首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Escherichia coli, the MoaD protein plays a central role in the conversion of precursor Z to molybdopterin (MPT) during molybdenum cofactor biosynthesis. MoaD has a fold similar to that of ubiquitin and contains a highly conserved C-terminal Gly-Gly motif, which in its active form contains a transferrable sulfur in the form of a thiocarboxylate group. During MPT biosynthesis, MoaD cycles between two different heterotetrameric complexes, one with MoaE to form MPT synthase and the other with MoeB, a protein similar to E1 in the ubiquitin pathway, to regenerate its transferrable sulfur. To determine the specific roles of each of the two terminal Gly residues with regard to the MoaD cycle, variants at the penultimate (Gly80) or terminal (Gly81) residues of both MoaD and thiocarboxylated MoaD were created. These variants were analyzed to determine their effects on complex formation with MoaE and MoeB, formation of the MoaD-acyl-adenylate complex, transfer of sulfur to precursor Z to form MPT, and total cofactor biosynthesis. The combined results show that while conservative substitutions at Gly80 had little effect on any of the processes that were examined, the terminal MoaD residue (Gly81) is important for transfer of sulfur to precursor Z and essential for formation of the MoaD-AMP complex. These results further our understanding of the mechanistic similarities of the MoaD-MoeB reaction to that of the ubiquitin-E1 system.  相似文献   

2.
Molybdopterin (MPT) is a pyranopterin with a unique dithiolene group coordinating molybdenum (Mo) or tungsten (W) in all Mo- and W-enzymes except nitrogenase. In Escherichia coli, MPT is formed by incorporation of two sulfur atoms into precursor Z, which is catalyzed by MPT synthase. The recently solved crystal structure of MPT synthase (Rudolph, M. J., Wuebbens, M. M., Rajagopalan, K. V., and Schindelin, H. (2000) Nat. Struct. Biol. 8, 42-46) shows the heterotetrameric nature of the enzyme that is composed of two small (MoaD) and two large subunits (MoaE). According to sequence and structural similarities among MoaD, ubiquitin, and ThiS, a thiocarboxylation of the C terminus of MoaD is proposed that would serve as the source of sulfur that is transferred to precursor Z. Here, we describe the in vitro generation of carboxylated and thiocarboxylated MoaD. Both forms of MoaD are monomeric and are able to form a heterotetrameric complex after coincubation in equimolar ratios with MoaE. Only the thiocarboxylated MPT synthase complex was found to be able to convert precursor Z in vitro to MPT. Slight but significant differences between the carboxylated and the thiocarboxylated MPT synthase can be seen using size exclusion chromatography. A two-step reaction of MPT synthesis is proposed where the dithiolene is generated by two thiocarboxylates derived from a single tetrameric MPT synthase.  相似文献   

3.
The molybdopterin (MPT) synthase complex in Escherichia coli consists of two MoaE subunits and two MoaD subunits in a heterotetrameric structure with the two MoaE subunits forming a central dimer. Each MoaD subunit binds to a single MoaE molecule to form two identical MoaE/MoaD interfaces. Here we define the thermodynamic properties of the interaction between MoaE and MoaD in MPT synthase using a H/D exchange and matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy based method termed SUPREX (stability of unpurified proteins from rates of H/D exchange). SUPREX-derived protein folding free energies and m values are reported for MoaE in the presence and absence of MoaD and MoaD-SH, the thiocarboxylated form of MoaD that is essential for the catalytic activity of MPT synthase. The protein folding free energy measurements were used to calculate a dissociation constant of 17 +/- 7 microM for the binding of MoaD to MoaE in inactive MPT synthase and a dissociation constant of 2.6 +/- 0.9 microM for the binding of MoaD-SH to MoaE in active MPT synthase. The increased binding affinity of MoaD-SH for MoaE is consistent with a previously proposed mechanism for the MPT synthase reaction. Using the increased m values exhibited by MoaE in the presence of either MoaD subunit, the solvent accessible surface area buried upon formation of the subunit interface in MPT synthase was estimated to be 2378 A(2) for inactive MPT synthase and 4117 A(2) for active MPT synthase.  相似文献   

4.
Molybdenum cofactor biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea, and eukaryotes, including humans. Genetic deficiencies of enzymes involved in cofactor biosynthesis in humans lead to a severe and usually fatal disease. The molybdenum cofactor contains a tricyclic pyranopterin, termed molybdopterin, that bears the cis-dithiolene group responsible for molybdenum ligation. The dithiolene group of molybdopterin is generated by molybdopterin synthase, which consists of a large (MoaE) and small (MoaD) subunit. The crystal structure of molybdopterin synthase revealed a heterotetrameric enzyme in which the C terminus of each MoaD subunit is deeply inserted into a MoaE subunit to form the active site. In the activated form of the enzyme, the MoaD C terminus is present as a thiocarboxylate. The present study identified the position of the thiocarboxylate sulfur by exploiting the anomalous signal originating from the sulfur atom. The structure of molybdopterin synthase in a novel crystal form revealed a binding pocket for the terminal phosphate of molybdopterin, the product of the enzyme, and suggested a binding site for the pterin moiety present in precursor Z and molybdopterin. Finally, the crystal structure of the MoaE homodimer provides insights into the conformational changes accompanying binding of the MoaD subunit.  相似文献   

5.
Biosynthesis of the molybdenum cofactor involves the initial formation of precursor Z, its subsequent conversion to molybdopterin (MPT) by MPT synthase, and attachment of molybdenum to the dithiolene moiety of MPT. The sulfur used for the formation of the dithiolene group of MPT exists in the form of a thiocarboxylate group at the C terminus of the smaller subunit of MPT synthase. Human MPT synthase contains the MOCS2A and MOCS2B proteins that display homology to the Escherichia coli proteins MoaD and MoaE, respectively. MOCS2A and MOCS2B were purified after heterologous expression in E. coli, and the separately purified subunits readily assemble into a functional MPT synthase tetramer. The rate of conversion of precursor Z to MPT by the human enzyme is slower than that of the eubacterial homologue. To obtain insights into the molecular mechanism leading to human molybdenum cofactor deficiency, site-specific mutations identified in patients showing symptoms of molybdenum cofactor deficiency were generated. Characterization of a V7F substitution in MOCS2A, identified in a patient with an unusual mild form of the disease, showed that the mutation weakens the interaction between MOCS2A and MOCS2B, whereas a MOCS2B-E168K mutation identified in a severely affected patient attenuates binding of precursor Z.  相似文献   

6.
Biosynthesis of the molybdenum cofactor, a chelate of molybdenum or tungsten with a novel pterin, occurs in virtually all organisms including humans. In the cofactor, the metal is complexed to the unique cis-dithiolene moiety located on the pyran ring of molybdopterin. Escherichia coli molybdopterin synthase, the protein responsible for adding the dithiolene to a desulfo precursor termed precursor Z, is a dimer of dimers containing the MoaD and MoaE proteins. The sulfur used for dithiolene formation is carried in the form of a thiocarboxylate at the MoaD C terminus. Using an intein expression system for preparation of thiocarboxylated MoaD, the mechanism of the molybdopterin synthase reaction was examined. A stoichiometry of 2 molecules of thiocarboxylated MoaD per conversion of a single precursor Z molecule to molybdopterin was observed. Examination of several synthase variants bearing mutations in the MoaE subunit identified Lys-119 as a residue essential for activity and Arg-39 and Lys-126 as other residues critical for the reaction. An intermediate of the synthase reaction was identified and characterized. This intermediate remains tightly associated with the protein and is the predominant product formed by synthase containing the K126A variant of MoaE. Mass spectral data obtained from protein-bound intermediate are consistent with a monosulfurated structure that contains a terminal phosphate group similar to that present in molybdopterin.  相似文献   

7.
In the second step of the molybdenum cofactor (Moco) biosynthesis in Escherichia coli, the l-cysteine desulfurase IscS was identified as the primary sulfur donor for the formation of the thiocarboxylate on the small subunit (MoaD) of MPT synthase, which catalyzes the conversion of cyclic pyranopterin monophosphate to molybdopterin (MPT). Although in Moco biosynthesis in humans, the thiocarboxylation of the corresponding MoaD homolog involves two sulfurtransferases, an l-cysteine desulfurase, and a rhodanese-like protein, the rhodanese-like protein in E. coli remained enigmatic so far. Using a reverse approach, we identified a so far unknown sulfurtransferase for the MoeB-MoaD complex by protein-protein interactions. We show that YnjE, a three-domain rhodanese-like protein from E. coli, interacts with MoeB possibly for sulfur transfer to MoaD. The E. coli IscS protein was shown to specifically interact with YnjE for the formation of the persulfide group on YnjE. In a defined in vitro system consisting of MPT synthase, MoeB, Mg-ATP, IscS, and l-cysteine, YnjE was shown to enhance the rate of the conversion of added cyclic pyranopterin monophosphate to MPT. However, YnjE was not an enhancer of the cysteine desulfurase activity of IscS. This is the first report identifying the rhodanese-like protein YnjE as being involved in Moco biosynthesis in E. coli. We believe that the role of YnjE is to make the sulfur transfer from IscS for Moco biosynthesis more specific because IscS is involved in a variety of different sulfur transfer reactions in the cell.  相似文献   

8.
We were able to reconstitute molybdopterin (MPT)-free sulfite oxidase in vitro with the molybdenum cofactor (Moco) synthesized de novo from precursor Z and molybdate. MPT-free human sulfite oxidase apoprotein was obtained by heterologous expression in an Escherichia coli mutant with a defect in the early steps of MPT biosynthesis. In vitro reconstitution of the purified apoprotein was achieved using an incubation mixture containing purified precursor Z, purified MPT synthase, and sodium molybdate. In vitro synthesized MPT generated from precursor Z by MPT synthase remains bound to the synthase. Surprisingly, MPT synthase was found capable of donating bound MPT to MPT-free sulfite oxidase. MPT was not released from MPT synthase when either bovine serum albumin or Moco-containing sulfite oxidase was used in place of aposulfite oxidase. After the inclusion of sodium molybdate in the reconstitution mixture, active sulfite oxidase was obtained, revealing that in vitro MPT synthase and aposulfite oxidase are sufficient for the insertion of MPT into sulfite oxidase and the conversion of MPT into Moco in the presence of high concentrations of molybdate. The conversion of MPT into Moco by molybdate chelation apparently occurs concomitantly with the insertion of MPT into sulfite oxidase.  相似文献   

9.
The persulfide sulfur formed on an active site cysteine residue of pyridoxal 5′-phosphate-dependent cysteine desulfurases is subsequently incorporated into the biosynthetic pathways of a variety of sulfur-containing cofactors and thionucleosides. In molybdenum cofactor biosynthesis, MoeB activates the C terminus of the MoaD subunit of molybdopterin (MPT) synthase to form MoaD-adenylate, which is subsequently converted to a thiocarboxylate for the generation of the dithiolene group of MPT. It has been shown that three cysteine desulfurases (CsdA, SufS, and IscS) of Escherichia coli can transfer sulfur from l-cysteine to the thiocarboxylate of MoaD in vitro. Here, we demonstrate by surface plasmon resonance analyses that IscS, but not CsdA or SufS, interacts with MoeB and MoaD. MoeB and MoaD can stimulate the IscS activity up to 1.6-fold. Analysis of the sulfuration level of MoaD isolated from strains defective in cysteine desulfurases shows a largely decreased sulfuration level of the protein in an iscS deletion strain but not in a csdA/sufS deletion strain. We also show that another iscS deletion strain of E. coli accumulates compound Z, a direct oxidation product of the immediate precursor of MPT, to the same extent as an MPT synthase-deficient strain. In contrast, analysis of the content of compound Z in ΔcsdA and ΔsufS strains revealed no such accumulation. These findings indicate that IscS is the primary physiological sulfur-donating enzyme for the generation of the thiocarboxylate of MPT synthase in MPT biosynthesis.  相似文献   

10.
11.

Background

Molybdopterin cofactor (MoCo) biosynthesis in Mycobacterium tuberculosis is associated with a multiplicity of genes encoding several enzymes in the pathway, including the molybdopterin (MPT) synthase, a hetero tetramer comprising two MoaD and two MoaE subunits. In addition to moaD1, moaD2, moaE1, moaE2, the M. tuberculosis genome also contains a moaX gene which encodes an MPT-synthase in which the MoaD and MoaE domains are located on a single polypeptide. In this study, we assessed the requirement for post-translational cleavage of MoaX for functionality of this novel, fused MPT synthase and attempted to establish a functional hierarchy for the various MPT-synthase encoding genes in M. tuberculosis.

Results

Using a heterologous Mycobacterium smegmatis host and the activity of the MoCo-dependent nitrate reductase, we confirmed that moaD2 and moaE2 from M. tuberculosis together encode a functional MPT synthase. In contrast, moaD1 displayed no functionality in this system, even in the presence of the MoeBR sulphurtransferase, which contains the rhodansese-like domain, predicted to activate MoaD subunits. We demonstrated that cleavage of MoaX into its constituent MoaD and MoaE subunits was required for MPT synthase activity and confirmed that cleavage occurs between the Gly82 and Ser83 residues in MoaX. Further analysis of the Gly81-Gly82 motif confirmed that both of these residues are necessary for catalysis and that the Gly81 was required for recognition/cleavage of MoaX by an as yet unidentified protease. In addition, the MoaE component of MoaX was able to function in conjunction with M. smegmatis MoaD2 suggesting that cleavage of MoaX renders functionally interchangeable subunits. Expression of MoaX in E. coli revealed that incorrect post-translational processing is responsible for the lack of activity of MoaX in this heterologous host.

Conclusions

There is a degree of functional interchangeability between the MPT synthase subunits of M. tuberculosis. In the case of MoaX, post-translational cleavage at the Gly82 residue is required for function.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0355-2) contains supplementary material, which is available to authorized users.  相似文献   

12.
Molybdenum cofactor (Moco) biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea and eukaryotes, including humans. Genetic deficiencies of enzymes involved in Moco biosynthesis in humans lead to a severe and usually fatal disease. Moco contains a tricyclic pyranopterin, termed molybdopterin (MPT), that bears the cis-dithiolene group responsible for molybdenum ligation. The dithiolene group of MPT is generated by MPT synthase, which consists of a large and small subunits. The 1.45 A resolution crystal structure of MPT synthase reveals a heterotetrameric protein in which the C-terminus of each small subunit is inserted into a large subunit to form the active site. In the activated form of the enzyme this C-terminus is present as a thiocarboxylate. In the structure of a covalent complex of MPT synthase, an isopeptide bond is present between the C-terminus of the small subunit and a Lys side chain in the large subunit. The strong structural similarity between the small subunit of MPT synthase and ubiquitin provides evidence for the evolutionary antecedence of the Moco biosynthetic pathway to the ubiquitin dependent protein degradation pathway.  相似文献   

13.
Voss M  Nimtz M  Leimkühler S 《PloS one》2011,6(11):e28170
The pathway of molybdenum cofactor biosynthesis has been studied in detail by using proteins from Mycobacterium species, which contain several homologs associated with the first steps of Moco biosynthesis. While all Mycobacteria species contain a MoeZR, only some strains have acquired an additional homolog, MoeBR, by horizontal gene transfer. The role of MoeBR and MoeZR was studied in detail for the interaction with the two MoaD-homologs involved in Moco biosynthesis, MoaD1 and MoaD2, in addition to the CysO protein involved in cysteine biosynthesis. We show that both proteins have a role in Moco biosynthesis, while only MoeZR, but not MoeBR, has an additional role in cysteine biosynthesis. MoeZR and MoeBR were able to complement an E. coli moeB mutant strain, but only in conjunction with the Mycobacterial MoaD1 or MoaD2 proteins. Both proteins were able to sulfurate MoaD1 and MoaD2 in vivo, while only MoeZR additionally transferred the sulfur to CysO. Our in vivo studies show that Mycobacteria have acquired several homologs to maintain Moco biosynthesis. MoeZR has a dual role in Moco- and cysteine biosynthesis and is involved in the sulfuration of MoaD and CysO, whereas MoeBR only has a role in Moco biosynthesis, which is not an essential function for Mycobacteria.  相似文献   

14.
The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5′-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.  相似文献   

15.
16.
The human MOCS3 gene encodes a protein involved in activation and sulfuration of the C terminus of MOCS2A, the smaller subunit of the molybdopterin (MPT) synthase. MPT synthase catalyzes the formation of the dithiolene group of MPT that is required for the coordination of the molybdenum atom in the last step of molybdenum cofactor (Moco) biosynthesis. The two-domain protein MOCS3 catalyzes both the adenylation and the subsequent generation of a thiocarboxylate group at the C terminus of MOCS2A by its C-terminal rhodanese-like domain (RLD). The low activity of MOCS3-RLD with thiosulfate as sulfur donor and detailed mutagenesis studies showed that thiosulfate is most likely not the physiological sulfur source for Moco biosynthesis in eukaryotes. It was suggested that an l-cysteine desulfurase might be involved in the sulfuration of MOCS3 in vivo. In this report, we investigated the involvement of the human l-cysteine desulfurase Nfs1 in sulfur transfer to MOCS3-RLD. A variant of Nfs1 was purified in conjunction with Isd11 in a heterologous expression system in Escherichia coli, and the kinetic parameters of the purified protein were determined. By studying direct protein-protein interactions, we were able to show that Nfs1 interacted specifically with MOCS3-RLD and that sulfur is transferred from l-cysteine to MOCS3-RLD via an Nfs1-bound persulfide intermediate. Because MOCS3 was shown to be located in the cytosol, our results suggest that cytosolic Nfs1 has an important role in sulfur transfer for the biosynthesis of Moco.  相似文献   

17.
It has been shown that conversion of precursor Z to molybdopterin (MPT) by Escherichia coli MPT synthase entails the transfer of the sulfur atom of the C-terminal thiocarboxylate from the small subunit of the synthase to generate the dithiolene group of MPT and that the moeB mutant of E. coli contains inactive MPT synthase devoid of the thiocarboxylate. The data presented here demonstrate that l-cysteine can serve as the source of the sulfur for the biosynthesis of MPT in vitro but only in the presence of a persulfide-containing sulfurtransferase such as IscS, cysteine sulfinate desulfinase (CSD), or CsdB. A fully defined in vitro system has been developed in which an inactive form of MPT synthase can be activated by incubation with MoeB, Mg-ATP, l-cysteine, and one of the NifS-like sulfurtransferases, and the addition of precursor Z to the in vitro system gives rise to MPT formation. The use of radiolabeled l-[(35)S]cysteine has demonstrated that both sulfurs of the dithiolene group of MPT originate from l-cysteine. It was found that MPT can be produced from precursor Z in an E. coli iscS mutant strain, indicating that IscS is not required for the in vivo sulfuration of MPT synthase. A comparison of the ability of the three sulfurtransferases to provide the sulfur for MPT formation showed the highest activity for CSD in the in vitro system.  相似文献   

18.
The molybdenum cofactor (Moco) is part of the active site of all molybdenum (Mo)-dependent enzymes, except nitrogenase. Moco consists of molybdopterin (MPT), a phosphorylated pyranopterin with an enedithiolate coordinating Mo and it is synthesized by an evolutionary old multistep pathway. The plant protein Cnx1 from Arabidopsis thaliana catalyzes with its two domains (E and G) the terminal step of Moco biosynthesis, the insertion of Mo into MPT. Recently, the high-resolution MPT-bound structure of the Cnx1 G domain (Cnx1G) has been determined (Kuper, J., Llamas, A., Hecht, H. J., Mendel, R. R., and Schwarz, G. (2004) Nature 430, 803-806). Besides defining the MPT-binding site a novel and unexpected modification of MPT has been identified, adenylated MPT. Here we demonstrate that it is Cnx1G that catalyzes the adenylation of MPT. In vitro synthesized MPT was quantitatively transferred from Escherichia coli MPT synthase to Cnx1G. The subsequent adenylation reaction by Cnx1G was Mg(2+)- and ATP-dependent. Whereas Mn(2+) could partially replace Mg(2+), ATP was the only nucleotide accepted by Cnx1G. Consequently the formation of pyrophosphate was demonstrated, which was dependent on the ability of Cnx1G to bind MPT. Pyrophosphate, either formed in the reaction or added externally, inhibited the Cnx1G-catalyzed MPT adenylation reaction. Catalytically inactive Cnx1G mutant variants showed impaired MPT adenylation confirming that MPT-AMP is the reaction product of Cnx1G. Therefore Cnx1G is a MPT adenylyltransferase catalyzing the activation of MPT, a universal reaction in the Moco synthetic pathway because Cnx1G is able to reconstitute also bacterial and mammalian Moco biosynthesis.  相似文献   

19.
Matthies A  Nimtz M  Leimkühler S 《Biochemistry》2005,44(21):7912-7920
The human MOCS3 protein contains an N-terminal domain similar to the Escherichia coli MoeB protein and a C-terminal segment displaying similarities to the sulfurtransferase rhodanese. MOCS3 is proposed to catalyze both the adenylation and the subsequent generation of a thiocarboxylate group at the C-terminus of the smaller subunit of molybdopterin (MPT) synthase during Moco biosynthesis in humans. Recent studies have shown that the MOCS3 rhodanese-like domain (MOCS3-RLD) catalyzes the transfer of sulfur from thiosulfate to cyanide and is also able to provide the sulfur for the thiocarboxylation of MOCS2A in a defined in vitro system for the generation of MPT from precursor Z. MOCS3-RLD contains four cysteine residues of which only C412 in the six amino acid active loop is conserved in homologous proteins from other organisms. ESI-MS/MS studies gave direct evidence for the formation of a persulfide group that is exclusively formed on C412. Simultaneous mutagenesis of the remaining three cysteine residues showed that none of them is involved in the sulfur transfer reaction in vitro. A disulfide bridge was identified to be formed between C316 and C324, and possible roles of the three noncatalytic cysteine residues are discussed. By ESI-MS/MS a partially gluconoylated N-terminus of the His6-tagged MOCS3-RLD was identified (mass increment of 178 Da) which resulted in a heterogeneity of the protein but did not influence sulfurtransferase activity.  相似文献   

20.
BACKGROUND: Molybdenum cofactor (Moco) biosynthesis is an evolutionarily conserved pathway present in archaea, eubacteria, and eukaryotes. In humans, genetic abnormalities in the biosynthetic pathway result in Moco deficiency, which is accompanied by severe neurological symptoms and death shortly after birth. The Escherichia coli MoeA and MogA proteins are involved in the final step of Moco biosynthesis: the incorporation of molybdenum into molybdopterin (MPT), the organic pyranopterin moiety of Moco. RESULTS: The crystal structure of E. coli MoeA has been refined at 2 A resolution and reveals that the highly elongated MoeA monomer consists of four clearly separated domains, one of which is structurally related to MogA, indicating a divergent evolutionary relationship between both proteins. The active form of MoeA is a dimer, and a putative active site appears to be localized to a cleft formed between domain II of the first monomer and domains III and IV of the second monomer. CONCLUSIONS: In eukaryotes, MogA and MoeA are fused into a single polypeptide chain. The corresponding mammalian protein gephyrin has also been implicated in the anchoring of glycinergic receptors to the cytoskeleton at inhibitory synapses. Based on the structures of MoeA and MogA, gephyrin is surmised to be a highly organized molecule containing at least five domains. This multidomain arrangement could provide a structural basis for its functional diversity. The oligomeric states of MoeA and MogA suggest how gephyrin could assemble into a hexagonal scaffold at inhibitory synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号