首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Russell L. Jones 《Planta》1969,88(1):73-86
Summary This paper describes the ultrastructural changes in barley aleurone cells following exposure to gibberollic acid (GA3) for 10–12 hr and longer. These changes involve a further proliferation of the endoplasmic reticulum (ER), distention of the endoplasmic reticulum (ER) cisternae (12–16 hr of GA3) and proliferation of vesicles from the ER and dictyosomes (14–22 hr). Accompanying these changes is a reduction in the size of the aleurone grains and a decrease in the number of spherosomes. Plastids and microbodies however appear to increase in number during this period of GA3 treatment. The relevance of these ultrastructural changes to GA3-stimulated synthesis of hydrolases is discussed.The skillful technical assistance of Mrs. Janet Price is gratefully acknowledged. Supported by National Science Foundation grant GB-8332.  相似文献   

2.
Russell  L. Jones  Janet M. Price 《Planta》1970,94(3):191-202
Summary Ultrastructural changes in barley aleurone, cells treated with gibberellic acid (GA3) for 24–36 hr are described. Many large vacuoles are seen in the ground cytoplasm; the coalasce to form one large central vacuole. Evidence is presented indicating that the vacuoles are formed from the aleurone grains. The dictyosomes of aleurone cells treated with GA3 for 24 hr or longer proliferate many vesicles. This proliferation of dictyosome vesicles is associated with the phase of rapid ribonuclease release from the aleurone cell. Estimates indicate that microbodies are considerably reduced in number with GA3 treatment from 24–36, hr while the number of mitochondria is not substantially affected relative to controls. P-Protein-like material is seen in the cytoplasm of these cells often in close proximity to endoplasmic reticulum and spiny vesicles.Supported by National Science Foundation Grant No. GB8332.  相似文献   

3.
Russell L. Jones 《Planta》1969,85(4):359-375
Summary The ultrastructural morphology of both dry and water-imbibed barley aleurone cells is described. The aleurone cell is characterized by the presence of numerous aleurone grains and spherosomes. In addition, it contains organelles typical of other plant cells including structures similar to microbodies, and rough endoplasmic reticulum characterized by the presence of numerous polyribosomes. It is inferred that the morphological specialization of aleurone cells is related to their biochemical specialization.Work supported by National Science Foundation grant GB5863. The skillful technical assistance of Mrs. Janet Price is gratefully acknowledged.  相似文献   

4.
5.
Taiz L  Starks JE 《Plant physiology》1977,60(2):182-189
When imbibed, deembryonated halfseeds from barley (Hordeum vulgare L., var. Himalaya) are incubated in buffer, the DNA content of the aleurone layer increases 25 to 40% over a 24-hour period. In contrast, the DNA of isolated aleurone layers declines by 20% over the same time period. Gibberellic acid (GA) causes a reduction in DNA levels in both halfseed aleurone layers and isolated aleurone layers. GA also increases the specific radioactivity of [3H]thymidine-labeled halfseed aleurone layer DNA during the first 12 hours of treatment. Pulse-chase studies demonstrated that the newly synthesized DNA is metabolically labile.  相似文献   

6.
Jones RL 《Plant physiology》1969,44(10):1428-1438
Ultracentrifugation of barley aleurone cells results in the stratification of organelles thus allowing for a quantitation of those organelles. Gibberellic acid (GA(3))-stimulated alpha-amylase production in stratified cells is reduced by centrifugation at gravitational forces greater than 40,000g. Forces below 30,000g do not affect GA(3)-stimulated alpha-amylase production although stratification of organelles occurs at these forces. The ability of centrifuged cells to respond maximally to GA(3) by producing alpha-amylase is related to the degree of redistribution of organelles within these cells. Thus, recovery of cells from centrifugation at forces below 30,000g is rapid, while recovery from forces above 40,000g is slow.  相似文献   

7.
Using in vivo pulse labeling, changes in the pattern of protein synthesis were detected in isolated barley aleurone layers treated with fibberellic acid (GA3). GA3 greatly altered the relative rates of synthesis of many polypeptides, increasing some, notably -amylase, and decreasing others. -Amylase synthesis increased until it was the major product (over 60%) of protein synthesis after 24h. The pulse-labeled pattern of secreted polypeptides was also changed by GA3. There was the expected increase in -amylase together with a number of other polypeptides but there was reduced secretion of several polypeptides also.Cell-free translation of RNA isolated from control and hormone-treated tissues was used to measure changes in mRNA levels. GA3 caused many changes, particularly in the level of mRNA for -amylase. In vitro synthesized -amylase, identified by immunoaffinity chromatography, had an Mr of 46 000. This polypeptide was partially processed to a polypeptide with Mr 44 000 by the addition of dog pancreas membranes to the in vivo translation mixture. The level of mRNA for -amylase began to increase 2–4 h after GA3 was added and reached a maximum level of about 20% of total mRNA after 16 h. Thus after 16 h, the synthesis of -amylase as a proportion of total protein synthesis, continued to increase while the level of its mRNA as a proportion of total mRNA remained constant. These results indicate that protein synthesis was modified more extensively than we can account for by changes in mRNA.Abscisic acid (ABA) reversed all of the effects of GA3 on protein synthesis and mRNA levels. It also promoted synthesis of a small number of new polypeptides and increased the level of some mRNAs. GA3 reversed the accumulation of ABA-promoted mRNAs. Although, ABA strongly suppressed the increase in the level of translatable mRNA for -amylase, there was an even stronger inhibition of enzyme synthesis and accumulation.We conclude that both GA3 and ABA regulate protein synthesis both positively and negatively in aleurone cells largely by regulating levels of mRNA and in the case of -amylase, possibly also by changing the efficiency of translation of its mRNA.  相似文献   

8.
Activities of phosphatases in the aleurone layers of a husklessbarley, Ehime-hadaka No. 1, were enhanced in the absence ofgibberellic acid (GA3), while the enzyme secretion was absolutelydependent upon its presence. GA3 was required for both inductionand secretion of a-amylase. The longer the preincubation ofthe tissue without GA3, the longer was the lag period beforesecretion of both a group of phosphatases and a-amylase. Changesin the fine structure of aleurone cells were also investigated.Characteristics of the phase transition from enzyme accumulationto enzyme secretion seemed to be a development of a bundledtype of endoplasmic reticulum. 1Present address: Institute of Biological Sciences, The Universityof Tsukuba, Ibaraki 300-31, Japan. (Received August 25, 1975; )  相似文献   

9.
10.
Jacobsen JV  Varner JE 《Plant physiology》1967,42(11):1596-1600
The production of protease by isolated aleurone layers of barley in response to gibberellic acid has been examined. The protease arises in the aleurone layer and is mostly released from the aleurone cells. The courses of release of amylase and protease from aleurone layers, the dose responses to gibberellic acid and the effects of inhibitors on the production of both enzymes are parallel. As is the case for amylase, protease is made de novo in response to the hormone. These data give some credence to the hypothesis that the effect of gibberellic acid is to promote the simultaneous synthesis and secretion of a group of hydrolases.  相似文献   

11.
Summary Cytochemical methods have been used in conjunction with light and electron microscopy to determine the nature of the inclusions in aleurone grains of barley aleurone layers. Two kinds of inclusions were found: (1) Globoids within globoid cavities which were not enclosed by a membrane: the globoids stained red with toluidin blue due to the presence of phytin, and with lipid stains; (2) Protein-carbohydrate bodies which stained green with toluidin blue. The characteristics of globoids and protein-carbohydrate bodies as seen in the electron microscope are described in detail using both glutaraldehyde- and permanganatefixed tissues. The protein-carbohydrate body was identified by silver-hexaminestaining; this was not caused by carbohydrate but by some component which stained green in toluidin blue and which also occurred in cell walls in a thin band adjacent to the cytoplasm. The characteristics of both bodies are discussed in relation to apparent confusion in their identities in previous electron-microscope studies.  相似文献   

12.
Summary The morphology and fine structure of aleurone cells of soybean [Glycine max (L.) Merr.] seed coats were analyzed with transmission electron microscopy for the period of rapid seed fill up to physiological maturity. Thin sections and freeze-fracture replicas were prepared for each stage. The aleurone is a tissue lining the embryo sac and consists of a single layer of cells attached to the aerenchyma of the seed coat proper. During seed fill, aleurone cells contained numerous Golgi-derived vesicles in the basal region of the cytoplasm that were either free or attached to the plasma membrane along the lateral and basal regions of the cell wall. Correspondingly, the Golgi apparatus were well developed with individual dictyosomes having 5 to 8, highly fenestrated stacked cisternae. The degree of fenestration along the periphery of each cisterna increased from the cis to trans region. Rough endoplasmic reticulum (RER) was also abundant, often consisting of up to 30, stacked swollen cisternae which occupied large regions of cytoplasm. Plasmodesmata which connected adjacent aleurone cells was not observed along the dorsal walls of aleurone cells that faced aerenchyma. At physiological maturity, dictyosome cisternae were less fenestrated and had fewer associated secretory vesicles. Stacked lamellae of RER were absent, being replaced by short tubular cisternae and small vesicles. At physiological maturity, the aleurone cells had thick walls, and contained numerous lipid bodies in apposition to the plasma membrane. The cytoplasm appeared densely stained in thin-sections and contained protein bodies and amyloplasts with large starch grains. We conclude that during the period of rapid seed fill aleurone cells produce, package, transport and secrete vesicular contents toward the embryo, that is followed at physiological maturity by the storage of lipid, protein and starch in the same cells. The embryo is the most likely destination for secretory products during the period of rapid seed fill. The fate of the stored food reserves in aleurone cells at physiological maturity may be analogous to that of aleurone tissue of grasses, being utilized during imbibition for processes important to germination.  相似文献   

13.
High pressure freezing and freeze substitution (HPF-FS) were used to prepare barley ( Hordeum vulgare L. cv Himalaya) aleurone protoplasts for transmission electron microscopy (TEM). We show that HPF-FS is superior to conventional chemical fixation and dehydration techniques for the preservation of cellular fine structure and antigenicity of proteins in barley aleurone protoplasts. HPF-FS extracted fewer proteins from the cytosol and organelles of aleurone protoplasts and maintained the details of cellular structure. The cortical cytoskeleton, made up of microtubules, was observed for the first time by TEM in barley aleurone protoplasts prepared by HPF-FS. Organelles such as protein storage vacuoles retained their proteinaceous contents, and other cellular organelles (including the Golgi apparatus, the nucleus and mitochondria) were also well preserved in protoplasts fixed by HPF-FS. Antibodies to the vacuolar enzyme nuclease I, the tonoplast aquaporin α-TIP and the glyoxysomal enzyme malate synthase showed that the antigenicity of organellar enzymes and membrane proteins was preserved in cells prepared by HPF-FS. We conclude that HPF-FS is superior to chemical fixation for the preparation of plant protoplasts for TEM and is the method of choice for the preservation of aleurone protoplasts for structural and immunochemical studies.  相似文献   

14.
Gibberellic acid enhances the synthesis of α-amylase in isolated aleurone layers of barley-seeds (Hordeum vulgare var. Himalaya). In the presence of 20 mm calcium chloride the amount of enzyme obtained from isolated aleurone layers is quantitatively comparable to that of the half-seeds used in earlier studies. After a lag period of 6 to 8 hours enzyme is produced at a linear rate. Gibberellic acid does not merely trigger α-amylase synthesis, but it is continuously required during the period of enzyme formation. Enzyme synthesis is inhibited by inhibitors of protein and RNA synthesis. Small amounts of actinomycin D differentially inhibit enzyme release and enzyme synthesis suggesting 2 distinct processes. Gibberellic acid similarly enhances the formation of ribonuclease which increases linearly over a 48 hour period. During the first 24 hours the enzyme is retained by the aleurone cells and this is followed by a rapid release of ribonuclease during the next 24 hour period. The capacity to release the enzyme is generated between 20 and 28 hours after the addition of the hormone. Ribonuclease formation is inhibited by inhibitors of protein and RNA synthesis. These inhibitors also prevent the formation of the release mechanism if added at the appropriate moment.  相似文献   

15.
Richard Hooley 《Planta》1984,161(4):355-360
In the presence of gibberellic acid (GA3) aleurone layers and isolated aleurone protoplasts of Avena fatua accumulate specific isozymes of acid phosphatase (EC 3.1.3.2). Some of these may be involved in mobilizing aleurone-grain phosphate reserves during germination. The hormone also controls secretion of other specific molecular forms of the enzyme that probably assist in endosperm hydrolysis. The accumulation and secretion of putative cell-wall-associated isozymes are stimulated by the action of GA3 in isolated protoplasts. This effect however, is apparently over-ridden in the intact tissue, possibly by a cell-wall-based feedback mechanism.Abbreviations GA3 gibberellic acid - pI isoelectric point(s)  相似文献   

16.
17.
18.
M. S. Buttrose 《Planta》1971,96(1):13-26
Summary Aleurone tissue from non-germinated or germinating barley seeds, as well as from isolated aleurone layers imbibed with water or gibberellic acid, was frozen directly in Freon and investigated by the freeze-etching technique. Aleurone grains remained spherical under all conditions, although the volume increased on hydration. They contained both protein crystalloids and globoids (phytin or lipid) embedded in the matrix. Globoids appeared to be membrane-enclosed. Spherosomes were evidently enclosed within a normal membrane, and they were in close contact with the membrane of aleurone grains, covering the surfaces of the latter. A highly-ordered particle structure was seen on some preparations of the plasmalemma. During germination no alterations were observed in membrane structure.This work was partly supported by a grant from S.O.T.A. (Société coopérative pour l'Achat du Tabac indigène).  相似文献   

19.
Jacobsen JV  Shaw DC 《Plant physiology》1989,91(4):1520-1526
[35S]Methionine labeling experiments showed that abscisic acid (ABA) induced the synthesis of at least 25 polypeptides in mature barley (Hordeum vulgare) aleurone cells. The polypeptides were not secreted. Whereas most of the proteins extracted from aleurone cells were coagulated by heating to 100°C for 10 minutes, most of the ABA-induced polypeptides remained in solution (heat-stable). ABA had little effect on the spectrum of polypeptides that were synthesized and secreted by aleurone cells, and most of these secreted polypeptides were also heatstable. Coomassie blue staining of sodium dodecyl sulfate polyacrylamide gels indicated that ABA-induced polypeptides already occurred in high amounts in mature aleurone layers having accumulated during grain development. About 60% of the total protein extracted from mature aleurone was heat stable. Amino acid analyses of total preparations of heat-stable and heat-labile proteins showed that, compared to heat-labile proteins, heat-stable intracellular proteins were characterized by higher glutamic acid/glutamine (Glx) and glycine levels and lower levels of neutral amino acids. Secreted heat-stable proteins were rich in Glx and proline. The possibilities that the accumulation of the heat-stable polypeptides during grain development is controlled by ABA and that the function of these polypeptides is related to their abundance and extraordinary heat stability are considered.  相似文献   

20.
Hormonally regulated programmed cell death in barley aleurone cells   总被引:13,自引:0,他引:13  
PC Bethke  JE Lonsdale  A Fath    RL Jones 《The Plant cell》1999,11(6):1033-1046
Cell death was studied in barley (cv Himalaya) aleurone cells treated with abscisic acid and gibberellin. Aleurone protoplasts incubated in abscisic acid remained viable in culture for at least 3 weeks, but exposure to gibberellin initiated a series of events that resulted in death. Between 4 and 8 days after incubation in gibberellin, >70% of all protoplasts died. Death, which occurred after cells became highly vacuolated, was manifest by an abrupt loss of plasma membrane integrity followed by rapid shrinkage of the cell corpse. Hydrolysis of DNA began before death and occurred as protoplasts ceased production of alpha-amylase. DNA degradation did not result in the accumulation of discrete low molecular weight fragments. DNA degradation and cell death were prevented by LY83583, an inhibitor of gibberellin signaling in barley aleurone. We conclude that cell death in aleurone cells is hormonally regulated and is the final step of a developmental program that promotes successful seedling establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号