首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Zhang HL  Peng HB 《PloS one》2011,6(10):e26805

Background

The formation of acetylcholine receptor (AChR) cluster is a key event during the development of the neuromuscular junction. It is induced through the activation of muscle-specific kinase (MuSK) by the heparan-sulfate proteoglycan agrin released from the motor axon. On the other hand, DC electric field, a non-neuronal stimulus, is also highly effective in causing AChRs to cluster along the cathode-facing edge of muscle cells.

Methodology/Principal Findings

To understand its molecular mechanism, quantum dots (QDs) were used to follow the movement of AChRs as they became clustered under the influence of electric field. From analyses of trajectories of AChR movement in the membrane, it was concluded that diffuse receptors underwent Brownian motion until they were immobilized at sites of cluster formation. This supports the diffusion-mediated trapping model in explaining AChR clustering under the influence of this stimulus. Disrupting F-actin cytoskeleton assembly and interfering with rapsyn-AChR interaction suppressed this phenomenon, suggesting that these are integral components of the trapping mechanism induced by the electric field. Consistent with the idea that signaling pathways are activated by this stimulus, the localization of tyrosine-phosphorylated forms of AChR β-subunit and Src was observed at cathodal AChR clusters. Furthermore, disrupting MuSK activity through the expression of a kinase-dead form of this enzyme abolished electric field-induced AChR clustering.

Conclusions

These results suggest that DC electric field as a physical stimulus elicits molecular reactions in muscle cells in the form of cathodal MuSK activation in a ligand-free manner to trigger a signaling pathway that leads to cytoskeletal assembly and AChR clustering.  相似文献   

3.
several ways of estimating a continuous function from the spike train output of a neuron subjected to repeated stimuli are compared: (i) the probability of firing function estimated by a PST-histogram (ii) the rate of discharge function estimated by a frequencygram (Bessou et al. 1968) and (iii) the interspike-interval function which is introduced in this paper. For a special class of neuronal responses, called deterministic, these functions may be expressed in terms of each other. It is shown that the current clamped Hodgkin-Huxley model of an action potential encoding membrane (Hodgkin and Huxley 1952) is able to generate such deterministic responses. As an experimental example, a deterministic response of a primary muscle spindle afferent is used to demonstrate the estimation of the functions. Interpretability and numerical estimatability of these spike train describing functions are discussed for deterministic neuronal responses.  相似文献   

4.
5.
6.
The anisotropy of electrical conductivity of suspensions of such bacteria, as E. coli, Serratia marcescens, Pseudomonas fluorescens induced by a sinusoidal external electric field and relaxation of the anisotropy after switching off the field were investigated. On the basis of the experimental relationships the anisotropy of electrical polarizability and coefficient of rotational diffusion of the cells were evaluated. The anisotropy of electrical polarizability and coefficient of the rotational diffusion obtained are in a good agreement with the available data of other methods.  相似文献   

7.
8.
Synchronization of the Na/K pump molecules in a cell membrane was studied in frog skeletal muscle fibers using double Vaseline-gap voltage-clamp techniques. We found that the pumping rate of naturally random-paced pump molecules can be artificially synchronized by a pulsed, symmetric, oscillating membrane potential with a frequency comparable to the physiological turnover rate. The synchronized pump currents show separated outward and inward components, where the magnitude of the outward component is about three times the randomly-paced pump currents, and the magnitude-ratio of the outward to inward pump currents is close to 3:2, which reflects the stoichiometric ratio of the pump molecules. Once synchronized, the pumping rate is restricted to the field frequency, and the pump currents are mainly dependent on the field frequency, but not the field strength. In contrast to previous work, which by restraining the pumps at a presteady state succeeded in triggering the steps of the pump cycle only individually and between interruptions, here we synchronize the pumps running continuously and in a normal running mode.  相似文献   

9.
Surface magnetic and electric recordings were used to localize the sources of late pain-related magnetic fields and electric potentials, evoked by painful intracutaneous electric finger stimulation. We find that the source of the P90m component of the evoked magnetic field lies in the finger area of the primary somatosensory cortex; the sources of the N150m and P250m are found to reside in the frontal operculum. These findings are unexpected from the evoked electric potential data, which suggest a central location for these sources. We also note that the interpretation of the electric data was confounded by the presence of an alpha-like oscillation, which overlapped many components of the evoked potential.  相似文献   

10.
Magnetic field systems were added to existing electric field exposure apparatuses for exposing cell suspensions in vitro and small animals in vivo. Two horizontally oriented, rectangular coils, stacked one directly above the other, have opposite electric currents. This configuration minimizes leakage fields and allows sham- and field-exposure systems to be placed in the same room or incubator. For the in vitro system, copper plates formed the loop-pair, with up to 900 A supplied by a 180:1 transformer. Electric fields were supplied via electrodes at the ends of cell-culture tubes, eight of which can be accommodated by each exposure system. Two complete systems are situated in an incubator to allow simultaneous sham and field exposure up to 1 mT. For the in vivo system, four pairs of 0.8 x 2.7-m coils made of copper bus bar are employed. This arrangement is energized from the power grid via a 30:1 transformer; horizontal magnetic flux densities up to 1 mT can be generated. Pairs of electrode plates spaced 30.5 cm apart provide electric field exposure of up to 130 kV/m. Four systems with a capacity of 48 rats each are located in one room. For both the in vitro and in vivo systems, magnetic exposure fields are uniform to within +/- 2.5%, and sham levels are at least 2,500-fold lower than exposure levels. Potential confounding factors, such as heating and vibration, were examined and found to be minimal.  相似文献   

11.
We use neural field theory and spike-timing dependent plasticity to make a simple but biophysically reasonable model of long-term plasticity changes in the cortex due to transcranial magnetic stimulation (TMS). We show how common TMS protocols can be captured and studied within existing neural field theory. Specifically, we look at repetitive TMS protocols such as theta burst stimulation and paired-pulse protocols. Continuous repetitive protocols result mostly in depression, but intermittent repetitive protocols in potentiation. A paired pulse protocol results in depression at short ( < ~ 10 ms) and long ( > ~ 100 ms) interstimulus intervals, but potentiation for mid-range intervals. The model is sensitive to the choice of neural populations that are driven by the TMS pulses, and to the parameters that describe plasticity, which may aid interpretation of the high variability in existing experimental results. Driving excitatory populations results in greater plasticity changes than driving inhibitory populations. Modelling also shows the merit in optimizing a TMS protocol based on an individual’s electroencephalogram. Moreover, the model can be used to make predictions about protocols that may lead to improvements in repetitive TMS outcomes.  相似文献   

12.
以菲为主要C源,吐温80作为增溶剂,研究细菌Enterobacter dissolvens在直流电和交流电条件下的生长和代谢过程。实验结果表明:当施加10 mA直流电时,通电8 h后,菌液中细胞的菲降解率较对照增长1.6倍,细胞生长亦有所加快;而施加交流电时,细菌生长和菲降解率均低于直流电刺激。  相似文献   

13.
The phase transition of dimyristoylphosphatidylglycerol (DMPG) bilayers has been studied by measurements of light scattering under high electric field pulses. Midpoints of phase transitions have been identified by a clear discontinuity of field induced relaxation amplitudes. We show that the phase transition of DMPG suspensions in monovalent salt is virtually independent of the electric field strength up to approx. 35 kV/cm. A shift of the lipid phase by electric field pulses has been observed, however, for DMPG suspensions in the presence of Ca2+ ions. DMPG suspensions exhibit a jump of the phase transition temperature from 17 degrees C at Ca/DMPG molar ratios r less than 1/7 to 32 degrees C at r greater than 1/7. Field pulses of 60 to 100 microseconds applied to DMPG suspensions with Ca2+ at r greater than 1/7 induce discontinuities of relaxation amplitudes in the temperature range 15 to 22 degrees C in addition to the 'standard' one at 32 degrees C, when the electric field strength is above 15 kV/cm. These results indicate that electric field pulses induce a transition from the phase formed at 'high' Ca(2+)- to the one formed at 'low' Ca(2+)-ion concentrations. Our results are consistent with a dissociation field effect on Ca(2+)-lipid complexes which drives the phase transition.  相似文献   

14.
Human movement sense relies on both somatosensory feedback and on knowledge of the motor commands used to produce the movement. We have induced a movement illusion using repetitive transcranial magnetic stimulation over primary motor cortex and dorsal premotor cortex in the absence of limb movement and its associated somatosensory feedback. Afferent and efferent neural signalling was abolished in the arm with ischemic nerve block, and in the leg with spinal nerve block. Movement sensation was assessed following trains of high-frequency repetitive transcranial magnetic stimulation applied over primary motor cortex, dorsal premotor cortex, and a control area (posterior parietal cortex). Magnetic stimulation over primary motor cortex and dorsal premotor cortex produced a movement sensation that was significantly greater than stimulation over the control region. Movement sensation after dorsal premotor cortex stimulation was less affected by sensory and motor deprivation than was primary motor cortex stimulation. We propose that repetitive transcranial magnetic stimulation over dorsal premotor cortex produces a corollary discharge that is perceived as movement.  相似文献   

15.
16.
Conductance transition induced by an electric field in lipid bilayers   总被引:5,自引:0,他引:5  
A cooperative phenomenon showing a structural change in the organization of bilayer lipid membranes at a critical value of the applied electric field is presented. The transition is characterized by a sharp increase in conductance. The phenomenon can be observed under current-clamp conditions (rather than the usual voltage-clamp conditions) to avoid rupturing the membrane. At a critical potential value the conductance increases and therefore the potential decreases to keep the current constant. Results refer to membranes made of egg phosphatidylcholine (PC), diphytanoylphosphatidylcholine and cholesterol/egg PC. It is found that the critical potential at which the transition occurs depends dramatically on pH and ionic concentration, indicating that the electrical properties of the external surface determine the major characteristics of such a transition.  相似文献   

17.
18.
This study investigated roles of the variation of extracellular voltage gradient (VG) over space and cardiac fibers in production of transmembrane voltage changes (DeltaV(m)) during shocks. Eleven isolated rabbit hearts were arterially perfused with solution containing V(m)-sensitive fluorescent dye (di-4-ANEPPS). The epicardium received shocks from symmetrical or asymmetrical electrodes to produce nominally uniform or nonuniform VGs. Extracellular electric field and DeltaV(m) produced by shocks in the absolute refractory period were measured with electrodes and a laser scanner and were simulated with a bidomain computer model that incorporated the anterior left ventricular epicardial fiber field. Measurements and simulations showed that fibers distorted extracellular voltages and influenced the DeltaV(m). For both uniform and nonuniform shocks, DeltaV(m) depended primarily on second spatial derivatives of extracellular voltages, whereas the VGs played a smaller role. Thus, 1) fiber structure influences the extracellular electric field and the distribution of DeltaV(m); 2) the DeltaV(m) depend on second spatial derivatives of extracellular voltage.  相似文献   

19.
To investigate how extracellular electric field modulates neuron activity, a reduced two-compartment neuron model in the presence of electric field is introduced in this study. Depending on neuronal geometric and internal coupling parameters, the behaviors of the model have been studied extensively. The neuron model can exist in quiescent state or repetitive spiking state in response to electric field stimulus. Negative electric field mainly acts as inhibitory stimulus to the neuron, positive weak electric field could modulate spiking frequency and spike timing when the neuron is already active, and positive electric fields with sufficient intensity could directly trigger neuronal spiking in the absence of other stimulations. By bifurcation analysis, it is observed that there is saddle-node on invariant circle bifurcation, supercritical Hopf bifurcation and subcritical Hopf bifurcation appearing in the obtained two parameter bifurcation diagrams. The bifurcation structures and electric field thresholds for triggering neuron firing are determined by neuronal geometric and coupling parameters. The model predicts that the neurons with a nonsymmetric morphology between soma and dendrite, are more sensitive to electric field stimulus than those with the spherical structure. These findings suggest that neuronal geometric features play a crucial role in electric field effects on the polarization of neuronal compartments. Moreover, by determining the electric field threshold of our biophysical model, we could accurately distinguish between suprathreshold and subthreshold electric fields. Our study highlights the effects of extracellular electric field on neuronal activity from the biophysical modeling point of view. These insights into the dynamical mechanism of electric field may contribute to the investigation and development of electromagnetic therapies, and the model in our study could be further extended to a neuronal network in which the effects of electric fields on network activity may be investigated.  相似文献   

20.
Electric field pulses induce a substantial increase of the light scattering intensity of double-helical DNA. The relative change of light scattering and also the reciprocal relaxation time constants under electric field pulses increase with increasing nucleotide concentration. These observations, together with a large difference between dichroism orientation time constants and light scattering time constants under electric field pulses, demonstrate that the main part of the light scattering effect is due not to field-induced orientation but to interactions between DNA helices. From the concentration dependence of the light scattering time constants we obtain, according to an isodesmic reaction model, association rate constants in the range 3 × 1010 M?1 helices s?1 for DNA with approx. 300 base-pairs. These values are at the limit of a diffusion-controlled DNA association and do not show any dependence upon the field strength. The dissociation rate constants kd decrease strongly with increasing field strength E and thus demonstrate that the interactions between the helices are induced by the electric field. This conclusion is consistent with independent measurements which do not reveal any DNA association at zero field strength. The observed linear relation between log(kd) and E2 suggests a field-induced reaction driven by dipole changes. According to this interpretation the change of dipole moment should be in the range of approx. 1400 debye. The dissociation rates for DNA helices with approx. 300 to approx. 800 base-pairs strongly increase with increasing sail concentration (measured in the range 1–5 mM ionic strength), whereas the association rate constants remain virtually unchanged. Measurements of the linear dichroism in the same range of DNA chain length demonstrate that for long field pulses of e.g., 40 μs, the amplitude approaches a maximum value and then decreases. The dichroism relaxation curves observed after long field pulses exhibit a component with a positive dichroism and an increased decay time. These observations suggest the formation of a DNA aggregate with an unusual arrangement of the bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号