首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The accelerating pace of human embryonic stem cell (hESC) research has created an urgent need for the development of hESC registries, information repositories intended to gather, organize and disseminate hESC information. Although of enormous value to this evolving field, registries face significant challenges to their development. These challenges include addressing the legal and ethical issues surrounding hESC derivation as well as complex intellectual property concerns. In addition to these issues, registries must develop tools to efficiently gather, validate and present many different types of hESC information from a variety of sources. Given the pace and regulatory complexities of this field, it is important that registries develop cooperative mechanisms to avoid duplication and more efficiently support hESC research.  相似文献   

3.
毛斌  马峰 《细胞生物学杂志》2012,(11):1067-1079
人类胚胎干细胞和多功能诱导性干细胞的诞生,标志着干细胞研究已经跨入了全新的应用时代。干细胞研究领域的一个重要方向是特定谱系成熟细胞的定向诱导分化。在诸多的血细胞中,成熟红细胞因为无核而携带着最小量的遗传物质,可能作为最早的干细胞治疗产品而应用于输血替代治疗。最近,干细胞向造血细胞(包括红细胞)的研究正方兴未艾。但由于方法学上的偏差,诱导产生的红细胞的成熟度各有所不同。该文在结合了作者实验室的工作经验的基础上,对目前人类多潜能干细胞向红细胞特定诱导分化的方法做了综合的描述,并提出了该研究领域亟需解决的重大科学问题。  相似文献   

4.
The successful establishment of human embryonic stem cell (hESC) lines has raised high expectation for their future applications. The major focus of hESC research has been on their potential use in replacement therapies. However, the most immediate application of hESCs may be in establishment of humanised in vitro tests, which have potential to reduce problems of interspecies variations in safety assessments. Improved prediction of human hazard would increase patient safety and reduce the number of laboratory animals needed for toxicological and safety pharmacological testing, leading to improved efficiency of drug discovery and development in term of cost and time. The current review describes some of the newest research programmes on the use of hESCs for safety evaluations of conventional drugs. It provides an overview of the possible impact of hESCs and their derivates on regulatory drug safety assessments and discusses the potential effects on the product pipeline organisation. The review additionally summarizes initiatives in establishing quality criteria for hESC expansion and differentiation. Such criteria are necessary in order to achieve high standardisation and throughput of pharmacological and toxicological tests. Finally, it will discuss the actions needed to scientifically prove the relevance and reliability of safety tests based on hESCs.  相似文献   

5.
6.
The development of human embryonic stem cell (hESC) lines for research and therapy is hampered by the need to improve the basic methodologies for cell culture expansion. In most current methods hESC lines are cultured on a mouse or human feeder cell layer which appears to be the most reliable way to maintain cells stably in the undifferentiated state. However, co-culture introduces complications for studying stem cell biology and the delivery of safe therapies for the future. This article reviews the specific risks associated with any proposed clinical use of feeder cells of mouse origin and compares these with the benefits and risks of using human feeder cells. The further work required to establish clinical grade feeder cell lines for hESC line culture is significant and costly. Much work is being done to find feeder-free culture systems but these are at an early stage of development and there may be consequences that affect the value of the hESCs for research and development. These challenges should be viewed in the context of the huge amount of work that will be required over many years to develop robust differentiation protocols and establish fully defined procedures and adequate safety data for embryonic stem cell products.  相似文献   

7.
Availability of human embryonic stem cells (hESC) has enhanced human neural differentiation research. The derivation of neural progenitor (NP) cells from hESC facilitates the interrogation of human embryonic development through the generation of neuronal subtypes and supporting glial cells. These cells will likely lead to novel drug screening and cell therapy uses. This review will discuss the current status of derivation, maintenance and further differentiation of NP cells with special emphasis on the cellular signaling involved in these processes. The derivation process affects the yield and homogeneity of the NP cells. Then when exposed to the correct environmental signaling cues, NP cells can follow a unique and robust temporal cell differentiation process forming numerous phenotypes.  相似文献   

8.
Recently, particular attention has been paid to the human embryonic stem cells (hESC) in the context of their potential application in regenerative medicine; however, ethical concerns prevent their clinical application. Induction of pluripotency in somatic cells seems to be a good alternative for hESC recruitment regarding its potential use in tissue regeneration, disease modeling, and drug screening. Since Yamanaka’s team in 2006 restored pluripotent state of somatic cells for the first time, a significant progress has been made in the area of induced pluripotent stem cells (iPSC) generation. Here, we review the current state of knowledge in the issue of techniques applied to establish iPSC. Somatic cell nuclear transfer, cell fusion, cell extracts reprogramming, and techniques of direct reprogramming are described. Retroviral and lentiviral transduction are depicted as ways of cell reprogramming with the use of integrating vectors. Contrary to them, adenoviruses, plasmids, single multiprotein expression vectors, and PiggyBac transposition systems are examples of non-integrative vectors used in iPSC generation protocols. Furthermore, reprogramming with the delivery of specific proteins, miRNA or small chemical compounds are presented. Finally, the changes occurring during the reprogramming process are described. It is concluded that subject to some limitations iPSC could become equivalents for hESC in regenerative medicine.  相似文献   

9.
The scientific challenges and ethical controversies facing human embryonic stem cell (hESC) research continue to command attention. The issues posed by patenting hESC technologies have, however, largely failed to penetrate the discourse, much less result in political action. This paper examines U.S. and European patent systems, illustrating discrepancies in the patentability of hESC technologies and identifying potential negative consequences associated with efforts to make available hESC research tools for basic research purposes while at same time strengthening the position of certain patent-holders' rights. Differences between the U.S. and the European contexts may in part explain why the course of hESC research in those jurisdictions ultimately diverges. Nevertheless, questions about whether and how patenting, related agreements, and licensing practices progress and shape the field of hESC research in both the U.S., Europe, and elsewhere must no longer be marginalised. These questions are fundamentally important in determining what benefits are likely to result from hESC research. Assuring these benefits is the moral issue with which patent systems are most intrinsically concerned, and that governments must begin to directly address rather than assume or ignore.  相似文献   

10.
Here, we describe the derivation of a novel human embryonic stem cell (hESC) line, Endeavour-2 (E-2), propagated on human fetal fibroblasts (HFF) in a serum-replacement media. The inner cell mass (ICM) was manually dissected from the blastocyst without using immunodissection and, therefore, antibodies from animal sources. A total of 20 embryos were thawed and cultured, eight embryos were hatched, and five ICMs were obtained. They were transferred onto HFF used as feeder layer, and one colony representing the initial cell proliferation of a new hESC line, E-2, was obtained. The newly emerged hESC colony was passaged first by physical dissection and subsequently by enzymatic dissociation. E-2 has been in culture for over 6 months and has been shown to possess typical features of a pluripotent hESC line including expression of stem cell surface markers (SSEA4, TRA-160, and integrin alpha-6), intracellular alkaline phosphatase, and pluripotency gene markers, OCT4 and NANOG. This hESC line shows lineage-specific differentiation into various representative cell types expressing markers characteristic of the three somatic germ layers under both in vitro and in vivo conditions. E-2 line shows a normal karyotype (46 XX) and has been successfully cryopreserved and thawed several times using slow-freezing procedures. E-2 adds to the repertoire of existing hESC lines for research and development purposes in the field of regenerative medicine.  相似文献   

11.
12.
13.
Human embryonic stem cells (hESC) hold tremendous potential in the emerging fields of gene and cell therapy as well as in basic scientific research. One of the major challenges regarding their application is the development of efficient cryopreservation protocols for hESC since current methods present poor recovery rates and/or technical difficulties which impair the development of effective processes that can handle bulk quantities of pluripotent cells. The main focus of this work was to compare different strategies for the cryopreservation of adherent hESC colonies. Slow‐rate freezing protocols using intact hESC colonies was evaluated and compared with a surface‐based vitrification approach. Entrapment within ultra‐high viscous alginate was investigated as the main strategy to avoid the commonly observed loss of viability and colony fragmentation during slow‐rate freezing. Our results indicate that entrapment beneath a layer of ultra‐high viscous alginate does not provide further protection to hESC cryopreserved through slow‐rate freezing, irrespectively of the cryomedium used. Vitrification of adherent hESC colonies on culture dishes yielded significantly higher recovery rates when compared to the slow‐rate freezing approaches investigated. The pluripotency of hESC was not changed after a vitrification/thawing cycle and during further propagation in culture. In conclusion, from the cryopreservation methods investigated in this study, surface‐based vitrification of hESC has proven to be the most efficient for the cryopreservation of intact hESC colonies, reducing the time required to amplify frozen stocks thus supporting the widespread use of these cells in research and clinical applications. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 1079–1087, 2012  相似文献   

14.
Human embryonic stem cells (hESCs) are capable of differentiation into every cell type of the human being. They are under extensive investigation for their regenerative potential in a variety of debilitating diseases. However, the field of hESC research is still in its infancy, as there are several critical issues that need to be resolved before clinical translation. Two major concerns are the ability of undifferentiated hESCs to form teratomas and the possibility of a provoked immune reaction after transplantation of hESCs into a new host. Therefore, it is imperative to develop non-invasive imaging modalities that allow for longitudinal, repetitive, and quantitative assessment of transplanted cell survival, proliferation, and migration in vivo. Reporter gene-based molecular imaging offers these characteristics and has great potential in the field of stem cell therapy. Moreover, it has recently been shown that reporter gene imaging can be combined with therapeutic strategies. Here, we provide an outline of the current status of hESC research and discuss the concerns of tumorigenicity and immunogenicity. Furthermore, we describe how molecular imaging can be utilized to follow and resolve these issues.  相似文献   

15.
Owing to the restrictive human embryonic stem cell (hESC) policies of the US government, the question of whether to pursue human embryonic stem cell experiments has dominated the ethical and political discourse concerning such research. Explicit attention must now turn to problems of implementing the research on a large scale: in the 2004 US elections, California voters approved a state initiative for stem cell research, earmarking $3 billion in direct spending over 10 years. This article explores three ethical and political problem areas emerging out of the California program, the resolution of which will help set the trajectory of hESC research in the US and abroad, and then proposes an institutional approach to help address them: a network of public stem cell banks in the US that feature transparent and shared governance.  相似文献   

16.
In this research, we examine how restrictive policy influenced performance in human embryonic stem cell research (hESC) between 1998 and 2008. In previous research, researchers argued whether restrictive policy decreased the performance of stem cell research in some nations, especially in the US. Here, we hypothesize that this policy influenced specific subfields of the hESC research. To investigate the selective policy effects, we categorize hESC research publications into three subfields—derivation, differentiation, and medical application research. Our analysis shows that restrictive policy had different effects on different subfields. In general, the US outperformed in overall hESC research throughout these periods. In the derivation of hESC, however, the US almost lost its competence under restrictive policy. Interestingly, the US scientific community showed prominent resilience in hESC research through international collaboration. We concluded that the US resilience and performance stemmed from the wide breadth of research portfolio of US scientists across the hESC subfields, combined with their strategic efforts to collaborate internationally on derivation research.  相似文献   

17.
Melichar H  Li O  Ross J  Haber H  Cado D  Nolla H  Robey EA  Winoto A 《PloS one》2011,6(5):e19854
Directed differentiation of human embryonic stem cells (hESCs) into any desired cell type has been hailed as a therapeutic promise to cure many human diseases. However, substantial roadblocks still exist for in vitro differentiation of hESCs into distinct cell types, including T lymphocytes. Here we examined the hematopoietic differentiation potential of six different hESC lines. We compare their ability to develop into CD34(+) or CD34(+)CD45(+) hematopoietic precursor populations under several differentiation conditions. Comparison of lymphoid potential of hESC derived- and fetal tissue derived-hematopoietic precursors was also made. We found diverse hematopoietic potential between hESC lines depending on the culture or passage conditions. In contrast to fetal-derived hematopoietic precursors, none of the CD34(+) precursors differentiated from hESCs were able to develop further into T cells. These data underscore the difficulties in the current strategy of hESC forward differentiation and highlight distinct differences between CD34(+) hematopoietic precursors generated in vitro versus in vivo.  相似文献   

18.
Human embryonic stem cells (hESC) are undifferentiated cells derived from an early embryo that can grow in vitro indefinitely, while retaining their capability to differentiate into specialized somatic cell types. Over the last decade there has been great interest in derivation and culture of these cells, as they can potentially provide a supply of readily available differentiated cells and tissues of all types to be used for therapeutic purposes in cell transplantation in humans, as well as for other medical uses such as drug discovery. The source of hESC lines is usually excess human embryos from in vitro fertilization treatments, although novel ways of producing hESCs have been suggested recently. The actual methods of hESC derivation have not changed greatly since the first report by Thomson et al. in 1998 . However, the main emphasis over the last several years has been in finding defined conditions for derivation and culture of hESCs, because to enable the clinical use of hESC for cell transplantation, the use of animal derived biological components is no longer acceptable. For basic research, the aim is to replace even human derived materials with completely defined systems. In this paper we describe methods utilized in our laboratory for hESC derivation and describe two studies conducted in an attempt to improve derivation efficiency and to enable research outcomes to be achieved using fewer embryos.  相似文献   

19.
Human embryonic stem cells (hESC) are able to maintain pluripotency in culture, to proliferate indefinitely and to differentiate into all somatic cell types. Due to these unique properties, hESC may become an exceptional source of tissues for transplantation and have a great potential for the therapy of incurable diseases. Here, we review new developments in the area of embryonic stem cells and discuss major challenges — standardization of protocols for cell derivation and cultivation, identification of specific molecular markers, development of new approaches for directed differentiation, etc. — which remain to be settled, prior to safe and successful clinical application of stem cells. We appraise several potential approaches in hESC-based therapy including derivation of autologous cells via therapeutic cloning (1), generation of immune tolerance to allogenic donor cells via hematopoetic chimerism (2), and development of the banks of hESC lines compatible with the main antigens and exhibiting equivalent pluripotency (3). In addition, we discuss briefly induced pluripotent cells, which are derived via genetic modification of autologous somatic cells and are analogous to ESC. Our analysis demonstrates that uncontrollable differentiation in vivo and teratogenic potential of hESC are critical limitations of their application in clinical practice. Therefore, the major approach in hESC therapy is derivation of a specific differentiated progeny, which has lower proliferative potential and immune privilege, yet poses fewer risks for organism. The review demonstrates that cell therapy is far more complex and resource-consuming process as compared with drug-based medicine and consequently pluripotent stem cell biology and technology still requires further investigation and development before these cells can be used in clinical practice.  相似文献   

20.
The clinical and research value of human embryonic stem cells (hESC) depends upon maintaining their epigenetically naïve, fully undifferentiated state. Inactivation of one X chromosome in each cell of mammalian female embryos is a paradigm for one of the earliest steps in cell specialization through formation of facultative heterochromatin. Mouse ES cells are derived from the inner cell mass (ICM) of blastocyst stage embryos prior to X‐inactivation, and cultured murine ES cells initiate this process only upon differentiation. Less is known about human X‐inactivation during early development. To identify a human ES cell model for X‐inactivation and study differences in the epigenetic state of hESC lines, we investigated X‐inactivation in all growth competent, karyotypically normal, NIH approved, female hESC lines and several sublines. In the vast majority of undifferentiated cultures of nine lines examined, essentially all cells exhibit hallmarks of X‐inactivation. However, subcultures of any hESC line can vary in X‐inactivation status, comprising distinct sublines. Importantly, we identified rare sublines that have not yet inactivated Xi and retain competence to undergo X‐inactivation upon differentiation. Other sublines exhibit defects in counting or maintenance of XIST expression on Xi. The few hESC sublines identified that have not yet inactivated Xi may reflect the earlier epigenetic state of the human ICM and represent the most promising source of NIH hESC for study of human X‐inactivation. The many epigenetic anomalies seen indicate that maintenance of fully unspecialized cells, which have not formed Xi facultative heterochromatin, is a delicate epigenetic balance difficult to maintain in culture. J. Cell. Physiol. 216: 445–452, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号