首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
Seed dispersal governs the distribution of plant propagules in the landscape and hence forms the template on which density‐dependent processes act. Dispersal is therefore a vital component of many species coexistence and forest dynamics models and is of applied value in understanding forest regeneration. Research on the processes that facilitate forest regeneration and restoration is given further weight in the context of widespread loss and degradation of tropical forests, and provides impetus to improve estimates of seed dispersal for tropical forest trees. South‐East Asian lowland rainforests, which have been subject to severe degradation, are dominated by trees of the Dipterocarpaceae family which constitute over 40% of forest biomass. Dipterocarp dispersal is generally considered to be poor given their large, gyration‐dispersed fruits. However, there is wide variability in fruit size and morphology which we hypothesize mechanistically underpins dispersal potential through the lift provided to seeds mediated by the wings. We explored experimentally how the ratio of fruit wing area to mass (“inverse wing loading,” IWL) explains variation in seed dispersal kernels among 13 dipterocarp species by releasing fruit from a canopy tower. Horizontal seed dispersal distances increased with IWL, especially at high wind speeds. Seed dispersal of all species was predominantly local, with 90% of seed dispersing <10 m, although maximum dispersal distances varied widely among species. We present a generic seed dispersal model for dipterocarps based on attributes of seed morphology and provide modeled seed dispersal kernels for all dipterocarp species with IWLs of 1–50, representing 75% of species in Borneo.  相似文献   

2.
Seed dispersal by wind is a critical yet poorly understood process in tropical forest trees. How tree size and fecundity affect this process at the population level remains largely unknown because of insufficient replication across adults. We measured seed dispersal by the endangered neotropical timber species big-leaf mahogany (Swietenia macrophylla King, Meliaceae) in the Brazilian Amazon at 25 relatively isolated trees using multiple 1-m wide belt transects extended 100 m downwind. Tree diameter and fecundity correlated positively with increased seed shadow extent; but in combination large, high fecundity trees contributed disproportionately to longer-distance dispersal events (>60 m). Among three empirical models fitted to seed density vs. distance in one dimension, the Student-t (2Dt) generally fit best (compared to the negative exponential and inverse power). When seedfall downwind was modelled in two dimensions using a normalised sample, it peaked furthest downwind (c. 25 m) for large, high-fecundity trees; with the inverse Gaussian and Weibull functions providing comparable fits that were slightly better than the lognormal. Although most seeds fell within 30 m of parent trees, relatively few juveniles were found within this distance, resulting in juvenile-to-seed ratios peaking at c. 35-45 m. Using the 2Dt model fits to predict seed densities downwind, coupled with known fecundity data for 2000-2009, we evaluated potential Swietenia regeneration near adults (≤30 m dispersal) and beyond 30 m. Mean seed arrival into canopy gaps >30 m downwind was more than 3× greater for large, high fecundity trees than small, high-fecundity trees. Tree seed production did not necessarily scale up proportionately with diameter, and was not consistent across years, and this resulting intraspecific variation can have important consequences for local patterns of dispersal in forests. Our results have important implications for management and conservation of big-leaf mahogany populations, and may apply to other threatened wind-dispersed Meliaceae trees.  相似文献   

3.
Life‐history traits of invasive exotic plants are typically considered to be exceptional vis‐à‐vis native species. In particular, hyper‐fecundity and long range dispersal are regarded as invasive traits, but direct comparisons with native species are needed to identify the life‐history stages behind invasiveness. Until recently, this task was particularly problematic in forests as tree fecundity and dispersal were difficult to characterize in closed stands. We used inverse modelling to parameterize fecundity, seed dispersal and seedling dispersion functions for two exotic and eight native tree species in closed‐canopy forests in Connecticut, USA. Interannual variation in seed production was dramatic for all species, with complete seed crop failures in at least one year for six native species. However, the average per capita seed production of the exotic Ailanthus altissima was extraordinary: > 40 times higher than the next highest species. Seed production of the shade tolerant exotic Acer platanoides was average, but much higher than the native shade tolerant species, and the density of its established seedlings (≥ 3 years) was higher than any other species. Overall, the data supported a model in which adults of native and exotic species must reach a minimum size before seed production occurred. Once reached, the relationship between tree diameter and seed production was fairly flat for seven species, including both exotics. Seed dispersal was highly localized and usually showed a steep decline with increasing distance from parent trees: only Ailanthus altissima and Fraxinus americana had mean dispersal distances > 10 m. Janzen‐Connell patterns were clearly evident for both native and exotic species, as the mode and mean dispersion distance of seedlings were further from potential parent trees than seeds. The comparable intensity of Janzen‐Connell effects between native and exotic species suggests that the enemy escape hypothesis alone cannot explain the invasiveness of these exotics. Our study confirms the general importance of colonization processes in invasions, yet demonstrates how invasiveness can occur via divergent colonization strategies. Dispersal limitation of Acer platanoides and recruitment limitation of Ailanthus altissima will likely constitute some limit on their invasiveness in closed‐canopy forests.  相似文献   

4.
Seed dispersal studies have primarily examined dispersal as a function of distance from the parent tree and/or heterogeneity in dispersal due to animal use of nesting, roosting and sleeping sites. However, non‐random heterogeneity in seed dispersal is also likely to result from the post‐foraging behavior and movement of frugivores which prefer certain trees. To characterize variation in seed rain at fine scales, we studied the dispersal curve of Prunus ceylanica, a primarily bird‐dispersed species. We compared seed rain at conspecifics, heterospecific fruiting trees with similar frugivore assemblages, emergent trees, and the landscape surrounding these trees. Seed rain of P. ceylanica was found to peak globally under the canopy of conspecifics but to peak locally under the canopy and immediate neighborhood of heterospecific fruiting trees. Our results demonstrate that seed rain is highly clumped even at fine spatial scales. A large proportion of seeds are dispersed in specific, localized regions. This variation can have important implications for plant population dynamics and might significantly alter the impact of post‐dispersal processes. Seed dispersal models may need to incorporate this heterogeneity to explain manifestations of spatially explicit dynamics like mixed species ‘orchards’.  相似文献   

5.
Woodlands worldwide have been greatly modified by clearing for agriculture, and their conservation and restoration requires understanding of tree recruitment processes. Seed production is one possible point of recruitment failure, and one that the spatial arrangement of trees may affect. We sampled 118 Eucalyptus microcarpa (Myrtaceae) trees to compare and analyse the determinants of seed production in this dominant tree of modified, fragmented temperate grassy woodlands, which extend over much of southeastern Australia. Fecundity was estimated as the seed crop measured on leaf mass and whole tree bases and was compared between categories of tree configuration. We also modelled fecundity using boosted regression trees, a new and flexible tool. Fecundity on a leaf mass basis was predominantly influenced by environmental factors (topographic ‘wetness’, slope, soil type), rather than by local tree density and configuration. Fewer seed per unit leaf mass were produced on flat and topographically wet sites, reflecting poor tolerance of waterlogging by E. microcarpa. By contrast, whole tree fecundity was little influenced by environmental factors. Local tree density and configuration did influence whole tree fecundity, which was high in solitary and woodland‐spaced trees and reduced under high local density. We found little evidence for reduced fecundity of E. microcarpa in solitary trees. This points to the importance of scattered trees as sources of seed for tree recruitment and for natural regeneration of landscape level tree cover. Considerable uncertainty remains in modelled seed supply, and may be reduced with sampling across multiple years and greater environmental and spatial domains.  相似文献   

6.
Seed dispersal constitutes a pivotal process in an increasingly fragmented world, promoting population connectivity, colonization and range shifts in plants. Unveiling how multiple frugivore species disperse seeds through fragmented landscapes, operating as mobile links, has remained elusive owing to methodological constraints for monitoring seed dispersal events. We combine for the first time DNA barcoding and DNA microsatellites to identify, respectively, the frugivore species and the source trees of animal‐dispersed seeds in forest and matrix of a fragmented landscape. We found a high functional complementarity among frugivores in terms of seed deposition at different habitats (forest vs. matrix), perches (isolated trees vs. electricity pylons) and matrix sectors (close vs. far from the forest edge), cross‐habitat seed fluxes, dispersal distances and canopy‐cover dependency. Seed rain at the landscape‐scale, from forest to distant matrix sectors, was characterized by turnovers in the contribution of frugivores and source‐tree habitats: open‐habitat frugivores replaced forest‐dependent frugivores, whereas matrix trees replaced forest trees. As a result of such turnovers, the magnitude of seed rain was evenly distributed between habitats and landscape sectors. We thus uncover key mechanisms behind “biodiversity–ecosystem function” relationships, in this case, the relationship between frugivore diversity and landscape‐scale seed dispersal. Our results reveal the importance of open‐habitat frugivores, isolated fruiting trees and anthropogenic perching sites (infrastructures) in generating seed dispersal events far from the remnant forest, highlighting their potential to drive regeneration dynamics through the matrix. This study helps to broaden the “mobile‐link” concept in seed dispersal studies by providing a comprehensive and integrative view of the way in which multiple frugivore species disseminate seeds through real‐world landscapes.  相似文献   

7.
以云南松和云南油杉为研究对象,分析种子形态特征(质量、长度、宽度、种翅面积)和传播特征(狭长度、翅载力、沉降速度、水平传播距离)之间的关系,比较2物种种子风力传播特征及传播能力的差异。结果表明:1)种子翅载力对沉降速度的影响最大,种子形状(狭长度)对沉降速度的影响较弱.种子水平传播距离受各形态特征和传播特征的影响不明显;2)云南松种子的所有形态特征值均极显著低于云南油杉种子;3)种子传播特征中,云南松种子的狭长度较大,翅载力较小,沉降速度(77.3cm.s^-1)小于云南油杉(116.9cm·s^-1),水平传播距离(0.75m)大于云南油杉(0.71m),云南松种子的风力传播能力较强。本研究可为深入理解种子风力传播机制以及种子的进化生态适应策略提供相关理论依据。  相似文献   

8.
Seed morphological and wind dispersed characteristics of Pinus yunnanensis and Keteleeria evelyniana were compared in this study to clarify the relationship among seed morphological, dispersal characteristics and wind dispersal ability. The results showed that: 1)Seed wing loading had the greatest effect on the seed settlement velocity, but the effect of seed shape(the ratio of seed wing length to width) on it was unobvious. Seed morphological and dispersal characteristics of two species slightly influenced the horizontal dispersal distance. 2)Seed morphological characteristics(weight, length, width and seed wing area) of Pyunnanensis were significantly lower than Kevelyniana’s. 3) The ratio of seed wing length to width of Pyunnanensis was greater, and had less seed wing loading than Kevelyniana, the seed settlement velocity of Pyunnanensis (773cm·s-1) was lower than Kevelyniana’s (1169cm·s-1). Meanwhile, the seed horizontal dispersal distance(075m) under same wind speed was further than Kevelyniana’s (071m). The present study indicated that wind dispersal ability of Pyunnanensis’ seed was stronger. The research results provided more knowledge to understand seed wind dispersal mechanism and seed adaptation strategies in term of evolution and ecology.  相似文献   

9.

Recolonization of wind-dispersed tree species in degraded areas may decline with distance from remnant forest fragments because seed rain frequently decreases with distance from the seed source. However, regeneration of these species may be even more limited to sites close to the seed source if dispersal distance is negatively affected by seed mass, and germination probability is positively affected by seed mass. We evaluated these hypotheses in a Mediterranean-type ecosystem of central Chile, using the wind-dispersed tree species Quillaja saponaria. We assessed the seed rain curve in a degraded open area adjacent to a remnant forest fragment of this species, and related seed mass with dispersal distance from the seed source. Then, we evaluated the relationship between seed mass, germination, and seedling growth, and if seeds that fall nearer the seed source have greater germination probability. We found a decreasing seed rain with the distance from the seed source. Seed mass was not related to dispersal distance, although seeds with higher wing area dispersed further. Germination probability was significantly and positively related to the seed mass. We observed no significant relationship between distance and germination probability. We conclude that germination probability of this species does not vary along the seed rain curve, and that the recruitment density would be greater near the seed source only due to decreasing seed rain with distance. Our results suggest that this species has the potential to be passively restored in degraded areas, especially within the first 70 m from the remnant forest fragments.

  相似文献   

10.
F. A. Jones  L. S. Comita 《Oikos》2010,119(11):1841-1847
Negative density‐dependent demographic processes operating at post‐dispersal seed, seedling, and juvenile stages are the dominant explanation for the coexistence of high numbers of tree species in tropical forests. At adult stages, the effect of pollinators and pre‐dispersal fruit predators are often dependent on the density or abundance of flowers and fruit in the canopy, but each have opposite effects on individual realized reproduction. We studied the effect of density on total and mature fruit set and pre‐dispersal predation rates within individual tree canopies in a common canopy tree species, Jacaranda copaia in a 50‐ha forest census plot in central Panama. We sampled all reproductive sized trees in the plot (n = 188) across three years and estimated fruit set and predation rates. Population‐wide pre‐dispersal seed predation averaged between 6–37% across years. Using linear mixed effects models, we found that increased density and fecundity of conspecific neighbours increased focal tree fruit set, but also the rate of pre‐dispersal predation. An interaction between individual and neighbourhood fruit production predicted lower predation rates at high individual and neighbourhood fecundities, which suggests predator satiation at high fruit abundance levels. However, the rate at which fruit set increased with conspecific neighbour fruit production was greater than the rate at which fruit were lost to predation, resulting in an overall positive effect of neighbour density on mature fruit production in focal trees. Our results run counter to the expectation of a uniformly negative effect of density across all life stages in tropical trees and suggest further exploration of the role of spatial clumping, pollen dispersal limitation, and predation at pre‐dispersal adult stages in maintenance of species diversity in plant communities.  相似文献   

11.
Timothy G. Laman 《Oecologia》1996,107(3):347-355
Due to their copious seed production and numerous dispersers, rain forest fig trees have been assumed to produce extensive and dense seed shadows. To test this idea, patterns of seed dispersal of two species of large hemiepiphytic fig tree were measured in a Bornean rain forest. The sample included four Ficus stupenda and three F. subtecta trees with crop sizes ranging from 2,000 to 40,000 figs (400,000 to 13,000,000 seeds). Seed rain out to a distance of 60 m from each study tree was quantified using arrays of seed traps deployed in the understory. These trees showed a strongly leptokurtic pattern of dispersal, as expected, but all individuals had measurable seed rain at 60 m, ranging from 0.2 to 5.0 seeds/m2. A regression of In-transformed seed rain density against distance gave a significant fit to all seven trees' dispersal patterns, indicating that the data could be fitted to the negative exponential distribution most commonly fitted to seed shadows. However, for six of seven trees, an improved fit was obtained for regressions in which distance was also In-transformed. This transformation corresponds to an inverse power distribution, indicating that for vertebrate-dispersed Ficus seeds, the tail of the seed rain distribution does not drop off as rapidly as in the exponential distribution typically associated with wind dispersed seed shadows. Over 50% of the seed crop was estimated to fall below each fig tree's crown. Up to 22% of the seed crop was dispersed beyond the crown edge, but within 60 m of the tree. Estimates of the maximum numbers of seeds which could have been transported beyond 60 m were 45% for the two largest crops of figs, but were under 24% for the trees with smaller crops. Seed traps positioned where they had an upper canopy layer above them were associated with higher probabilities of being hit by seeds, suggesting that vertebrate dispersal agents are likely to perch or travel through forest layers at the same level as the fig crown and could concentrate seeds in such areas to some degree. The probability of a safe site at 60 m from the fig tree being hit by seeds is calculated to be on the order of 0.01 per fruiting episode. Fig trees do not appear to saturate safe sites with seeds despite their large seed crops. If we in addition consider the rarity of quality establishment sites and post-dispersal factors reducing successful seedling establishment, hemiepiphytic fig trees appear to face severe obstacles to seedling recruitment.  相似文献   

12.
Seed dispersal by avian frugivores is one of the key processes influencing plant spatial patterns, but may fail if there is disruption of plant–frugivore mutualisms, such as decline in abundance of dispersers, fragmentation of habitat, or isolation of individual trees. We used simulation model experiments to examine the interaction between frugivore density and behaviour and the spatial arrangement of fruiting plants and its effect on seed dispersal kernels. We focussed on two New Zealand canopy tree species that produce large fruits and are dispersed predominantly by one avian frugivore (Hemiphaga novaeseelandiae). Although the mean seed dispersal distance decreased when trees became more aggregated, there were more frugivore flights between tree clusters, consequently stretching the tails of the dispersal kernels. Conversely, when trees were less aggregated in the landscape, mean dispersal distances increased because seeds were deposited over larger areas, but the kernels had shorter tails. While there were no statistically meaningful changes in kernel parameters when frugivore density changed, decreases in density did cause a proportional reduction in the total number of dispersed seeds. However, birds were forced to move further when fruit availability and fruit ripening were low. Sensitivity analysis showed that dispersal kernels were primarily influenced by the model parameters relating to disperser behaviour, especially those determining attractiveness based on distance to candidate fruiting trees. Our results suggest that the spatial arrangement of plants plays an important role in seed dispersal processes – although tree aggregation curbed the mean seed dispersal distance, it was accompanied by occasional long distance events, and tree dispersion caused an increase in mean dispersal distance, both potentially increasing the probability of seeds finding suitable habitats for germination and growth. Even though low frugivore densities did not cause dispersal failure, there were negative effects on the quantity of seed dispersal because fewer seeds were dispersed.  相似文献   

13.
Seed dispersal determines a plant’s reproductive success, range expansion, and population genetic structures. Camellia japonica, a common evergreen tree in Japan, has been the subject of recent genetic studies of population structure, but its mode of seed dispersal has been assumed, without detailed study, to be barochory. The morphological and physiological features of C. japonica seeds, which are large and nutritious, suggest zoochorous dispersal, however. We compared actual distances between mother trees and seedlings with distances attributable to gravity dispersion only, to test the zoochory hypothesis of C. japonica. The animals that transport the seeds for caching were identified experimentally. We also examined the extent to which seed dispersal is affected by the behavior of animal vectors. Seed dispersal by Apodemus speciosus was confirmed by taking photographs of animals that were consuming seeds experimentally deposited on the ground. Camellia seeds hoarded by the rodents under the litter or soil were protected from drying. On the basis of microsatellite analysis of maternal tissue from the seed coat, the mother trees of 28 seedlings were identified. Maternity analysis revealed the average seed-dispersal distance from mother trees was 5.8 m±6.0 SD, a distance greater than initial dispersal by gravity alone. These results indicate that C. japonica is a zoochorous species dispersed by A. speciosus. Fifty percent of the seed dispersal occurred from mature evergreen forests to dwarf bamboo thickets. This directional seed dispersal would contribute to range expansion of C. japonica. Home range sizes of A. speciosus were 0.85 ha at most and covered with different types of vegetation, from evergreen forests to grassland. This low specificity of their microhabitat use might enhance seed dispersal to different types of vegetation.All animal experiments complied with Japanese laws.  相似文献   

14.

Background and Aims

Populations of many epiphytes show a patchy distribution where clusters of plants growing on individual trees are spatially separated and may thus function as metapopulations. Seed dispersal is necessary to (re)colonize unoccupied habitats, and to transfer seeds from high- to low-competition patches. Increasing dispersal distances, however, reduces local fecundity and the probability that seeds will find a safe site outside the original patch. Thus, there is a conflict between seed survival and colonization.

Methods

Populations of three epiphytic orchids were monitored over three years in a Mexican humid montane forest and analysed with spatially averaged and with spatially explicit matrix metapopulation models. In the latter, population dynamics at the scale of the subpopulations (epiphytes on individual host trees) are based on detailed stage-structured observations of transition probabilities and trees are connected by a dispersal function.

Key Results

Population growth rates differed among trees and years. While ignoring these differences, and averaging the population matrices over trees, yields negative population growth, metapopulation models predict stable or growing populations because the trees that support growing subpopulations determine the growth of the metapopulation. Stochastic models which account for the differences among years differed only marginally from deterministic models. Population growth rates were significantly lower, and extinctions of local patches more frequent in models where higher dispersal results in reduced local fecundity compared with hypothetical models where this is not the case. The difference between the two models increased with increasing mean dispersal distance. Though recolonization events increased with dispersal distance, this could not compensate the losses due to reduced local fecundity.

Conclusions

For epiphytes, metapopulation models are useful to capture processes beyond the level of the single host tree, but local processes are equally important to understand epiphyte population dynamics.  相似文献   

15.
Savannas are highly diverse and dynamic environments that can shift to forest formations due to protection policies. Long‐distance dispersal may shape the genetic structure of these new closed forest formations. We analyzed eight microsatellite loci using a single‐time approach to understand contemporary pollen and effective seed dispersal of the tropical tree, Copaifera langsdorffii Desf. (Fabaceae), occurring in a Brazilian fire‐ and livestock‐protected savanna. We sampled all adult trees found within a 10.24 ha permanent plot, young trees within a subplot of 1.44 ha and open‐pollinated seeds. We detected a very high level of genetic diversity among the three generations in the studied plot. Parentage analysis revealed high pollen immigration rate (0.64) and a mean contemporary pollen dispersal distance of 74 m. In addition, half‐sib production was 1.8 times higher than full‐sibs in significant higher distances, indicating foraging activity preference for different trees at long distances. There was a significant and negative correlation between diameter at breast height (DBH) of the pollen donor with the number of seeds (r = ?0.640, P‐value = 0.032), suggesting that pollen donor trees with a higher DBH produce less seeds. The mean distance of realized seed dispersal (recruitment kernel) was 135 m due to the large home range dispersers (birds and mammals) in the area. The small magnitude of spatial genetic structure found in young trees may be a consequence of overlapping seed shadows and increased tree density. Our results show the positive side of closed canopy expansion, where animal activities regarding pollination and seed dispersal are extremely high.  相似文献   

16.
The process of range expansion often selects for traits that maximize invasion success at range edges. For example, during range expansion, individuals with greater dispersal and colonization ability will be selected for towards range edges. For wind dispersed plants, however, there exists a fundamental trade-off between dispersal and colonization ability (germination success and growth) that is mediated by seed size; smaller seeds often have greater dispersal ability but poorer colonization ability. We investigated the nature of the dispersal/colonization trade-off by comparing dispersal ability (wing loading ratio: seed mass/wing area), germination success and growth related traits across multiple populations of a coastal exotic invasive plant species (Gladiolus gueinzii Kunze) along its entire introduced distribution in eastern Australia. We found that G. gueinzii had significantly greater dispersal ability towards its range edges which was mediated by a decrease in seed mass. However, this was not associated with a decrease in probability of germination or growth after 3 months. In fact, seeds from range edge populations had significantly faster germination times. Our results suggest that a shift towards greater dispersal ability does not have an associated negative effect on the colonization ability of G. gueinzii and may be a key factor in promoting further range expansion of this exotic invasive species.  相似文献   

17.
Although changes in land-use, climate, and the spread of introduced tree species have increased the global importance of tree invasions into grasslands, our ability to predict any particular invasion is limited. To elucidate mechanisms driving tree invasions of grasslands, we studied in detail how seed dispersal and fine-scale environment control the expansion of an introduced Picea abies Karst. (Norway spruce) population into Western Carpathian grassland. We mapped invading trees and measured tree size, fecundity, seed rain, seedling density, plant community composition, and light and soil environment within a 200 × 60 m belt across the invasion front. Maximum likelihood estimates of dispersal kernels suggested peak seed deposition directly underneath tree crowns where germination was poor, but mean dispersal distances were sufficiently large to generate overlapping seed shadows from multiple trees that saturated the invasion front with seeds further away from seed-dispersing trees. Partial Mantel tests indicated that germinant density was affected considerably less by seed rain than by moss cover (r = 0.54), overstory tree influence (r = −0.32), soil moisture (r = 0.21), grass cover (r = −0.15), and diffuse radiation (r = 0.13). However, these variables were not independent but formed complex multivariate gradients within the invasion front. Moss cover and soil moisture were negatively correlated with overstory tree influence and the resulting gradient clearly affected germinant density (partial Mantel r = 0.45). In contrast, positively correlated light and grass cover defined a gradient related weakly to germinant density (partial Mantel r = 0.05) as it integrated opposing effects of these variables on germinants. Seedlings had similar environmental associations, but except for the lasting positive effects of moss these tended to weaken with seedling size. Although a few seedlings may establish and survive in the more adverse environment of the outer edges of the invasion front, a significant population expansion may require a gradual build-up of the critical density of invading trees to reduce grass cover and facilitate germination on moist mossy seedbeds within uncolonized areas. Thus, Picea abies appears more likely to spread within temperate grasslands by gradual expansion of its population frontier rather than by advanced groups.  相似文献   

18.
BACKGROUND: In angiosperms, flower size commonly scales negatively with number. The ecological consequences of this trade-off for tropical trees remain poorly resolved, despite their potential importance for tropical forest conservation. We investigated the flower size number trade-off and its implications for fecundity in a sample of tree species from the Dipterocarpaceae on Borneo. METHODOLOGY/PRINCIPAL FINDINGS: We combined experimental exclusion of pollinators in 11 species, with direct and indirect estimates of contemporary pollen dispersal in two study species and published estimates of pollen dispersal in a further three species to explore the relationship between flower size, pollinator size and mean pollen dispersal distance. Maximum flower production was two orders of magnitude greater in small-flowered than large-flowered species of Dipterocarpaceae. In contrast, fruit production was unrelated to flower size and did not differ significantly among species. Small-flowered species had both smaller-sized pollinators and lower mean pollination success than large-flowered species. Average pollen dispersal distances were lower and frequency of mating between related individuals was higher in a smaller-flowered species than a larger-flowered confamilial. Our synthesis of pollen dispersal estimates across five species of dipterocarp suggests that pollen dispersal scales positively with flower size. CONCLUSIONS AND THEIR SIGNIFICANCE: Trade-offs embedded in the relationship between flower size and pollination success contribute to a reduction in the variance of fecundity among species. It is therefore plausible that these processes could delay competitive exclusion and contribute to maintenance of species coexistence in this ecologically and economically important family of tropical trees. These results have practical implications for tree species conservation and restoration. Seed collection from small-flowered species may be especially vulnerable to cryptic genetic erosion. Our findings also highlight the potential for differential vulnerability of tropical tree species to the deleterious consequences of forest fragmentation.  相似文献   

19.
To theoretically investigate the single and compound effects of relative fecundity and relative stature of plants on size-dependent sex allocation (SDS) in wind-pollinated cosexual species, we developed a game model and analysed ESS sex allocation of large and small plants having totally or partially different reproductive resources and different pollen and seed dispersal areas in a population. We found that e.g. when both sized plants have large pollen dispersal areas relative to their seed dispersal areas, which plants are male-biased is largely determined by relative fecundity (t) and relative size of seed dispersal area (k) of the large plants to the small plants: If t >k, large plants tend to be more male-biased even if relative size of pollen dispersal area of large to small plants (l) is smaller than k. If t相似文献   

20.
Seed mass and morphology are plant life history traits that influence seed dispersal ability, seeding establishment success, and population distribution pattern. Southeastern Tibet is a diversity center for Rhododendron species, which are distributed from a few hundred meters to 5500 m above sea level. We examined intra‐ and interspecific variation in seed mass and morphology in relation to altitude, habitat, plant height, and phylogeny. Seed mass decreased significantly with the increasing altitude and increased significantly with increasing plant height among populations of the same species. Seed mass differed significantly among species and subsections, but not among sections and subgenera. Seed length, width, surface area, and wing length were significantly negative correlated with altitude and significantly positive correlated with plant height. Further, these traits differed significantly among habitats and varied among species and subsection, but not among sections and subgenera. Species at low elevation had larger seeds with larger wings, and seeds became smaller and the wings of seeds tended to be smaller with the increasing altitude. Morphology of the seed varied from flat round to long cylindrical with increasing altitude. We suggest that seed mass and morphology have evolved as a result of both long‐term adaptation and constraints of the taxonomic group over their long evolutionary history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号