首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Resting neutrophils possess cytosolic cyanide-sensitive (CNs) Superoxide dismutase (SOD) and cyanide-insensitive (CNi) SOD, located in an undefined organelle of the 27,000 g sedimentable fraction of its homogenate. Stimulated neutrophils generate large amounts of Superoxide anion, part of which is released in the extracellular medium and contributes to changes that occur in inflammatory foci. Our purpose was to assess whether or not the neutrophil upon stimulation secreted either or both CNs and CNi SOD activity, because the process could protect against the release of Superoxide anion. Human neutrophils stimulated in vitro with phorbol myristate acetate released 32.6% and 53% of their content in myeloperoxidase (an azurophilic granule marker) and vitamin B12 binding activity, respectively. The CNi SOD was not secreted at all, whereas 16% and 23% of CNs SOD were released by resting and stimulated neutrophils, respectively. In contrast, lactate dehydrogenase, a cytosolic marker, was released by both resting and stimulated cells (∼-9%). These results suggest that CNi SOD is not located in the granules but in another organelle that does not degranulate upon stimulation and consequently does not protect against Superoxide anion formed by neutrophils in the extracellular medium. In contrast, CNs SOD is slightly but significantly released (P <.02) and may be protective. Neutrophils from two patients with chronic granulomatous disease behaved similarly to control neutrophils but their content of both types of SOD was higher than that of the controls.  相似文献   

3.
(1) Superoxide dismutase activity in polymorphonuclear cells from human blood is considerably lower than that in lymphocytes. Macrophages from ascites show the middle level between the other two cells. (2) In myelocytic, monocytic, and lymphocytic leukemia cells, the enzyme activities are increased compared to those in the corresponding normal cells. (3) Gel electrophoresis patterns of all normal cells reveal bands corresponding to the cytosol and mitochondrial bands reported in previous studies. However, the mitochondrial Mn-containing superoxide dismutase activities are diminished or absent in leukemia cells. CN-insensitive superoxide dismutase activity in leukemia cells is not detected under the conditions.  相似文献   

4.
5.
The intracellular redox state is of importance for cell growth, differentiation, and apoptosis through reactive oxygen species (ROS) functioning as metabolic fine-tuner. Optimal levels of polyamines are necessary for growth, differentiation, and apoptotic cell death while they also protect cell from ROS accumulation. We have carried out studies to find out the interrelation between these two distant metabolic pathways. For that purpose, the glucocorticoid-triggered programmed cell death of rat thymocytes has been used. Our data confirm that SOD activity (which testifies both to the level of ROS generation and antioxidative defense state) changes in response to programmed cell death conditions and to alteration of intracellular polyamines level. Thymocytes death induced by dexamethasone is partially mediated by polyamines content. Our data prove that one of the molecular mechanisms of thymocytes population resistance after dexamethasone treatment is an enhanced level of antioxidant defense. It is evident that in dexamethasone-treated rat thymocytes polyamines modulate signal transduction processes to apoptosis development via changes in cellular redox status.  相似文献   

6.
The effect of superoxide dismutase (SOD) activity and isoenzyme pattern of detergents, incubation time, and sonication in the preparation of rat liver samples was investigated. The activity of the manganese form of the enzyme (Mn-SOD) was found to decrease significantly after 4 hr of incubation at room temperature, and activity of the copper, zinc form of the enzyme (Cu, Zn-SOD) was not changed significantly even after 24 hr, although levels were somewhat decreased. Sonication of the sample did not affect Cu, Zn-SOD activity, but total Mn-SOD activity was increased. Addition of detergents did not increase Mn-SOD activity when homogenates were sonicated, indicating that Mn-SOD is not membrane bound. Detergents also had no effect on Cu, Zn-SOD activity. None of the treatments investigated altered the isoenzyme patterns, providing evidence that these isoenzymes are not degradation products.  相似文献   

7.
 Sulphite at a concentration of 1 mM did not strongly affect the growth of mycelium. Higher concentrations of 5–20 mM almost completely inhibited the growth of mycelium and superoxide dismutase (SOD) [EC.1.15.1.1.] activity. The activity of this enzyme was not detectable on polyacrylamide gels. The lack of induction of SOD and the resulting oxidative stress may in part be responsible for the growth inhibition caused by high concentrations of sulphite. Accepted: 20 July 1995  相似文献   

8.
The aim of the study was to evaluate the antioxidative Cu/Zn-SOD (superoxide dismutase) response to obesity-related stress in obese children compared to a similar-aged control group. Forty-eight exogenic obese children and 11 healthy children were compared for red cell Cu/Zn-SOD, glucose, and lipid profiles and the relations between the were investigated. Antioxidant response as Cu/Zn-SOD was significantly higher in the obese group (p<0.05). Although glucose and lipid levels were statistically higher in the obese group, a certain relation with the SOD level was not established in childhood. This is the first study showing the oxidative stress caused by obesity and related antioxidative response even in the childhood period. Interventions, including diet modifications, should be kept in mind to diminish the obesity-related oxidative stress from the childhood period.  相似文献   

9.
The effect of temperature (from 1 to 37 °C) on in vitro effective superoxide dismutase (SOD) activity of several organisms was investigated and compared. Antarctic plankton, cultures of the alga Nannochloropsis sp., and the cyanobacterium Synechococcus strain WH 7803, and pure bovine erythrocyte SOD was studied. It was found that in all cases SOD activity increased with decreasing temperature within the temperature range assayed, in the Polar as well as the temperate plankton cells. This behavior of SOD is counterintuitive in terms of our experience when looking at enzyme activity or any other chemical reaction. We suggest a theoretical explanation for this apparently odd behavior. The advantage of such behavior is that the same amount of antioxidant will act better under low temperatures when reactive oxygen species (ROS) increase. Moreover, this protective process would act in vivo at a faster pace than the ex novo enzyme synthesis.  相似文献   

10.
Neurodegeneration in protein-misfolding disease is generally assigned to toxic function of small, soluble protein aggregates. Largely, these assignments are based on observations of cultured neural cells where the suspect protein material is titrated directly into the growth medium. In the present study, we use this approach to shed light on the cytotoxic action of the metalloenzyme Cu/Zn superoxide dismutase 1 (SOD1), associated with misfolding and aggregation in amyotrophic lateral sclerosis (ALS). The results show, somewhat unexpectedly, that the toxic species of SOD1 in this type of experimental setting is not an aggregate, as typically observed for proteins implicated in other neuro-degenerative diseases, but the folded and fully soluble apo protein. Moreover, we demonstrate that the toxic action of apoSOD1 relies on the protein's ability to chelate Zn(2+) ions from the growth medium. The decreased cell viability that accompanies this extraction is presumably based on disturbed Zn(2+) homeostasis. Consistently, mutations that cause global unfolding of the apoSOD1 molecule or otherwise reduce its Zn(2+) affinity abolish completely the cytotoxic response. So does the addition of surplus Zn(2+). Taken together, these observations point at a case where the toxic response of cultured cells might not be related to human pathology but stems from the intrinsic limitations of a simplified cell model. There are several ways proteins can kill cultured neural cells but all of these need not to be relevant for neurodegenerative disease.  相似文献   

11.
Manganese superoxide dismutase (MnSOD) is an integral mitochondrial protein known as a first-line antioxidant defense against superoxide radical anions produced as by-products of the electron transport chain. Recent studies have shaped the idea that by regulating the mitochondrial redox status and H2O2 outflow, MnSOD acts as a fundamental regulator of cellular proliferation, metabolism, and apoptosis, thereby assuming roles that extend far beyond its proposed antioxidant functions. Accordingly, allelic variations of MnSOD that have been shown to augment levels of MnSOD in mitochondria result in a 10-fold increase in prostate cancer risk. In addition, epidemiologic studies indicate that reduced glutathione peroxidase activity along with increases in H2O2 further increase cancer risk in the face of MnSOD overexpression. These facts led us to hypothesize that, like its Cu,ZnSOD counterpart, MnSOD may work as a peroxidase, utilizing H2O2 to promote mitochondrial damage, a known cancer risk factor. Here we report that MnSOD indeed possesses peroxidase activity that manifests in mitochondria when the enzyme is overexpressed.  相似文献   

12.
Convenient assays for superoxide dismutase have necessarily been of the indirect type. It was observed that among the different methods used for the assay of superoxide dismutase in rat liver homogenate, namely the xanthine-xanthine oxidase ferricytochromec, xanthine-xanthine oxidase nitroblue tetrazolium, and pyrogallol autoxidation methods, a modified pyrogallol autoxidation method appeared to be simple, rapid and reproducible. The xanthine-xanthine oxidase ferricytochromec method was applicable only to dialysed crude tissue homogenates. The xanthine-xanthine oxidase nitroblue tetrazolium method, either with sodium carbonate solution, pH 10.2, or potassium phosphate buffer, pH 7·8, was not applicable to rat liver homogenate even after extensive dialysis. Using the modified pyrogallol autoxidation method, data have been obtained for superoxide dismutase activity in different tissues of rat. The effect of age, including neonatal and postnatal development on the activity, as well as activity in normal and cancerous human tissues were also studied. The pyrogallol method has also been used for the assay of iron-containing superoxide dismutase inEscherichia coli and for the identification of superoxide dismutase on polyacrylamide gels after electrophoresis.  相似文献   

13.
14.
Mature rabbit spermatozoa from the cauda epididymidis suspended in potassium Tris phosphate buffer at 24 degrees C produced O2.-, as measured by reduction of acetylated ferricytochrome c, with an intrinsic rate of 0.20 nmol/min per 10(8) cells. This rate increased to 1.80 nmol/min per 10(8) cells in the presence of 10 mM cyanide. These spermatozoa contain 2.8 units per 10(8) cells of superoxide dismutase activity, 95% of which is sensitive, and 5% of which is insensitive, to cyanide inhibition. These activities correspond to the cytosolic Cu-Zn form and the mitochondrial Mn form of the dismutase, respectively. Only the cyanide-sensitive form is released from the sperm on hypo-osmotic treatment or sonication. Hypo-osmotically treated rabbit epididymal spermatozoa produced O2.- with an intrinsic rate of 0.24 nmol/min per 10(8) cells, which increased to 0.58 nmol/min per 10(8) cells in the presence of 10 mM cyanide. Both intact and hypo-osmotically treated cells react with O2.- in a second order reaction as inferred from the hyperbolic dependence on cell concentration of O2.- production rate in both the absence and presence of cyanide. The second order rate constant for this reaction with intact cells, kS, was calculated to be 22.9 X 10(-8) (cells/ml)-1 min-1 in its absence. For hypo-osmotically treated cells, the values of kS were 10.8 X 10(-8) (cells/ml)-1 min-1 and 8.2 X 10(-8) (cells/ml) -1 min-1, respectively. Since hypo-osmotically treated cells have lost much of their plasma membrane, the lower value of kS for the treated cells implies that this membrane is one site of reaction of O2.- with the cells. The increase in kS in the presence of cyanide, which inhibits superoxide dismutase and so increases O2.- production, suggests that the cells become more reactive with O2.- as its production rate increase, as would be expected for the occurrence of radical chain oxidation. This in turn suggests that superoxide dismutase plays a major role in protecting rabbit sperm against damage from lipid peroxidation.  相似文献   

15.
Superoxide dismutase (SOD) activity in rat liver cytosol and submitochondrial fractions was characterized as enzymatic and nonenzymatic (due to the SOD-like activity of copper) by four approaches: (i) aerobic NBT2+ (nitroblue tetrazolium) photoreduction in the absence of EDTA; (ii) aerobic NBT2+ photoreduction in the presence of 10?4m EDTA; (iii) anaerobic NBT2+ photoreduction; and (iv) o-dianisidine photooxidation. Under normal conditions nonenzymatic SOD activity has been observed only in the intermembrane space. The single subcutaneous injection of rats with CuSO4 solution (5 mg Cu/kg body wt) led to (i) an elevation of the copper level in all submitochondrial fractions; (ii) an increase in enzymatic SOD activity in only cytosol and intermembrane spaces; (iii) the appearance of a new electrophoretic SOD activity band in the intermembrane space preparations; and (iv) the appearance of nonenzymatic SOD-like activity in the outer and inner mitochondrial membranes, and a twofold increase in lipid hydroperoxides. This suggests that the increased nonenzymatic copper in vivo has a prooxidant effect, and does not catalyze the dismutation of O2? as it has been shown in in vitro experiments [E. M. Russanov S. G. Ljutakova, and S. I. Leutcher (1982) Arch. Biochem. Biophys.215, 220–229]. The peculiarities of the SOD activity in the intermembrane space are explained by the lysosomal localization of the granular CuZnSOD.  相似文献   

16.
17.
18.
The autoxidation of DT-diaphorase-reduced 1,4-naphthoquinone, 2-OH-1,4-naphthoquinone, and 2-OH-p-benzoquinone is efficiently prevented by superoxide dismutase. This effect was assessed in terms of an inhibition of NADPH oxidation (over the amount required to reduce the available quinone), O2 consumption, and H2O2 formation. Superoxide dismutase also affects the distribution of molecular products -hydroquinone/quinone-involved in autoxidation, by favoring the accumulation of the reduced form of the above quinones. In contrast, the rate of autoxidation of DT-diaphorase-reduced 1,2-naphthoquinone is enhanced by superoxide dismutase, as shown by increased rates of NADPH oxidation, O2 consumption, and H2O2 formation and by an enhanced accumulation of the oxidized product, 1,2-naphthoquinone. These findings suggest that superoxide dismutase can either prevent or enhance hydroquinone autoxidation. The former process would imply a possible new activity displayed by superoxide dismutase involving the reduction of a semiquinone by O2-.. This activity is probably restricted to the redox properties of the semiquinones under study, as indicated by the failure of superoxide dismutase to prevent autoxidation of 1,2-naphthohydroquinone.  相似文献   

19.
Commercially available cytochrome c contains sufficient superoxide dismutase activity to reduce its sensitivity in superoxide anion detection. A single passage through a column of Sephadex G-50 removes the superoxide dismutase, and appreciably increased the ability to cytochrome c to detect superoxide.  相似文献   

20.
Enhanced superoxide dismutase activity of pulsed cytochrome oxidase   总被引:1,自引:0,他引:1  
The superoxide dismutase (SOD) activity of beef heart cytochrome oxidase, both in the resting (as isolated) and pulsed (reduced and reoxidized) states, has been investigated using their ability to inhibit the autoxidation rate of pyrogallol and epinephrine. Resting oxidase showed variable SOD activity, while in the pulsed state the SOD activity of cytochrome oxidase (CcO) increased by an order of magnitude. These results are discussed in terms of a physiological role for the pulsed oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号