共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract. We report the successional trends of the major life‐forms (graminoids and forbs) in natural grasslands of Uruguay over a 9‐yr period after the removal of domestic herbivores. For the whole community, species richness and diversity decreased over the successional period. In graminoids we observed clear temporal trajectories in floristic composition; the rate of floristic change decreased with time and was associated with a shift in plant traits. The exclusion of large herbivores promoted erect and tall grasses with narrow leaves and greater seed length, vegetative growth constrained to the cool season and increased frequency of annual species. Forbs did not show a clear temporal trend in species composition, but there was, nevertheless, a plot‐specific species turnover of this functional group that was reflected in their attributes. Species spreading by means of rhizomes, with vegetative growth restricted to the warm season. Species with larger seeds increased under grazing exclusion, as did annual and nitrogen‐fixing forbs. The floristic changes induced by cattle exclusion occurred early in the succession. This early high rate of change has practical implications for management and conservation programs of the natural grasslands of Uruguay. Additionally, the shift in plant traits may be helpful in devising simple indicators of grazing impact. 相似文献
2.
Question: Which factors determine diversity of native and alien vascular plant species in semi‐natural dry grasslands? Location: Northern limestone Alps to the southern rim of the Bohemian massif in northern Austria. Methods: In 70 randomly chosen dry grassland patches (0.008 ha ‐ 7 ha) we sampled a complete inventory of vascular plant species at each site. We analysed the correlation between species diversity of natives, archaeophytes (pre‐1500 aliens) and neophytes (post‐1500 aliens). We used GLM to study the relationship of species number (natives, neophytes, archaeophytes) to five explanatory variables (altitude, within habitat diversity, habitat diversity of adjacent areas, within land‐use diversity and land‐use in adjacent areas). Orthogonal components of these variables were derived with a PCA and used in the models. We also tested the influence of minimum residence time (MRT) and the covariables origin, mode of introduction and life form on the number of grassland sites with neophytes with analogous GLMs. Results: Native species diversity species was positively correlated with the species diversity of new, but not old invaders. GLM explains 70% of the variance in the number of native species. Patch size explained the largest part of the variation in the number of native species. PCA axes 1 and 3 were significantly related to the number of native species. Axis 1was related to on‐site habitat and land‐use diversity. The GLM of the archaeophyte diversity explains 18% of the variance. Altitude and presence of fields and grassland in the neighbourhood mainly explained archaeophyte species diversity. The GLM of neophyte diversity explains 12% of the variance. The number of neophytes was positively related to that of archaeophytes. Only PCA axis 3, which is mainly influenced by adjacent land‐use types, showed a relationship with neophytes. MRT, mode of introduction and region of origin (but not life form) were significantly related to the number of grassland sites invaded by neophytes, explaining 35% of the variance. Conclusion: Most factors governing native species diversity are not significantly related to alien species diversity. Additional determinants of the local scale diversity of alien species exist such as region of origin and historical factors (MRT, mode of introduction). 相似文献
3.
Questions: What is the relative influence of size, connectivity and disturbance history on plant species richness and assemblages of fragmented grasslands? What is the contribution of small fragments to the conservation of native species pool of the region? Location: Tandilia's Range, Southern Pampa, Argentina. Methods: Cover of plants was registered within 24 fragments of tall‐tussock grassland remnants within an agricultural landscape using modified Whittaker nested sampling. We analysed the influence of site variables related to disturbance history (canopy height, litter thickness) and fragment variables (size, connectivity) on species richness (asymptotic species richness, slope of the species–area curve) as well as on species assemblages by multiple regressions analysis and canonical correspondence analyses, respectively. Cumulative area was used for analysing whether small fragments or large fragments are more important to species diversity in the landscape. Results: Asymptotic species richness was significantly influenced by site variables, in particular by Paspalum quadrifarium's canopy height, but not by fragment variables. Species assemblages were also affected by site variables (12.2% of total variation), but no additional portion of the species assemblage variability was significantly explained by fragment size and connectivity. Sampling of several small fragments rendered more exotic and native species than sampling of few large fragments of the same total area. Conclusions: Our results agree with previous studies reporting low sensitivity of species diversity to size and isolation of grassland fragments in fragmented landscapes and high sensitivity of species diversity to local variables. The higher capture of regional native species pool by small grassland fragments than by few larger ones of equivalent accumulated area highlights the value of small fragments for conservation. 相似文献
4.
Imanuel Noy-Meir 《植被学杂志》1995,6(5):701-710
Abstract. The separate and combined effects of fire and cattle grazing on structure and diversity of productive Mediterranean grasslands in northern Israel were examined within a set of climatically and edaphically similar sites. Cover and height of green and dry plants in winter, and species richness and diversity in spring, were measured in paired transects on both sides of cattle fences, and on both sides of boundaries of both incidental and experimentally lit fires. Early in the first growing season after a fire, plant cover as well as height of green plants were reduced, compared to unburnt grassland. These structural effects of fire were similar to the effects of grazing, but they were greater in ungrazed than in grazed grasslands, indicating a fire-grazing interaction. The effects of fire were considerably attenuated in the second growing season after the fire. Species richness and diversity tended to be higher in grazed than in adjacent ungrazed grasslands. Richness consistently increased after a fire only in grazed grasslands with a strong perennial component. In ungrazed grasslands, and in predominantly annual grasslands, fires reduced species richness and diversity at least as often as they increased it. Fire and grazing should be regarded as two agents with distinct and interactive effects on the community, rather than as two alternative mechanisms of a general disturbance factor. 相似文献
5.
6.
Predictive mapping of alpine grasslands in Switzerland: Species versus community approach 总被引:1,自引:0,他引:1
Abstract. Separate logistic regression models were developed to predict the distribution and large-scale spatial patterns of dominant graminoid species and communities in alpine grasslands. The models are driven by four bioclimatic parameters: degree-days of growing season (basis 0 °C), a moisture index for July, potential direct solar radiation for March, and a continentality index. Geology and slope angle were used as a surrogate for nutrient availability and soil water capacity. The bioclimatic parameters were derived from monthly mean temperature, precipitation, cloudiness and potential direct solar radiation. The environmental parameters were interpolated using a digital elevation model with a resolution of 50 m. The vegetation data for model calibration originate from field surveys and literature. An independent test data set with samples from three different climatic zones was used to test the model. The degree of coincidence between simulated and observed patterns was similar for species and communities, but the κ-values for communities were generally higher (κ= 0.539) than for species (mean individual κ= 0.201). Information on land use was detected as a major factor that could significantly improve both the species and the community model. Nevertheless, the climatic factors used to drive the model explained a major part of the observed patterns. 相似文献
7.
Effects of river level fluctuation on plant species richness, diversity, and distribution in a floodplain forest in Central Amazonia 总被引:6,自引:0,他引:6
River levels in Central Amazonia fluctuate up to 14 m annually, with the flooding period ranging from 50 to 270 days between
the rising and falling phases. Vast areas of forest along the rivers contain plant species that are well adapted to annual
flooding. We studied the effect of flooding level on tree species richness, diversity, density, and composition in lake, river,
and stream habitats in Jaú National Park, Brazil. 3051 trees >10 cm diameter (at 1.3 m diameter at breast height, dbh) were
measured and identified in 25 10 m × 40 m randomly selected plots in each habitat. Ordination methods and analysis of variance
results showed that forested areas near lakes had significantly lower species richness of trees than riverine and streamside
habitats. Plot species richness and diversity were strongly negatively correlated with the water level and duration of flooding.
The drier (stream) habitat had more total species (54 species of trees) and more unique species of trees (6 tree species)
than the riverine (52 tree species; 3 unique species) and lake (33 tree species; 3 unique species) habitats. Species composition
overlap among habitats was surprisingly high (42.6–60.6% overlap), almost one-third of the species were found in all three
habitat types, and few species were unique to each habitat. We conclude that: (1) duration of flooding has a strong impact
on species richness, diversity and plant distribution patterns; (2) most species are adapted to a wide range of habitats and
flood durations; and (3) while flood duration may decrease local diversity, it also creates and maintains high landscape-scale
diversity by increasing landscape heterogeneity.
Received: 20 April 1997 / Accepted: 14 January 1999 相似文献
8.
Question: Is plant diversity in fragmented semi‐natural grasslands related to present and historical landscape context? Location: Southern Sweden. Methods: Plant diversity was described at 30 semi‐natural grassland sites in terms of total and specialist plant species richness at the site and species density at different scales (0.5–10 m2). These measures are commonly used to assess conservation value of semi‐natural grasslands. Landscape context was measured as contemporary connectivity to other semi‐natural grasslands, historical connectivity 50 years ago, amount of linear elements potentially suitable for dispersal (road verges, power line clearings), and amount of forest (inverse of the openness of the landscape). Results: The diversity measures were generally correlated with each other, implying that species richness in a subset of the grassland can predict the total richness. Plant species density at three scales (0.5 m2, 10 m2 and total) was related to the landscape context using an information theoretic approach. Results showed that total species richness increased with increased size of grasslands, contrary to earlier diversity studies in semi‐natural grasslands. Larger grasslands were more heterogeneous than smaller grasslands, and this is a likely reason for the species‐area relationship. Heterogeneity was also of high importance at the smaller scales (0.5 m2, 10 m2). With increased amount of forest, total species richness increased but species density on 10 m2 decreased. There was no influence of connectivity in either the contemporary or the historical landscape, contrary to previous studies. Conclusions: Grassland size and heterogeneity are of greater importance for plant diversity in semi‐natural grassland, than grassland connectivity in the landscape. 相似文献
9.
Abstract. We quantified the spatial distribution of roots of individual plants using detailed drawings from the literature of species of grasses, forbs, and shrubs in the Central Great Plains grasslands of North America. We scanned each two-dimensional drawing electronically and used ARC/INFO, a Geographic Information System, to calculate root length (cm) and density (cm root length/cm soil) with depth in the soil profile. We then selected one of three mathematical models that best fit the data, and classified each species as either shallow-, medium- or deep-rooted. 66 root drawings from 55 species were evaluated. Most plants were shallow-rooted with largest root densities occurring at depths < 20 cm; most maximum rooting depths were > 1m. Grasses had the shallowest maximum depth and shrubs the deepest. Deep-rooted forbs had the smallest root densities by depth. Most plants had two sections to their distribution of root density: an initial increase from the soil surface followed by a decrease in density with increasing depth. Our results suggest that the abundance and importance of different species and growth forms in North American grasslands is related to similarities and differences in the spatial distributions of their root systems. Our approach provides quantitative information on root distributions to be used for comparisons among species, and in simulation modeling analyses that could not be done with conventional methods that are qualitative in nature. 相似文献
10.
Plant species richness in calcareous grasslands as affected by dispersability in space and time 总被引:1,自引:0,他引:1
Abstract. Species richness in calcareous grassland is discussed against the background of historical dispersal processes associated with traditional land-use management such as grazing, but also the artificial establishment by hayseed. Important vectors in the traditionally man-made landscape were sheep and cattle or other livestock such as goats. Calcareous grasslands were not only connected to each other but also to other habitats such as villages, forests, arable fields and heathlands by these vectors which could cover large distances (e.g. transhumance shepherding), which is not the case in the current man-made landscape. Species richness after restoration management of abandoned and afforested calcareous grasslands was predicted by using characters of dispersability in space and time. These were the persistence of the species in the vegetation and the diaspore bank after abandonment or afforestation and the dispersal capacity through wind and sheep. The results reveal that reintroduction of sheep grazing is necessary to reestablish the original species richness. The first validation of the prediction of the succession on clear-cut sites and a comparison with data of species composition in abandoned quarries and the surroundings made it obvious that a species' own dispersal capacity in space is very low except for some well wind-dispersed species. Therefore, it is recommended to include and to simulate dispersal processes in future management to be able to restore the original species richness. 相似文献
11.
Abstract. We studied the vegetation distribution in eight landscape types distinguished along an altitudinal gradient in the Trans‐Himalayan region of Ladakh, India. The point‐intercept method was used for vegetation sampling. Six plant communities were distinguished by cluster analysis. Of these 6 communities, three communities were dominated by shrub species. Table lands are the landscape type with the highest species diversity followed by undulating areas and river beds. Most plant species were restricted to one landscape type. 相似文献
12.
Small-scale plant species richness in calcareous grasslands determined by the species pool, community age and shoot density 总被引:6,自引:0,他引:6
Variation in small-scale plant species richness was examined between twenty discrete sites of calcareous alvar grasslands in the western Estonian coastal area. This community type is very species rich at the small-scale. The pattern of diversity has often been explained by variation in ecological conditions which makes it possible to avoid competitive exclusion. Here we test an alternative species pool hypothesis. The species pool was defined as the set of species present in a community, but excluding all those species whose presence may be connected with exceptional environmental conditions for this community. Monte Carlo modelling was used to determine the strengths of the relationships between the non-independent variables: richness vs species pool and average shoot density vs richness. Site age was characterized by its elevation above sea level, since there is a continuous land uplift in the study area. Species richness was positively correlated to the size of the species pool, community age and vegetation density. We conclude that historical processes on both the regional and local levels, which determine the arrival of any particular species to a target community, and not environmental heterogeneity, are responsible for the variations in species richness between communities of this type. 相似文献
13.
Abstract. The study was conducted in deciduous forests of two Swedish regions, Öland and Uppland. It had two objectives: to (1) test the species pool hypothesis by examining if differences in small‐scale species richness are related to differences in large‐scale species richness and the size of the regional species pool, and (2) to examine the relationship between species richness and productivity and its scale‐dependence. The first data set comprised 36 sites of moderate to high productivity. In each site, we recorded the presence of vascular plant species in nested plots ranging from 0.001 to 1000 m2 and measured several environmental variables. Soil pH and Ellenberg site indicator scores for nitrogen were used as estimators of productivity. The second data set included 24 transects (each with 20 1‐m2 plots) on Öland in sites with low to high productivity. Species number, soil pH and relative light intensity were determined in each plot. The forest sites on Öland were more species‐rich than the Uppland sites on all spatial scales, although environmental conditions were similar. Small‐scale and large‐scale species richness were positively correlated. The results present evidence in favour of the species pool hypothesis. In the nested‐plots data set, species number was negatively correlated with pH and nitrogen indicator scores, whereas a unimodal relationship between species number and pH was found for the transect data set. These results, as well as previously published data, support the hump‐shaped relationship between species richness and productivity in Swedish deciduous forests. Two explanations for the higher species richness of the sites with moderate productivity are given: first, these sites have a higher environmental heterogeneity and second, they have a larger ‘habitat‐specific’ species pool. 相似文献
14.
15.
Brigitte Braschler Samuel Zschokke Claudine Dolt G. Heinrich Thommen Peter Oggier Bruno Baur 《Basic and Applied Ecology》2004,5(1):15-24
The relationships among productivity, species richness and consumer biomass are of fundamental importance for understanding determinants of biodiversity. These relationships may depend on grain size. We examined the relationships between productivity (above-ground phytomass) and plant species richness and between productivity and species richness and biomass of gastropods and grasshoppers using sampling units of different sizes (0.5, 2.75 and 23 m2) in nutrient-poor, calcareous grasslands in north-western Switzerland in two successive years. Species richness of forbs had a unimodal relationship with productivity in sampling units of 0.5 m2 and was negatively correlated with productivity at the other two plot sizes in one year. In the other year, forb species richness tended to decrease with productivity in sampling units of 23 m2. No similar relationship was found for grasses. Gastropod biomass had a unimodal relationship with productivity at 0.5 m2 in the first year. Grasshopper species richness was correlated with forb species richness at plot sizes of 2.75 and 23 m2. This study demonstrates that patterns detected between productivity and diversity and between productivity and biomass of consumers depend on the grain size used in the investigation and vary among years.Die Zusammenhänge zwischen Produktivität, Artenreichtum und Biomasse von Konsumenten sind wichtig, um zu verstehen, was Biodiversität beeinflußt. Diese Zusammenhänge können von der Größe der Untersuchungsfläche abhängig sein. Wir untersuchten während zwei aufeinanderfolgenden Jahren die Zusammenhänge zwischen Produktivität (oberirdische Pflanzenbiomasse) und Artenreichtum von Gefäßpflanzen, sowie zwischen Produktivität und Artenreichtum und Biomasse von Schnecken und Heuschrecken bezüglich dreier räumlicher Skalen (0,5, 2,75 und 23 m2) in Kalkmagerrasen in der Nordwestschweiz. Der Zusammenhang zwischen dem Artenreichtum von Kräutern und der Produktivität war unimodal in Flächeneinheiten von 0,5 m2 und negativ in Flächeneinheiten von 2,75 und 23 m2 im ersten Jahr und war tendenziell negativ in Flächeneinheiten von 23 m2 im zweiten Jahr, während kein solcher Zusammenhang bei Gräsern gefunden wurde. Der Zusammenhang zwischen Produktivität und Biomasse von Schnecken war unimodal in Flächeneinheiten von 0,5 m2 im ersten Jahr. Außerdem bestand ein Zusammenhang zwischen dem Artenreichtum von Kräutern und Heuschrecken in Flächeneinheiten von 2,75 und 23 m2. Diese Arbeit zeigt, daß Zusammenhänge zwischen Produktivität und Diversität sowie zwischen Produktivität und Biomasse von Konsumenten von der Größe der Untersuchungsfläche abhängen und zwischen Jahren variieren. 相似文献
16.
Abstract. A competitive effect hierarchy for 15 Namaqualand pioneer plant species was established by using the mean mass of the phytometer (Dimorphotheca sinuata) when grown in combination with itself and 14 other species. There were no clear groupings of species in the hierarchy. This competitive hierarchy (gradient) indicated which species are strong competitors (resulting in a low phytometer mass) with D. sinuata and which species are weak competitors (resulting in a high phytometer mass). Each plant species has a certain combination of plant traits which determines its life history strategy and competitive ability. Regressions of various plant traits (measured on plants grown singly) against phytometer biomass indicated which traits were significantly correlated. The traits, most being size-related, were: maximum shoot mass, total mass, stem mass, reproductive mass, leaf area, stem allocation, specific leaf area (SLA), vegetative height × diameter, leaf area ratio (LAR); and mean number of days to flower initiation. A forward stepwise multiple regression of the significant traits was used to determine an equation to predict competitive effect. 相似文献
17.
One of the few important empirical generalizations regarding herbaceous plant systems has been the demonstration that species richness is related to standing crop with maximum richness occurring at moderate levels of standing crop. This relationship is normally demonstrated by comparing among vegetation types (i.e., vegetation with different dominants). We undertook this study to test whether the species richness-standing crop relationship was evident at a finer-grained level of organization, the within vegetation type level. Fifteen wetland sites were sampled in eastern Canada and species richness and standing crop determined in each of 224 0.25 m2 quadrats. Each site was relatively homogeneous in terms of the dominant species present and were therefore categorized as single vegetation types. However, as a group, the sites comprised a wide range of vegetation types.A second order polynomial regression indicated a significant bitonic relationship between species richness and standing crop at the among-vegetation types scale, that is, when all 15 sites were combined. At the within-vegetation type level, however, no significant relationships were observed (p>0.05). The results indicate that the model of species richness proposed by Grime has predictive power at a coarse-grained level of organization, among vegetation types, but does not survive the transition to a finer-grained level of organization, the within vegetation type level. Therefore, the higher level processes which structure species richness patterns among vegetation types are not the same processes which determine richness patterns within a vegetation type. 相似文献
18.
Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands 总被引:14,自引:1,他引:14
Jochen Krauss Alexandra-Maria Klein Ingolf Steffan-Dewenter Teja Tscharntke 《Biodiversity and Conservation》2004,13(8):1427-1439
Calcareous grasslands harbour a high biodiversity, but are highly fragmented and endangered in central Europe. We tested the relative importance of habitat area, habitat isolation, and landscape diversity for species richness of vascular plants. Plants were recorded on 31 calcareous grasslands in the vicinity of the city of Göttingen (Germany) and were divided into habitat specialist and generalist species. We expected that habitat specialists were more affected by area and isolation, and habitat generalists more by landscape diversity. In multiple regression analysis, the species richness of habitat specialists (n = 66 species) and habitat generalists (n = 242) increased with habitat area, while habitat isolation or landscape diversity did not have significant effects. Contrary to predictions, habitat specialists were not more affected by reduced habitat area than generalists. This may have been caused by delayed extinction of long-living plant specialists in small grasslands. Additionally, non-specialists may profit more from high habitat heterogeneity in large grasslands compared to habitat specialists. Although habitat isolation and landscape diversity revealed no significant effect on local plant diversity, only an average of 54% of habitat specialists of the total species pool were found within one study site. In conclusion, habitat area was important for plant species conservation, but regional variation between habitats contributed also an important 46% of total species richness. 相似文献
19.
Declining plant species richness in the tussock grasslands of Canterbury and Otago, South Island, New Zealand 下载免费PDF全文
《新西兰生态学杂志》2011,25(2):35-47
We studied vegetation change on 142 permanently marked transects spread throughout tussock grasslands of Otago and Canterbury, in areas subject to both pastoral and conservation management. The transects were established between 1982 and 1986 and remeasured between 1993 and 1999, providing a record of vegetation change at each site over an interval varying from 10 to 15 years. Each transect consisted of 50 quadrats, each 0.25m(2), in which the presence of all vascular plant species had been recorded. For each transect, we calculated the change between measurements in the mean number of species recorded per quadrat, and the change in the total number of species recorded per transect. Averaged across all transects, there was a significant decline in species richness between measurements at both the quadrat and transect scales. Small herbs (those less than or equal to2 cm tall, excluding Hieracium species) showed the greatest decline. On average, more than one quarter of the small herb species present in a quadrat at the first measurement had disappeared within 10 years. Larger herbs, ferns, rushes, sedges and grasses (excluding Chionochloa species) also declined significantly in species richness, reflecting declines in the abundance of species in these groups. Woody species richness remained constant, while species in the genera Chionochloa and Hieracium increased significantly in mean quadrat species richness, reflecting increases in the abundance of these species along transects. The rate of decline in mean quadrat species richness was unrelated to changes in the abundance of either Chionochloa or Hieracium species, or to an overall increase in total vegetation cover on transects. The rate of decline in species richness was also unrelated to the level of grazing or burning between measurements. However, the rate of decline in species richness was greater at lower elevation, on schist rock and on yellow-brown and yellow-grey soils. Our results suggest that a major compositional change is occurring in these grasslands at a rate that is independent of local variation in management and independent of the widespread invasion of these grasslands by Hieracium species. 相似文献