首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Abstract. Sheep grazing was investigated as an alternative to traditional management of meadows in the Krkono?e Mts. Until the second World War these meadows were mown in mid‐summer and grazed by cattle for the rest of the season. Subsequent abandonment of the meadows has resulted in decreasing species richness. Degradation phases of the former communities have been replacing the original species‐rich vegetation. Significant changes were apparent six years after the introduction of sheep grazing. In grazed plots the proportion of dominant herbs (Polygonum bistorta and Hypericum maculatum) decreased and grasses (Deschampsia cespitosa, Festuca rubra, Agrostis capillaris, Anthoxanthum alpinum) increased. The increase in grasses was positively correlated with an increase in several herbs. The proportion of some herbs increased despite being selectively grazed (Adenostyles alliariae, Melandrium rubrum, Veratrum lobelianum). Any losses caused by grazing of mature plants were probably compensated by successful seedling establishment. Cessation of grazing resulted in significant changes in vegetation within three years. The cover of nitrophilous tall herbs and grasses (e.g. Rumex alpestris, Holcus mollis, Deschampsia cespitosa, Geranium sylvaticum) increased in the abandoned plots. In the plots grazed for nine years cover of species‐rich mountain meadow species increased (e.g. fine‐leaved grasses, Campanula bohemica, Potentilla aurea, Viola lutea, Silene vulgaris). The main conservation risk is the expansion of a competitive species with low palatability, Deschampsia cespitosa. This species can be suppressed by a combination of grazing and mowing. In order for grazing to be effective, the number of sheep should be proportional to meadow production. This may be difficult to maintain as production is variable and is impossible to predict at the beginning of a growing season. A large part of the biomass may thus remain intact in some years. Negative effects of grazing may be, at least partly, eliminated by a combination of cutting and grazing.  相似文献   

2.
The effects of grazing by captive goslings of the Lesser Snow Goose on coastal vegetation at La Pérouse By. Manitoba were investigated. Swards of Carex subspathacea, Festuca rubra and Calamagrostis deschampsioides were grazed once for different periods (0–180 min) and regrowth of vegetation determined, based on measurements of standing crop, net above-ground primary production (NAPP) and forage quality (leaf nitrogen content). The amounts of foliage removed from swards of Carex subspathacea increased with the length of the grazing period, but after 44 days of regrowth there were no significant differences in above-ground biomass between control and grazed plots. While the amount of foliage removed by goslings from swards of Festuca rubra increased with the length of the grazing period (except after 150 min of grazing), the increase in biomass following defoliation was similar among treatments. Goslings removed little biomass from swards of Calamagrostis deschampsioides, even when the opportunity for grazing was 180 min. No significant differences in standing-crop or NAPP between grazed and ungrazed plots were detected by the end of summer. Grazing had no significant effect on amounts of nitrogen in leaf tissue of all species, suggesting that faecal nitrogen was not rapidly incorporated into plant biomass within the growing season. Patterns of regrowth of these species are compared to that of Puccinellia phryganodes. An increase in goose numbers in recent years has led to birds foraging on less preferred species, such as Calamagrostis deschampsiodes and Festuca rubra. Their poor nutritional quality and a lack of a rapid growth response following defoliation may explain, in part, the decline in the weight of wild goslings recorded over the last decade.  相似文献   

3.
Abstract. Due to economic pressures and policy changes Lolium perenne‐Trifolium repens sown swards in upland UK sheep systems are likely to become less intensively managed. We present results from the first 5 yr of a long‐term experiment studying vegetation change under more extensive grazing management at three sites. One treatment was representative of current, intensive management and 5 were unfertilized with different intensities of seasonal grazing. The species composition of unfertilized, ungrazed swards changed dramatically within 2 yr and the sown species had virtually disappeared by year 5. Ranunculus repens, Poa trivialis, Agrostis gigantea, Juncus spp. and Carex spp. became dominant at the wettest site. Grasses were dominant at the other sites. In contrast, the sown species were retained in the unfertilized, grazed treatments; there were small shifts in abundance of the species present initially and few additions or losses of species. Some colonizing species were present in the seed bank whereas others with a transient seed bank appeared to have invaded from neighbouring vegetation. Implications of these results for compensation schemes to reduce animal output and increase biodiversity are discussed.  相似文献   

4.
Anthropogenic activities usually trigger changes in the population density of plants. Thus, land management practices can influence density‐dependent demographic parameters and species interactions. We investigated plant‐pollinator interactions and reproduction in Prosopis flexuosa, the largest tree species in the Central Monte desert of Argentina, an important economic and cultural resource for humans and a functionally prominent species. We hypothesized that reproductive output of P. flexuosa would be limited at low densities, and that exclusion of catle grazing would enhance population density and consequently interaction frequency with pollinators and reproductive success. The study was conducted in and around Ñacuñán Biosphere Reserve (Mendoza, Argentina), where cattle grazing has been excluded for over 35 years. Working in five pairs of protected and cattle grazed 1‐ha plots, we recorded density of adult trees, pollinator visitation frequency to inflorescences and seeds per inflorescence in focal trees. Adult tree density was higher in protected plots than in cattle grazed plots. Density of reproductive trees was positively correlated with seed production, suggesting positive density dependence for reproduction (Allee effect). Pollinator visitation to inflorescences and seed production was higher in protected plots compared with plots under cattle grazing. Suppression of anthropogenic degradation has resulted in higher adult tree density in protected plots, indirectly higher pollinator visitation to inflorescences and higher reproductive success of trees. Increased frequency of plant‐pollinator interactions and tree reproduction suggest success of management practices aimed at protecting P. flexuosa woodlands.  相似文献   

5.
Cattle and Weedy Shrubs as Restoration Tools of Tropical Montane Rainforest   总被引:4,自引:1,他引:3  
Over the last 150 years, a large proportion of forests in Latin America have been converted to pastures. When these pastures are abandoned, grasses may slow re‐establishment of woody species and limit forest regeneration. In this study, we explored the use of cattle in facilitating the establishment of woody vegetation in Colombian montane pastures, dominated by the African grasses Pennisetum clandestinum (Kikuyo) and Melinis minutiflora (Yaraguá). First, we described woody and herbaceous vegetation in grazed and non‐grazed pastures. Second, we tested the effect of grazing and seed addition on the establishment and growth of woody species. We also determined if the effect of grazing was different in P. clandestinum and M. minutiflora pastures. We found that low stocking density of cattle greatly increased density, number of branches per individual (a measure of “shrubiness”), and basal area of woody species, but also reduced woody plant species richness and diversity. In the grazed area, the shrubs Baccharis latifolia (Chilca) and Salvia sp. (Salvia) were the most abundant. The combined effect of grazing and shading from the shrubs reduced herbaceous vegetation by 52 to 92%. In the grazing/seed addition experiment, grazing increased establishment of woody seedlings, particularly of the shrub Verbesina arborea (camargo), but the largest effect was seed addition. Where grasses are an important barrier to regeneration, grazing can facilitate the establishment of shrubs that create a microhabitat more suitable for the establishment of montane forest tree species.  相似文献   

6.
Jan Bokdam 《植被学杂志》2001,12(6):875-886
Abstract. This paper deals with browsing and grazing as forces driving cyclic succession. Between 1989 and 1994 reciprocal transitions between the dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa were monitored in permanent plots in a cattle grazed grass‐rich Dutch heathland on podsolic soils in which tree encroachment was prevented. Heather beetles killed Calluna in four of the nine plots during 1991/1992. The monitoring revealed reciprocal transitions and cycles between Calluna and Deschampsia on a subplot scale. Beetles and cattle had additional and complementary effects on the two competing species. Defoliation by beetles and trampling by cattle‐killed Calluna and favoured grass invasion. Grazing and gap creation by cattle in Deschampsia favoured the establishment and recovery of Calluna. Analysis of the causal mechanisms suggests that indirect, resource‐mediated herbivory effects may be as important for the replacement processes as direct effects of defoliation and trampling. Herbivory created differential light and nutrient levels in Calluna and Deschampsia gaps. Grazing and browsing improved the resource‐capturing abilities of Calluna and its resistance to herbivory and abiotic disturbances. The emerged Calluna‐Deschampsia cycle and its driving forces are summarized in a conceptual triangular resource‐mediated successional grazing cycle (RSGC) model, a limit cycle involving herbivore‐plant‐plant resource interactions. It offers a deterministic equilibrium model as alternative for stochastic transitions between the meta‐stable states with dominance of Calluna and Deschampsia respectively. The validity range of the RSGC model and its management implications are briefly discussed.  相似文献   

7.
Abstract. The relationship between intensity and timing of cattle grazing on changes in the size and composition of the soil seed bank were investigated in a 3‐yr study in a Mediterranean grassland in northeastern Israel. Treatments included manipulations of stocking rates and of grazing regimes, in a factorial design. The retrieved soil seed bank community was rich in species, with 133 species accounting for 80% of the 166 species recorded at the site. Within the seed bank, 89% of the species were annuals. Seed bank dynamics was analysed in terms of plant functional groups and germination strategies. In terms of total seed bank density and including all functional groups, 42% of the seeds present in the soil did not germinate under watering conditions. The dormancy level differed greatly among functional groups. The seed bank of annual legumes, crucifers, annual thistles and annual forbs had a large fraction of non‐germinated seeds and characterized areas grazed early in the growing season under high and very high grazing intensity. These functional groups were considered to have a higher potential for persistent seed banks production. In contrast, short and tall annual grasses and tall perennial grasses, that were dominant in ungrazed or moderately grazed paddocks, generally had seed banks with a very small fraction of non‐germinated seeds. Seed bank densities varied widely between grazing treatments and years. Under continuous grazing, heavy grazing pressure reduced seed bank densities of grasses and crucifers in comparison to moderate grazing. The greatest reduction on the seed bank densities resulted from heavy grazing concentrated during the seed‐set stages.  相似文献   

8.
Questions: What is the best grassland management regime for the threatened plant species Gladiolus imbricatus; is the stage structure of local populations a feasible indicator of the effect of changed management. Location: Coastal meadow system in southwestern Estonia. Methods : The effect of five management regimes was studied in a long‐term (three‐year) field experiment: (1) mowing in late July, (2) grazing by cattle, (3) grazing by sheep, (4) sheep grazing during the first year and mowing during subsequent years, (5) no management (control). Results: The population density increased significantly in response to the mowing treatment and to the mowing after sheep grazing treatment. The proportion of grazed plant individuals was higher in the sheep‐grazed than in the cattle‐grazed treatment. Generative and vegetative adult individuals of G. imbricatus were significantly more damaged by cattle herbivory than juveniles. All management regimes shifted the population structure towards a dynamic state where juvenile stages dominate, while the not managed control retained a regressive population structure. Conclusions: Population stage structure was a useful indicator of different management conditions, even in the case where population density did not differ. As indicated by population stage structure, the best management regime for G. imbricatus was either mowing in late July only, or alternation of grazing and mowing in different years.  相似文献   

9.
Tree establishment in grazed vegetation mosaics involves a series of early bottlenecks, including seed dispersal, germination, seedling emergence, survival and growth. In a field experiment, we studied seedling emergence of two species with contrasting recruitment strategies, Fraxinus excelsior and Quercus robur, in five structurally different vegetations: grazed and ungrazed grassland, ruderal pioneer vegetation, soft rush tussocks, tall sedge mats and bramble scrub. In a simulation experiment, we studied the interaction effects of pre-emergence flooding (3 weeks of inundation), trampling and grazing (simulated by clipping) of grassland vegetation on the emergence and early growth of both tree species in grass swards. Seedling emergence was enhanced in low swards and sparse vegetation types. Despite different recruitment strategies, the interaction of flooding and trampling of swards enhanced seedling emergence of both species. Grazing of soft rush and tall sedges enhanced emergence of F. excelsior. Clipping grass swards increased early growth of emerging Q. robur. Our results support the hypothesis that natural disturbances of soil and vegetation create microsites for seedling emergence and reduce above-ground competition. In grazed systems however, these results suggest a discordant relationship between successful seedling emergence and subsequent seedling growth/survival during the establishment process in structurally different vegetations.  相似文献   

10.
Silica defences in grasses have recently been suggested to be a potential driver of vole population dynamics. However, the ability of grasses to induce silica in response to herbivory has not been tested in northern ecosystems where small rodents are important herbivores. We conducted a large‐scale field experiment in subarctic tundra using three river catchments differing in herbivore densities, and examined the effects of small rodent and/or reindeer exclusion on leaf silica levels in five grass species (Avenella flexuosa, Anthoxanthum nipponicum, Calamagrostis phragmitoides, Deschampsia cespitosa and Phleum alpinum). We also conducted a greenhouse experiment using three of these species (A. flexuosa, A. nipponicum and D. cespitosa) and Festuca ovina to determine whether intraspecific genotypic variation affects baseline silica concentrations and the capacity to induce silica in response to simulated grazing. Baseline leaf silica concentrations and silica induction varied with plant species in both experiments, with catchment in the field experiment and with genotype in the greenhouse experiment. These findings show that the allocation to silica defences in grasses is highly variable, and suggest that the combined effects of grazing pressure, plant species and intraspecific genotypic differences are likely to determine the circumstances under which silica induction may be an optimal defence strategy. A better understanding of the interplay between grazing and other factors influencing silica induction is necessary to interpret the role of silica in plant–herbivore interactions.  相似文献   

11.
The effect of different levels of cattle grazing on an arid Australian small terrestrial mammal and lizard assemblage was assessed in a long‐tem series of cross‐fence comparisons. Cross‐fenced sites were closely matched for edaphic and vegetation characteristics and experienced near identical weather patterns, to ensure that cattle grazing pressure was the principal determinant of any differences in fauna assemblages. In addition, the effects of removal of cattle, cats, foxes and rabbits from three of these long‐term monitoring sites were assessed to determine the relative impacts of cattle grazing and feral animals. Small mammal captures, with the exception of Mus musculus, revealed a significant negative response to cattle grazing pressure but this response was of a considerably lower magnitude than the dramatic increase in rodent captures and species richness within the feral animal‐proof Arid Recovery Reserve. Higher kangaroo numbers in ungrazed controls, compared with treatments grazed by cattle, possibly negated the benefits to small mammals of removing cattle grazing. No reptile species responded significantly to the grazing treatments although reptile richness and captures of geckos and skinks were the lowest and agamid captures were the highest at heavily grazed sites. Nephrurus levis was the only reptile species to increase significantly, while captures of some smaller geckoes declined, within the feral‐proof treatment. Feral predation exerted a more significant effect on most small mammal species than the levels of cattle grazing assessed in this study, yet reptile responses to grazing or feral animals were less apparent and were likely primarily driven by changes in vegetation cover or secondary trophic impacts.  相似文献   

12.
Livestock grazing can have a strong impact on herbivore abundance, distribution and community. However, not all species of herbivores respond the same way to livestock grazing, and we still have a poor understanding of the underlying mechanisms driving these differential responses. Here, we investigate the effect of light intensity cattle grazing on the abundance of two grasshoppers (Euchorthippus cheui and E. unicolor) that co-occur in the same grasslands and feed on the same food plant (the dominant grass Leymus chinensis). The two grasshopper species differ in phenology so that their peak abundances are separated into early- and late-growing seasons. We used an exclosure experiment to monitor grasshopper abundance and food quality in the field under grazed and ungrazed conditions, and performed feeding trials to examine grasshopper preference for grazed or ungrazed food plants in the laboratory. We found that the nitrogen content of L. chinensis leaves continuously declined in the ungrazed areas, but was significantly enhanced by cattle grazing over the growing season. Cattle grazing facilitated the early-season grasshopper E. cheui, whereas it suppressed the late-season grasshopper E. unicolor. Moreover, feeding trials showed that E. cheui preferred L. chinensis from grazed plots, while E. unicolor preferred the leaves from ungrazed plots. We conclude that livestock grazing has opposite effects on the two grasshopper species, and that these effects may be driven by grazing-induced changes in plant nutrient content and the unique nutritional niches of the grasshoppers. These results suggest that insects that belong to the same guild can have opposite nutrient requirements, related to their distinct phenologies, and that this can ultimately affect their response to cattle grazing. Our results show that phenology may link insect physiological needs to local resource availabilities, and should be given more attention in future work on interactions between large herbivores and insects.  相似文献   

13.
Abstract. The hypothesis that season of defoliation and herbivore selectivity may be as important as level of use in determining plant community response to grazing was tested in a monsoon grassland in northern Australia. Plots, dominated by the tussock grasses Themeda triandra and Chrysopogon fallax, were grazed by cattle at low, medium and high rates of utilization in either the early wet, late wet or dry seasons. Effects of grazing on species composition were greatest in the early wet season when high rates of utilization significantly reduced the proportion and occurrence of Themeda and increased the proportion of forbs. Grazing in the dry season had no significant effect on composition. At medium and high levels of utilization in the early wet season, the pasture responded negatively to defoliation, only partially compensating for plant tissue lost to herbivory. The negative response to defoliation carried over to the next wet season when these same medium and high-grazing treatments produced only 80 % and 60 % growth, respectively, of that in treatments grazed at low levels of utilization or those grazed during the dry season. The frequency of Themeda was still lower, and that of annual grasses and non-leguminous forbs higher, in plots that had been grazed at a high rate of utilization for just eight weeks in the early wet season two years previously. Species richness and diversity were also significantly affected by this grazing disturbance. If species composition is to be maintained in these grasslands then stocking rates must be set at low levels to cope with the combined effect of undercompensation in response to defoliation in the wet season and strong dietary preferences for grazing sensitive species.  相似文献   

14.
The Conservation Reserve Program (CRP) is a primary tool for restoring grassland in the United States, in part as wildlife habitat, which has benefited declining grassland bird populations. Among potential mid-contract management practices used to maintain early-successional CRP grasslands, cattle grazing had been prohibited and is currently disincentivized during the primary nesting season for birds (much of the growing season), despite the important role that large herbivores historically played in structuring grassland ecosystems. Conservative grazing of CRP grasslands could increase spatial heterogeneity in vegetation structure and plant diversity, potentially supporting higher densities of some grassland bird species and higher bird diversity. Our objective was to determine the effect of experimental cattle grazing on species-specific relative abundance and occupancy, species diversity, and community dissimilarity of grassland birds on CRP grasslands across the longitudinal extent of Kansas, USA (a 63.5-cm precipitation gradient) during the 2017–2019 avian breeding seasons. Fifty-three of 108 fields were grazed by cattle during the growing seasons of 2017 and 2018 and all fields were rested from grazing in 2019. For all analyses, we examined separate model sets for semiarid western versus more mesic eastern Kansas. Using data from line transect surveys, we modeled relative abundances of 5 songbird species: grasshopper sparrow (Ammodramus savannarum), dickcissel (Spiza americana), eastern meadowlark (Sturnella magna), western meadowlark (Sturnella neglecta), and brown-headed cowbird (Molothrus ater). Grazing had delayed yet positive effects on abundances of grasshopper sparrow in western Kansas, and eastern meadowlark in eastern Kansas, but negative effects on dickcissel abundance in western Kansas and especially on burned fields in eastern Kansas. Somewhat counterintuitively, brown-headed cowbirds in western Kansas were more abundant on ungrazed versus grazed fields in the years after grazing began. In addition, we modeled multi-season occupancy of 3 gamebird species (ring-necked pheasant [Phasianus colcicus], northern bobwhite [Colinus virginianus], mourning dove [Zenaida macroura]) and Henslow's sparrow (Centronyx henslowii); grazing did not affect occupancy of these species. In eastern Kansas, species diversity was highest in grazed, unburned fields. In western Kansas, bird communities in grazed and ungrazed fields were dissimilar, as determined from multivariate analysis. Though regionally variable, conservative stocking of cattle on CRP grasslands during the nesting season as a mid-contract management tool might increase bird species diversity by restructuring habitat that accommodates a greater variety of species and decreasing abundances of species associated with taller, denser stands of vegetation.  相似文献   

15.
Abstract. Questions: This paper examines the long‐term change in the herbaceous layer of semi‐arid vegetation since grazing ceased. We asked whether (1) there were differences in the temporal trends of abundance among growth forms of plants; (2) season of rainfall affected the growth form response; (3) the presence of an invasive species influenced the abundance and species richness of native plants relative to non‐invaded plots, and (4) abundance of native plants and/or species richness was related to the time it took for an invasive species to invade a plot. Location: Alice Springs, Central Australia. Methods: Long‐term changes in the semi‐arid vegetation of Central Australia were measured over 28 years (1976–2004) to partition the effects of rainfall and an invasive perennial grass. The relative abundance (biomass) of all species was assessed 25 times in each of 24 plots (8 m × 1 m) across two sites that traversed floodplains and adjacent foot slopes. Photo‐points, starting in 1972, were also used to provide a broader overview of a landscape that had been intensively grazed by cattle and rabbits prior to the 1970s. Species’abundance data were amalgamated into growth forms to examine their relationship with environmental variation in space and time. Environmental variables included season and amount of rainfall, fire history, soil variability and the colonization of the plots by the exotic perennial grass Cenchrus ciliaris (Buffel grass). Results: Constrained ordination showed that season of rainfall and landscape variables relating to soil depth strongly influenced vegetation composition when Cenchrus was used as a covariate. When Cenchrus was included in constrained ordination, it was strongly related to the decline of all native growth forms over time. Univariate comparisons of non‐invaded vs impacted plots over time revealed unequivocal evidence that Cenchrus had caused the decline of all native growth form groups and species richness. They also revealed a contrasting response of native plants to season of rainfall, with a strong response of native grasses to summer rainfall and forbs to winter rainfall. In the presence of Cenchrus these responses were strongly attenuated. Discussion: Pronounced changes in the composition of vegetation were interpreted as a response to removal of grazing pressure, fluctuations in rainfall and, most importantly, invasion of an exotic grass. Declines in herbaceous species abundance and richness in the presence of Cenchrus appear to be directly related to competition for resources. Indirect effects may also be causing the declines of some woody species from changed fire regimes as a result of increased fuel loads. We predict that Cenchrus will begin to alter landscape level processes as a result of the direct and indirect effects of Cenchrus on the demography of native plants when there is a switch from resource limited (rainfall) establishment of native plants to seed limited recruitment.  相似文献   

16.
SUMMARY 1. The effects of cattle grazing on stream bank stability, biomass of riparian vegetation, instream vegetation cover, biomass of coarse particulate organic matter (CPOM) and epilithon and benthic invertebrate community structure were investigated over a 2‐year period using: (i) enclosures containing different cattle grazing treatments and (ii) by comparing streams with different grazing intensities in the Cypress Hills Provincial Park, Alberta, Canada. 2. Livestock enclosure experiments comprised four treatments of: (1) early season cattle grazing (June–August), (2) late season cattle grazing (August–September), (3) all season cattle grazing (June–September) and (4) cattle‐absent controls. All four treatments were replicated in two streams while two treatments (i.e. cattle‐absent controls, early season cattle grazing) were established in a third stream. 3. Bank stability, estimated visually based on sediment inputs to the stream channel, increased significantly in cattle‐absent treatments compared with cattle‐present enclosures over the 2‐year study period. 4. Epilithic chlorophyll a was significantly affected by time, but neither cattle nor the interaction of time and treatment were significant. 5. At the end of the experiment, total invertebrate biomass in the late and all‐season treatment exceeded that in the early and cattle‐absent treatments. However, excluding cattle from the streams, at any of the different treatments, had little clear impact on the total benthic invertebrate abundance or the abundance of the predominant functional feeding groups over the 2‐year study period. 6. In contrast, comparisons of benthic assemblages from streams with different grazing intensities showed that the non‐grazed reach of Storm Creek contained significantly higher biomass of CPOM and shredders compared with the cattle‐absent enclosures in Battle, Graburn and Nine Mile creeks. Redundancy analysis showed that benthic communities from all enclosures and Storm Creek in summer and autumn 2000 were affected primarily by CPOM biomass, pH, nitrate, turbidity and benthic chlorophyll a. Construction of a 99% probability ellipse from enclosure sites showed that invertebrate communities from livestock enclosures differed from that in the non‐grazed Storm Creek. 7. Results from stream‐scale comparisons indicate that current livestock grazing practices in the Cypress Hills significantly impact riparian zones, stream channels and benthic invertebrate community structure and that alternative practices, such as rotational grazing, need to be developed.  相似文献   

17.
The loss of seed-rich wintering habitats has been a major contributory cause of farmland bird population declines in western Europe. Agricultural grasslands are particularly poor winter foraging habitats for granivorous birds, which have declined most in the pastoral farming regions of western Britain. We describe an experiment to test the utility of fertile ryegrass (Lolium) swards as a potentially rich source of winter seed for declining farmland birds. Four patches of final-cut grass silage were allowed to set seed and were left in situ overwinter. Half of each patch was lightly aftermath grazed in an attempt to increase the accessibility of the seed to foraging birds and reduce the perceived predation risk. Large numbers of yellowhammers (Emberiza citrinella) and reed buntings (E. schoeniclus) foraged on the seeded plots throughout the winter. They preferred to forage on ungrazed seeded plots, where the accumulation of senescent foliage resulted in a 14% average loss in silage yield in the following season. However, seed produced on the plots also led to sward regeneration, increasing subsequent yields on some plots. The technique offers clear benefits as a potential future agri-environment measure for declining granivorous birds, with wide applicability, but requires further development to minimise sward damage and costs to the farmer. Autumn grazing should reduce sward damage, but at the cost of reduced usage by buntings. Using the technique just prior to reseeding would be one way of avoiding any costs of sward damage.  相似文献   

18.
Abstract. Tiller demography of Carex aquatilis ssp. stans, Carex membranacea, and Eriophorum angustifolium ssp. triste was investigated in ungrazed and grazed high arctic vegetation on central Ellesmere Island, Canada. Tiller birth, growth, flowering and death were studied from excavated clonal fragments, and tiller density and biomass were studied from excavated turfs. Five life‐cycle stages were determined: dormant buds, juvenile, mature, flowering and dead tillers. A stage‐based transition matrix model was developed to estimate the long‐term dynamics of the sedge populations and to compare life‐history strategies between ungrazed and grazed populations. Short‐term and retrospective models, based on the growth during the sampling year and during the lifetime of the clonal fragments, respectively, were compared to see how well the short‐term model can describe demography of long‐lived plants. According to the short‐term model, tiller populations were decreasing (λ < 1 except for C. membranacea), whereas the retrospective model indicated that the tiller populations were increasing. Tiller population growth rates did not differ between ungrazed and grazed habitats. Nevertheless, the similar growth rates may be obtained by balanced differences in the vital rates between plants of the two habitats. The plants in the ungrazed habitat tended to remain in their current life‐cycle stage, whereas plants in the grazed habitat moved quickly to the next stage and died earlier. C. aquatilis ssp. stans appears to gain a competitive advantage over the other species under intensive grazing, as indicated by the higher tiller density and greater below‐ground biomass in grazed vegetation. The greater amount of below‐ground biomass apparently buffers C. aquatilis ssp. stans against grazing better than the other species.  相似文献   

19.
Middleton  Beth 《Plant Ecology》2002,161(1):89-110
Equilibrium theory predicts that after disturbance, ecosystemseventually regain the structural and functional properties characteristic oftheir predisturbance condition. This study tested this idea by examining theeffects of cattle grazing and exclusion on the long-term structuralcharacteristics of sedge meadows in southern Wisconsin. To compare structuralchanges in mean percentage cover and height, repeated measures analysis wasconducted on two sedge meadows over a twenty year period from 1977 to 1997. Onesedge meadow was recovering from cattle grazing (cattle excluded in 1973) andthe other was a reference area (nearly undisturbed). Both of these study siteschanged structurally from 1977 to 1997, supporting non-equilibrium theory.Additional observations were made in a heavily and lightly grazed sedge meadowthat were surveyed in 1977. As based on the positions of subunits in anordination graph produced using Non-Metric Multidimensional Scaling (NMS), therecovery sedge meadow became less structurally similar to the grazed and moresimilar to the reference site over the 20 year study. However, from theperspective of mean maximum height in another NMS analysis, the recovery sedgemeadow became less similar to the reference site over time likely because by1997, a shrub carr of Cornus sericea had developed in therecovery sedge meadow that had been dominated by graminoids and forbs in 1977(mean maximum height: 1977 vs. 1997; 0 vs. 47 cm). Seedlings ofCornus sericea were invading the grazed sedge meadows andin the recovery sedge meadow (cattle excluded 4 years earlier) in 1977. A shrubcarr did not develop in the reference sedge meadow. Changes in the referencesite were relatively minor over this time interval; certain species eitherincreased or decreased in dominance, e.g., Carex strictaincreased in cover (1977 vs. 1997, 20 and 28 mean percentage (%) cover,respectively). A few short-term species of the recovery sedge meadow followedthe tenets of equilibrium theory. These became less common or disappeared4–9 years after cattle exclusion including Asterlanceolatus, Calamagrostis canadensis,Poa compressa, Solidago altissima andVerbena hastata. Some of these species were eaten andlikely spread by the cattle. This study suggests that the progression of sedgemeadow to shrub carr may not be an inevitable outcome of succession but insteadcan be a consequence of past cattle grazing history. Also, because the recoveryand the reference sedge both changed structurally over time, the tenets ofnon-equilibrium theory were supported by this study.  相似文献   

20.
To obtain the characteristics of Chinese alpine grassy marshland, the vegetation of Ruoergai marshland, which is the largest peatland in China, and of neighboring areas was surveyed along mountain slopes in three areas, Ouhailao, Waqie and Kaharqiao. Based on the clustering of 122 1 m × 1 m quadrats surveyed, the vegetation was grouped into 8 types. From bottom to top of mountain slopes, the dominant species, zonally established, were: 1) Carex enervis and Equisetum limosum; 2) Carex meyeriana; 3) Deschampsia caespitosa, Caltha scaposa and Anemone obtusiloba; 4) Koeleria cristata; 5) Kobresia tibetica and Caltha scaposa; 6) Blysmus sinocompressus; 7) Polygonum sphaerostachyum and Trollius ranuncloides; and 8) Ranunculus pedicularis. In this order, species richness increased gradually along the slopes. A principal component analysis demonstrated that water depth partly regulated the establishment of vegetation. The geographical difference of vegetation was also observed, in particular, in Waqie. Likewise, grazing is considered to modify this vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号