood cells (RRBC), human platelets, and liposomes prepared of lipids extracted from platelets. After isolation of membranes from toxin-treated cells, oligomeric toxin was detected (i) by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) followed by autoradiography or Western blotting, and (ii) by electron microscopy of negatively stained specimens. alpha-Toxin was found to oligomerise on all membranes independently of the temperature. On RRBC and Y1 cells most of the membrane associated toxin appeared converted to the oligomeric form. Hexamers were always present along with membrane permeabilisation. However, hexamers were also detected at conditions when membrane permeabilisation did not occur; at low temperature, in the presence of high concentrations of Ca2+, and after pretreatment of cells with concanavalin A (Con A). Addition of a neutralising monoclonal antibody (MAb) to cell-bound toxin collected it into aggregates much larger than the hexamers. By contrast hexameric toxin remained after addition of a non-neutralising MAb. Our data suggest that the active toxin species is not monomeric, and support the hypothesis that alpha-toxin permeabilises membranes by forming hexameric protein-lined transmembrane channels.  相似文献   

13.
The purpose of this study was to test the hypothesis that lipid fluidity regulates lecithin:cholesterol acyltransferase (LCAT) activity. Phosphatidylcholine (PC) species were synthesized that varied in fluidity by changing the number, type (cis vs. trans), or position of the double bonds in 18 or 20 carbon sn-2 fatty acyl chains and recombined with [(3)H]cholesterol and apolipoprotein A-I to form recombinant high density lipoprotein (rHDL) substrate particles. The activity of purified human plasma LCAT decreased with PC sn-2 fatty acyl chains containing trans versus cis double bonds and as double bonds were moved towards the methyl terminus of the sn-2 fatty acyl chain. The decrease in LCAT activity was significantly correlated with a decrease in rHDL fluidity (measured by diphenylhexatriene fluorescence polarization) for PC species containing 18 carbon (r(2) = 0.61, n = 18) and 20 carbon (r(2) = 0.93, n = 5) sn-2 fatty acyl chains. rHDL were also made containing 10% of the 18 carbon sn-2 fatty acyl chain PC species and 90% of an inert PC ether matrix (sn-1 18:1, sn-2 16:0 PC ether) to normalize rHDL fluidity. Even though fluidity was similar among the PC ether-containing rHDL, the order of PC reactivity with LCAT was significantly correlated (r(2) = 0.71) with that of 100% PC rHDL containing the same 18 carbon sn-2 fatty acyl chain species, suggesting that PC structure in the active site of LCAT determines reactivity in the absence of measurable differences in bilayer fluidity. We conclude that PC fluidity and structure are major regulators of LCAT activity when fatty acyl chain length is constant.  相似文献   

14.
The role of membrane lipids and membrane fluidity in thermosensitivity of mammalian cells is not well understood. The limited experimental data in the literature have led to conflicting results. A detailed investigation of lipid composition and membrane fluidity of cellular membranes was undertaken to determine their relationship to cell survival after hyperthermia. Ehrlich ascites (EA) cells, mouse fibroblast LM cells, and HeLa S3 cells differed in thermosensitivity as expressed by a D0 of 3.1, 5.2, and 9.7 min, respectively, at 44 degrees C. No correlation with cellular thermosensitivity could be found with respect to the amount of cholesterol and to the cholesterol to phospholipid ratio in the particulate fraction of the cells. By growing the cells for some generations in different media, cholesterol and phospholipid content could be changed in the particulate fraction, but no difference in cell survival was observed. When mouse fibroblasts were grown for 24 hr in a serum-free medium supplemented with arachidonic acid (20:4), all subcellular membranes were about eight times richer in phospholipids containing polyunsaturated acyl (PUFA) chains and membrane fluidity was increased as measured by fluorescence polarization of diphenylhexatriene (DPH). The alterations resulted in a higher thermosensitivity. When mouse fibroblasts were made thermotolerant no change in cholesterol and phospholipid content could be found in the particulate fraction of the cells. The relative weights and the quality of the phospholipids as well as the fatty acid composition of the phospholipids appeared to be the same for normal and thermotolerant cells. Fluidity measurements in whole cells, isolated plasma membranes, and liposomes prepared from phospholipids extracted from the cells revealed no significant differences between normal and thermotolerant fibroblasts when assayed by fluorescence polarization (DPH) and electron spin resonance (5-nitroxystearate). It is concluded that the mechanism of thermal adaptation resulting in differences in lipid composition as reported in the literature differs from the mechanism of the acquisition of thermal tolerance. The lower heat sensitivity of thermotolerant cells, as initiated by a nonlethal triggering heat dose followed by an induction period at 37 degrees C, does not involve changes in lipid composition and membrane fluidity. However, a prompt and clear (also nonlethal) change in membrane fluidity by an increase in PUFA does result in an increased thermosensitivity, probably because of an indirect effect via the lipids in causing disfunctioning of proteins in the membrane and/or the cytoskeleton.  相似文献   

15.
Rabbit or human erythrocytes lysed with Staphylococcus aureus alpha-toxin were solubilized with Triton X-100, and the toxin was subsequently isolated by gel chromatography, sucrose density gradient centrifugation, and reincorporation into liposomes. In the presence of Triton X-100, the toxin exhibited a sedimentation coefficient of 11S and eluted at a position between those of IgG and alpha 2-macroglobulin in gel chromatography. A single polypeptide subunit of 34,000 mol wt was found in SDS PAGE. In the electron microscope, ring-shaped or cylindrical structures were observed, 8.5-10 nm in diameter, harboring central pits or channels 2-3 nm in diameter. An amphiphilic nature of these structures was evident from their capacity to bind lipid and detergent, aggregation in the absence of detergents, and low elutability from biological and artificial membranes through ionic manipulations. In contrast to the membrane-derived form of alpha-toxin, native toxin was a water-soluble, 34,000 mol wt, 3S molecule, devoid of an annular structure. Because studies on the release of radioactive markers from resealed erythrocyte ghosts indicated the presence of circumscribed lesions of approximately 3-nm effective diameter in toxin-treated membranes, the possibility is raised that native alpha-toxin oligomerizes on and in the membrane to form an amphiphilic annular complex that, through its partial embedment within the lipid bilayer, generates a discrete transmembrane channel.  相似文献   

16.
In a patient with lecithin: cholesterol acyltransferase deficiency, free cholesterol was markedly increased, and esterified cholesterol was diminished. In the patient's plasma, an increase in phosphatidylcholine (PC) and a decrease in sphingomyelin were observed. Concomitantly, an increase in a shorter acyl chain 16:0 was noted in PC, sphingomyelin and phosphatidylethanolamine (PE). In contrast to these results, longer chains such as 22:0 and 24:0 were decreased, especially in sphingomyelin. Unsaturated double bonds such as 18:1 was also increased in PC and PE. In the red-cell membrane lipids, the increase in free cholesterol was counteracted by an increase in PC and by a decrease in sphingomyelin and PE, reflecting changes in the patient's plasma lipids. Increased 16:0 (in PC) and decreased 18:0 and 24:0 were observed. The increased plasma free cholesterol due to metabolic defect (lecithin:cholesterol acyltransferase deficiency) led to decreased red-cell membrane fluidity. This effect appeared to be counteracted by changing phospholipid composition (increased PC and decreased sphingomyelin and PE), by increasing shorter chains (16:0), by decreasing longer chains (18:0 and 24:0) and by increasing unsaturated double bonds (18:2). These results can be interpreted as a self-adaptive modification of lecithin:cholesterol acyltransferase deficiency-induced red-cell membrane abnormalities, to maintain normal membrane fluidity. This speculation was supported by the ESR spin-label studies on the patient's membrane lipids. The normal order parameters in intact red cells and in total lipid liposomes were decreased if cholesterol-depleted membrane liposomes were prepared. Thus, the hardening effect of cholesterol appeared to be counteracted by the softening effects described above. Overall membrane fluidity in intact red cells of the lecithin:cholesterol acyltransferase-deficient patient was maintained normally, judged by order parameters in ESR spin-label studies.  相似文献   

17.
Brush border membranes (BBM) are isolated from middle and posterior intestine of trout fed either an essential fatty acid-rich diet or a saturated one. The different phospholipid classes are separated, and their fatty acid composition is determined. Fluorescence anisotropy studies are performed using two lipid fluorophores, namely diphenylhexatriene (DPH) and trimethylamino-diphenylhexatriene (TMA-DPH). The results indicate that the usual parameters affecting the lipid fluidity such as the phospholipid:protein (PL:PROT), cholesterol:phospholipid (CHOL:PL), and sphingomyelin:phosphatidylcholine (SP:PC) ratios and the unsaturation of the acyl chains are sufficient to explain the fluidity values determined using DPH, but not those obtained with TMA-DPH as a probe. This fluorophore is assessed to be localized only in the external leaflet of the membrane. Hence, it will be affected by the composition of the major phospholipids of this leaflet, sphingomyelin and phosphatidylcholine.  相似文献   

18.
A coordinated study of membrane fluidity and fatty acid composition has been carried out in Escherichia coli W3110. The lipid acyl chain profile of the bacteria, altered by growing cells in steady state at 30, 37, 42, or 45 degrees C, was determined by gas chromatography of the fatty acid methyl esters. In parallel experiments, total membranes obtained from cells of the above-mentioned cultures were labeled with dipyrenylpropane and their relative fluidity was measured on the basis of the excimer to monomer fluorescence intensity ratio of the fluorophore. It has been found that, at constant assay temperature, fluidity determined with dipyrenylpropane decreases gradually with the growth temperature increment, from 30 to 45 degrees C. Interestingly, when fatty acid composition is taken into account, fluidity increases linearly in the range under study, with the proportion of unsaturated fatty acyl chains, both variables being highly correlated (0.924 相似文献   

19.
The typical plant sterols (sitosterol, stigmasterol and campesterol) were compared with respect to their ability to regulate membrane fluidity of soybean phosphatidylcholine (PC) vesicles. Fluidity changes were monitored by the steady-state fluorescence anisotropy with 1,6-diphenyl-1,3,5-hexatriene as a probe and assigned to a measure of the acyl chain orientational order. Sitosterol and campesterol appear to be the most suitable sterols in ordering the acyl chains of soybean lecithin bilayers, even more efficient than cholesterol, the standard of reference for sterol effects on membranes, suggesting that they play a significant role in the regulation of plant membrane properties. Stigmasterol is shown to be much less active. Cycloartenol, a biosynthetic precursor of plant sterols, increases the acyl chain order with the same efficiency as cholesterol. We also investigated the effects of two unusual sterols, 24-methylpollinastanol and 14 alpha,24-dimethylcholest-8-en-3 beta-ol, which were shown to accumulate in plants treated with fungicides belonging to two important classes, N-substituted morpholines and triazoles, respectively. These two sterols exhibit a behavior very similar to that of stigmasterol. The results are discussed in terms of sterol effects on the molecular packing of soybean PC bilayers.  相似文献   

20.
The in vitro effects of plant sterols were investigated with regard to their uptake and membrane lipid fluidity in human keratinocytes. Among the different media tested to transport sterols (liposomes, micelles and organic solvents), the best results in terms of incorporation and viability were obtained by the use of the organic solvents dimethylsulfoxide and ethanol. After 48 h incubation exogenous sterol can account for about 30% of the total cell sterol content. The total sterol amount in plasma membranes increased 2-fold after incubation with cholesterol, whereas it was not altered when phytosterols were incorporated. The incorporation of cholesterol, sitosterol and stigmasterol led to an increase in the percent of unsaturated fatty acid C18:1 in the plasma membrane. The effect of this uptake on membrane fluidity was studied by means of fluorescence polarisation using DPH and TMA-DPH as fluorescent probes. Whereas cholesterol and sitosterol had no significant effect on the DPH fluorescence anisotropy (rs), the presence of stigmasterol induced a 12% decrease of rs reflecting an increase in membrane fluidity. We can conclude from this study that in the presence of sitosterol, the mean fluidity of the membrane is regulated whereas stigmasterol triggers a looseness of molecular packing of phospholipids acyl chains, in accordance with previous results obtained on purely lipid model membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号