首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在中华蜜蜂(Apis cerana)工蜂毒腺cDNA库内发现了一个插有1104bp外源片段的克隆,内含一个765bp的开放阅读框架(ORF),编码一个含有254.个氨基酸残基的依赖于2,3一二磷酸甘油酸的磷酸甘油变位酶(dPGAM),催化3一磷酸甘油和2一磷酸甘油之间的转化。推测的氨基酸序列与其他7种生物的dPGAM的相似性很高(39%-88%),而与其他4种不依赖于2,3-二磷酸甘油酸的磷酸甘油变位酶(iPGAM)的相似性则很低(10%-12%),氨基酸序列的多重联配表明组成dPGAM活性位点的氨基酸残基在包括中华蜜蜂在内的所有生物体内是十分保守的,Ac—PGAM是一种典型的dPGAM。这是昆虫纲中继在果蝇中发现PGAM基因后的第2个昆虫dPGAM基因,其对PGAM基因的结构与功能研究及对昆虫的分子生物学研究具有意义。同时,对PGAM的进化关系的分析表明该基因可以用作研究物种系统关系的一个依据。  相似文献   

2.
The heat shock (HS) response is essential for survival of all organisms. Although the machinery of the HS response has been extensively investigated at the cellular level, it is poorly understood at the level of the organism. Here, we show the crucial role of the mushroom body (MB) in the HS response in Drosophila. Null mutants of the mitochondrial phosphatase Drosophila PGAM5 (dPGAM5) exhibited increased vulnerability to HS, which was reversed by MB-specific expression of the caspase inhibitor p35, and similar vulnerability was induced in wild-type flies by knockdown of MB dPGAM5. Elimination of the MB did not affect the HS response of wild-type flies, but did increase the resistance of dPGAM5-deficient flies to HS. Thus, the MB may possess an apoptosis-dependent toxic function, the suppression of which by dPGAM5 appears to be crucial for HS resistance.  相似文献   

3.
PTEN-induced kinase 1 (PINK1), which is required for mitochondrial homeostasis, is a gene product responsible for early-onset Parkinson's disease (PD). Another early onset PD gene product, Parkin, has been suggested to function downstream of the PINK1 signalling pathway based on genetic studies in Drosophila. PINK1 is a serine/threonine kinase with a predicted mitochondrial target sequence and a probable transmembrane domain at the N-terminus, while Parkin is a RING-finger protein with ubiquitin-ligase (E3) activity. However, how PINK1 and Parkin regulate mitochondrial activity is largely unknown. To explore the molecular mechanism underlying the interaction between PINK1 and Parkin, we biochemically purified PINK1-binding proteins from human cultured cells and screened the genes encoding these binding proteins using Drosophila PINK1 (dPINK1) models to isolate a molecule(s) involved in the PINK1 pathology. Here we report that a PINK1-binding mitochondrial protein, PGAM5, modulates the PINK1 pathway. Loss of Drosophila PGAM5 (dPGAM5) can suppress the muscle degeneration, motor defects, and shorter lifespan that result from dPINK1 inactivation and that can be attributed to mitochondrial degeneration. However, dPGAM5 inactivation fails to modulate the phenotypes of parkin mutant flies. Conversely, ectopic expression of dPGAM5 exacerbated the dPINK1 and Drosophila parkin (dParkin) phenotypes. These results suggest that PGAM5 negatively regulates the PINK1 pathway related to maintenance of the mitochondria and, furthermore, that PGAM5 acts between PINK1 and Parkin, or functions independently of Parkin downstream of PINK1.  相似文献   

4.
5.
6.
Abstract In order to understand the differentiation of amino acid requirments in host‐related populations of the brown planthopper (BPH), Nilaparvata lugens (Stål), we established three BPH populations by separately maintaining them on three rice varieties, i.e. TN1 (common susceptible control), Mudgo (containing resistant gene Bph 1) and ASD7 (containing resistant gene bph2) for over 30 generations, and then reared them on 20 holidic diets, each with distinct overall amino acids and ratio of essential amino acid (EAA) to nonessential amino acid (NEAA). The emergence rate, brachypter rate, nymphal duration and weight of newly molted adults were evaluated and compared. The results showed significant difference among the three populations in the effect of amino acid variation on BPH performance, ascending in an order of Mudgo population ASD7 population > TN1 pupulation. The results also indicated that the required optimum concentrations of overall amino acids by BPH populations on Mudgo and ASD7 were 4.0% ‐4.8% and 4.0%, respectively, higher than that of TN1 population (2.4% ‐ 3.2%). In addition, it was found that Mudgo and ASD7 populations were more sensitive to the concentration of EAAs than TN1 population. We propose that there is substantial differentiation in responses to dietary amino acid conditions among different host‐associated BPH populations and that such differentiation may be closely related to the induced virulence shift on resistant rice varieties.  相似文献   

7.
8.
A C‐type lectin‐like protein (Ec‐CTLP) was cloned from the grouper Epinephelus coioides. The full‐length cDNA of Ec‐CTLP was composed of 905 bp with a 522 bp open reading frame that encodes a 174‐residue protein. The putative amino acid sequence of Ec‐CTLP contains a signal peptide of 19 residues at the N‐terminus and a CLECT domain from Cys43 to Arg169 and a conserved imperfect WND (Trp‐Asn‐Asp) motif. The homologous identity of deduced amino acid sequences is from 32 to 42% with other fishes. The expression of Ec‐CTLP was differently upregulated in E. coioides spleen (germline stem) cells after being challenged at 16 and 4° C. Intracellular localization revealed that Ec‐CTLP was distributed only in the cytoplasm. Recombinant Ec‐CTLP (rEc‐CTLP) was expressed in Escherichia coli BL21 (DE3) and purified for mouse Mus musculus anti‐Ec‐CTLP serum preparation. The rEc‐CTLP fusion protein does not possess haemagglutinating activity, but improves survival from frozen bacteria. The survival of bacteria (including gram‐negative E. coli and gram‐positive Staphylococcus aureus) was positively correlated with the concentration of the rEc‐CTLP. These findings can provide clues to help understand the probable C‐type lectin in marine fish innate immunity.  相似文献   

9.
Abstract The venomous hyaluronidase (Hya) gene of Chinese honey bee, Apis cerana cerana, was amplified by RT‐PCR from total RNA of venom glands of the worker bees. The full length of its nucleotide is 1164 bp encoding a 387 amino acid polypeptide with predicted molecular weight of 42.6 kD. The alignment of AcHya amino acid sequence with other 6 Hyas shows that AcHya is most closely related to the Hya of European honey bee, A. mellifera, with 91% amino acid identity. It also shares homology with Hya of Dolichovespul amacidata, Polistes annularis, Vespula vulgaris, Lutzomia longipalpis and Homo sapiens (sperm), with 54%., 52%., 46%, 27% and 20% amino acid identity, respectively. A phylogenetic tree of those hyaluronidases was drawn by using GENETYX program, the conservation, the relationship between molecular structure and function of 7 hyaluronidases as above was compared and analysed.  相似文献   

10.
In addition to sialic acid, bacteria produce several other nonulosonic acids, including legionaminic acid (Leg). This has exactly the same stereochemistry as sialic acid, with the added features of 9-deoxy and 7-amino groups. In order to explore the biological effects of replacing sialic acid residues (Neu5Ac) in glycoconjugates with Leg in its diacetylated form, diacetyllegionaminic acid (Leg5Ac7Ac), we tested CMP-Leg5Ac7Ac as a donor substrate with a selection of bacterial and mammalian sialyltransferases. The CMP-Leg5Ac7Ac was synthesized in vitro by means of cloned enzymes from the bacillosamine portion of the Campylobacter jejuni N-glycan pathway and from the Leg pathway of Legionella pneumophila. Using fluorescent derivatives of lactose, Galβ1,4GlcNAcβ and T-antigen (Galβ1,3GalNAcα) as acceptors, we tested eight different sialyltransferases and found that the Pasteurella multocida PM0188h and porcine ST3Gal1 sialyltransferases were significantly active with CMP-Leg5Ac7Ac, showing ~60% activity when compared with CMP-Neu5Ac. The Photobacterium α2,6 sialyltransferase was weakly active, with ~6% relative activity. The Leg5Ac7Ac-α-2,3-lactose product was then tested as a substrate with six sialidases of viral, bacterial and mammalian origin. All showed much lower activities than with the corresponding sialic acid substrate, with the influenza virus N1 being the most active and human NEU2 being the least active. These results show the feasibility of producing glycoconjugates with Leg5Ac7Ac residues as the terminal sugars, which should display novel biological properties.  相似文献   

11.
Abstract The 2,3-butanediol dehydrogenase and the acetoin-cleaving system were simultaneously induced in Pseudomonas putida PpG2 during growth on 2,3-butanediol and on acetoin. Hybridization with a DNA probe covering the genes for the E1 subunits of the Alcaligenes eutrophus acetoin cleaving system and nucleotide sequence analysis identified acoA (975 bp), acoB (1020 bp), acoC (1110 bp), acoX (1053 bp) and adh (1086 bp) in a 6.3-kb genomic region. The amino acid sequences deduced from acoA , acoB , and acoC for E1α ( M r 34639), E1β ( M r 37268), and E2 ( M r 39613) of the P. putida acetoin cleaving system exhibited striking similarities to those of the corresponding components of the A. eutrophus acetoin cleaving system and of the acetoin dehydrogenase enzyme system of Pelobacter carbinolicus and other bacteria. Strong sequence similarities of the adh translational product (2,3-butanediol dehydrogenase, M r 38361) were obtained to various alcohol dehydrogenases belonging to the zinc- and NAD(P)-dependent long-chain (group I) alcohol dehydrogenases. Expression of the P. putida ADH in Escherichia coli was demonstrated. The aco genes and adh constitute presumably one single operon which encodes all enzymes required for the conversion of 2,3-butanediol to central metabolites.  相似文献   

12.
Abstract A 6.12 kb Xbal‐H fragment of the Helicoverpa armigem single nucleopolyhedrovirus (HaSNPV) gemone was cloned and the complete sequence of this fragment was sequenced by random sequencing method. Sequence comparison and analysis revealed an ORF13 which was homologous to ie‐1 of Auiographa California nucleopolyhedrovirus (AcMNPV). The homologous encoding gene is ie‐1. The total length of the encoding region of HaSNPV gene was 1986 bp and was predicted to encode 661 amino acid protein(IE‐1) with molecular weight of 76.5 kD. The alingment of putative HaSNPV IE‐1 amino acid sequence with those of other 9 reported baculoviruses IE‐Is showed that the HaSNPV IE‐1 was most closely related to Helicoverpa zea nucleopolyhedrovirus (HzNPV) IE‐1, with 97% amino acid identidy. But it showed a low degree of sequence similarity to those of AcMNPV, Bombyx mori nucleopolyhedrovirus (BmNPV), Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV), Lymantria dispar nucleopolyhedrovirus (LdMNPV), Orgyia pseudotsugata nucleopolyhedrovirus (OpMNPV), Spodoptera exigua nucleopolyhedrovirus (SeMNPV), Plutella xylostella granulovirus(PxGV) and Xestia c‐nigrum granulovirus (XcGV), with 23%, 23%, 23%, 25%, 23%, 14%, 27% and 7% amino acid identity, respectively. A phylogenetic tree of ten baculoviruses IE‐1 was also given.  相似文献   

13.
Unchecked amino acid accumulation in living cells has the potential to cause stress by disrupting normal metabolic processes. Thus, many organisms have evolved degradation strategies that prevent endogenous accumulation of amino acids. L‐2,3‐diaminopropionate (Dap) is a non‐protein amino acid produced in nature where it serves as a precursor to siderophores, neurotoxins and antibiotics. Dap accumulation in Salmonella enterica was previously shown to inhibit growth by unknown mechanisms. The production of diaminopropionate ammonia‐lyase (DpaL) alleviated Dap toxicity in S. enterica by catalyzing the degradation of Dap to pyruvate and ammonia. Here, we demonstrate that Dap accumulation in S. enterica elicits a proline requirement for growth and specifically inhibits coenzyme A and isoleucine biosynthesis. Additionally, we establish that the DpaL‐dependent degradation of Dap to pyruvate proceeds through an unbound 2‐aminoacrylate (2AA) intermediate, thus contributing to 2AA stress inside the cell. The reactive intermediate deaminase, RidA, is shown to prevent 2AA damage caused by DpaL‐dependent Dap degradation by enhancing the rate of 2AA hydrolysis. The results presented herein inform our understanding of the effects Dap has on metabolism in S. enterica, and likely other organisms, and highlight the critical role played by RidA in preventing 2AA stress stemming from Dap detoxification.  相似文献   

14.
Zheng N  Xu J  Wu Z  Chen J  Hu X  Song L  Yang G  Ji C  Chen S  Gu S  Ying K  Yu X 《Experimental parasitology》2005,109(4):220-227
The NAD-dependent cytosolic malate dehydrogenase (cMDH, EC 1.1.1.37) plays a pivotal role in the malate-aspartate shuttle pathway that operates in a metabolic coordination between cytosol and mitochondria, and thus is crucial for the survival and pathogenicity of the parasite. In the high throughput sequencing of the cDNA library constructed from the adult stage of Clonorchis sinensis, a cDNA clone containing 1152bp insert was identified to encode a putative peptide of 329 amino acids possessing more than 50% amino acid sequence identities with the cMDHs from other organisms such as fish, plant, and mammal. But low sequence similarities have been found between this cMDH and mitochondrial malate dehydrogenase as well as glyoxysomal malate dehydrogenase from other organisms. Northern blot analysis showed the size of the C. sinensis cMDH mRNA was 1.2 kb. The cMDH was expressed in Escherichia coli M15 as a His-tag fusion protein and purified by BD TALON metal affinity column. The recombinant cMDH showed high MDH activity of 241 U mg(-1), without lactate dehydrogenase and NADP(H) selectivity. It provides a model for the structure, function analysis, and drug screening on cMDH.  相似文献   

15.
Cadherins belong to one of the families of animal glycoproteins responsible for calcium-dependent cell-cell adhesion. Recent literatures showed that the cadherin-like in midgut of several insects served as the receptor of Bt toxin Cry1A and the variation of cadherin-like is related to insect’s resistance to Cry1A. The full-length cDNA encoding cadherin-like of Helicoverpa armigera is cloned by degenerate PCR and RACE techniques and the gene was designated as BtR-harm, which is 5581 bp in full-length, encoding 1730 amino acid residues (BtR-harm was deposited in GenBank and the accession number is AF519180). Its predicted molecular weight and isoelectric point were 195.39 kDa and 4.23, respectively. The inferred amino acid sequence includes a signal sequence, 11 cadherin repeats, a membrane-proximal region, a transmembrane region and a cytoplasmic region. Sequence analysis indicated that the deduced protein sequence was most similar to the cadherin-like from Heliothis virescens with 84.2% identity and highly similar to three other lepidopteran cadherin from Bombyx mori, Manduca sexta and Pectinophora gossypiella, with the sequence identities of 60.3.6%, 57.5% and 51.0%, respectively. The cDNA encoding cadherin gene was expressed successfully in E. coli and the recombinant proteins can bind with Cry1Ac. Truncation analysis and binding experiment of BtR-harm revealed that the Cry1A binding region was a contiguous 244-amino acid sequence, which located between amino acid 1217 and 1461. Semi-quantitative RT-PCR analysis showed that BtR-harm was highly expressed in midgut of H. armigera, very low expressed in foregut and hindgut and was not expressed in other tissues. After H. armigera producing resistance to Cry1Ac, the expression quantity of BtR-harm significantly decreased in midgut of H. armigera. It is the first confirmation that BtR-harm can function as receptor of Cry1Ac in H. armigera and the binding region was located on a contiguous 244 amino acid sequence, suggesting that the decrease of expression quantity of BtR-harm is one of the main reasons for H. armigera resistance to Cry1Ac.  相似文献   

16.
The potential effects of insect‐resistant, genetically engineered (GE) crops on non‐target organisms, especially on predators and parasitoids, must be evaluated before their commercial cultivation. The effects of GE maize that produces Cry1Ac toxin on the parasitoid Macrocentrus cingulum were assessed by direct bioassay and indirect bioassay. In the indirect bioassay, parasitism rate, cocoon weight and the number of M. cingulum progeny produced per host were significantly reduced when M. cingulum‐parasitized Cry1Ac‐susceptible Ostrinia furnacalis were fed a diet containing purified Cry1Ac; however, life‐table parameters of M. cingulum were not adversely affected when the same assay was performed with Cry1Ac‐resistant O. furnacalis. These results indicated that the detrimental effects detected with a Cry1Ac‐susceptible host were mediated by poor host quality. In a direct bioassay, no difference in life‐table parameters were detected when M. cingulum adults were directly fed a 20% honey solution with or without Cry1Ac; however, survival and longevity were significantly reduced when M. cingulum adults were fed a honey solution containing potassium arsenate, which was used as a positive control. The stability and bioactivity of Cry1Ac toxin in the food sources and Cry1Ac toxin uptake by the host insect and parasitoid were confirmed by enzyme‐linked immunosorbent assay and sensitive‐insect bioassays. Our results demonstrate that M. cingulum is not sensitive to Cry1Ac toxin at concentrations exceeding those encountered in Bacillus thuringiensis maize fields. This study also demonstrates the power of using resistant hosts when assessing the risk of genetically modified plants on non‐target organisms and will be useful for assessing other non‐target impacts.  相似文献   

17.
Temperate grasslands contribute about 20% to the global C budget. Elevation of atmospheric CO2 concentration (pCO2) could lead to additional C sequestration into these ecosystems. Microbial‐derived C in the soil comprising about 1–5% of total soil organic carbon may be an important ‘pool’ for long‐term storage of C under future increased atmospheric CO2 concentrations. In our study, the impact of elevated pCO2 on bacterial‐ and fungal‐derived C in the soil of Lolium perenne pastures was investigated under free air carbon dioxide enrichment (FACE) conditions. For 7 years, L. perenne swards were exposed to ambient and elevated pCO2 (36 and 60 Pa pCO2, respectively). The additional CO2 in the FACE plots was depleted in 13C compared with ambient plots, so that ‘new’ (<7 years) C inputs in the form of microbial‐derived residues could be determined by means of stable C isotope analysis. Amino sugars in soil are reliable organic biomarkers for indicating the presence of microbial‐derived residues, with particular amino sugars indicative of either bacterial or fungal origin. It is assumed that amino sugars are stabilized to a significant extent in soil, and so may play an important role in long‐term C storage. In our study, we were also able to discriminate between ‘old’ (> 7 years) and ‘new’ microbial‐derived C using compound‐specific δ13C analysis of individual amino sugars. This new tool was very useful in investigating the potential for C storage in microbial‐derived residues and the turnover of this C in soil under increased atmospheric pCO2. The 13C signature of individual amino sugars varied between ?17.4‰ and ?39.6‰, and was up to 11.5% depleted in 13C in the FACE plots when compared with the bulk δ13C value of the native C3 L. perenne soil. New amino sugars in the bulk soil contributed up to 16% to the overall amino sugar pool after the first year and between 62% and 125% after 7 years of exposure to elevated pCO2. Amounts of new glucosamine increased by the greatest amount (16–125%) during the experiment, followed by mannosamine (?9% to 107%), muramic acid (?11% to 97%), and galactosamine (15–62%). Proportions of new amino sugars in particle size fractions varied between 38% for muramic acid in the clay fraction and 100% for glucosamine and galactosamine in the coarse sand fraction. Summarizing, during the 7‐year period, amino sugars constituted only between 0.9% and 1.6% of the total SOC content. Therefore, their absolute significance for long‐term C sequestration is limited. Additionally new amino sugars were only sequestered in the silt fraction upon elevated pCO2 exposure while amino sugar concentrations in the clay fraction decreased. Overall, amino sugar concentrations in bulk soil did not change significantly upon exposure to elevated pCO2. The calculated mean residence time of amino sugars was surprisingly low varying between 6 and 90 years in the bulk soil, and between 3 and 30 years in the particle size fractions, representing soil organic matter pools with different but relatively low turnover times. Therefore, compound‐specific δ13C analysis of individual amino sugars clearly revealed a high amino sugar turnover despite more or less constant amino sugar concentrations over a 7 years period of exposure to elevated pCO2.  相似文献   

18.
Aims: Some Cry proteins produced by the soil bacterium Bacillus thuringiensis (Bt) or by transgenic Bt plants persist in agricultural soils for an extended period of time, which may pose a hazard for nontarget soil organisms. The aims of our study were to screen for soil fungi capable of degrading the Cry1Ac toxin and to identify the mechanisms that lead to the inactivation of this protein. Methods and Results: Of the eight fungal strains screened, only one, Chrysosporium sp., was found to produce extracellular proteases capable of degrading the 66‐kDa Cry1Ac at the N‐terminal end of amino acid 125 (alanine). The proteolytic products of the Cry1Ac toxin did not exhibit any insecticidal activity against Helicoverpa armigera, in contrast to its high toxicity exhibited in the native form. Conclusions: Proteases elaborated by the Chrysosporium sp. degrade the Cry1Ac toxin in a way that it looses its insecticidal activity against H. armigera. Significance and Impact of the Study:  Chrysosporium sp., a specific soil micro‐organism capable of producing proteases that degrade the Cry1Ac toxin into inactive products under controlled conditions is being reported for the first time. Application of this observation needs to be further tested in field conditions.  相似文献   

19.
Summary The nucleotide sequence for the structural gene entC1 encoding staphylococcal enterotoxin C1 was determined. The gene contained 801 bp and coded for a protein of 266 amino acids. Of these, 27 comprised the signal peptide. Cleavage of the signal peptide resulted in a mature protein with 239 amino acids and a calculated molecular weight of 27496. The nucleotide sequence of entC1 shared considerable homology (74% and 59%, respectively) with genes encoding enterotoxin B and streptococcal pyrogenic exotoxin A. A similar degree of amino acid homology was observed after alignment of the respective proteins. Thus, certain regions of these three toxin molecules possess structural similarities that may be responsible for shared biological properties.  相似文献   

20.
Campylobacter jejuni, a major food‐borne intestinal pathogen, preferentially utilizes a few specific amino acids and some organic acids such as pyruvate and l ‐ and d ‐lactate as carbon sources, which may be important for growth in the avian and mammalian gut. Here, we identify the enzymatic basis for C. jejuni growth on l ‐lactate. Despite the presence of an annotated gene for a fermentative lactate dehydrogenase (cj1167), no evidence for lactate excretion could be obtained in C. jejuni NCTC 11168, and inactivation of the cj1167 gene did not affect growth on lactate as carbon source. Instead, l ‐lactate utilization in C. jejuni NCTC 11168 was found to proceed via two novel NAD‐independent l ‐LDHs; a non‐flavin iron–sulfur containing three subunit membrane‐associated enzyme (Cj0075c‐73c), and a flavin and iron–sulfur containing membrane‐associated oxidoreductase (Cj1585c). Both enzymes contribute to growth on l ‐lactate, as single mutants in each system grew as well as wild‐type on this substrate, while a cj0075c cj1585c double mutant showed no l ‐lactate oxidase activity and did not utilize or grow on l ‐lactate; d ‐lactate‐dependent growth was unaffected. Orthologues of Cj0075c‐73c (LldEFG/LutABC) and Cj1585c (Dld‐II) were recently shown to represent two novel families of l ‐ and d ‐lactate oxidases; this is the first report of a bacterium where both enzymes are involved in l ‐lactate utilization only. The cj0075c‐73c genes are located directly downstream of a putative lactate transporter gene (cj0076c, lctP), which was also shown to be specific for l ‐lactate. The avian and mammalian gut environment contains dense populations of obligate anaerobes that excrete lactate; our data indicate that C. jejuni is well equipped to use l ‐ and d ‐lactate as both electron‐donor and carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号