首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
本文首次对大叶锣(Didissandra sesquifolia C.B.Clarke)全草的化学成分及其体外抗氧化活性进行了研究,通过多种色谱和波谱技术,分离并鉴定了15个酚类化合物,分别为对羟基苯乙醇(1)、香草酸(2)、6-hydroxyluteolin-7-O-glucuronide(3)、stachannin A(4)、野黄芩素(5)、calceolarioside E(6)、verbasoside(7)、calceolarioside A(8)、calceolarioside B(9)、plantainoside A(10)、isonuomioside A(11)、7-O-甲基黄芩素-6-O-葡萄糖苷(12)、鼠李柠檬素-3-O-β-D葡萄糖苷(13)、1,4-二羟基-2-羟甲基蒽醌(14)和1,4-二羟基-2-甲基蒽醌(15),以上所有化合物均为首次从漏斗苣苔属植物中分离得到。此外,还对大叶锣的化学成分及其各组分的DPPH、ABTS自由基清除能力和总还原能力(FRAP)进行了初步研究,结果显示化合物9、10的抗氧化活性(5.14±0.36、5.35±0.04 mmol VCE/g)接近抗坏血酸(5.68±0.10 mmol VCE/g),化合物6~11的总还原能力均大于FeSO_4,显示出了良好的抗氧化活性,为其在天然抗氧化剂的开发以及药物先导化合物的筛选上奠定基础。  相似文献   

2.
本文用密度泛函理论在(RO)B3LYP/6-31G(2d,2p)水平上对山奈酚及其与水分子之间形成的氢键复合物进行结构优化,通过热力学计算研究了不同位置的酚羟基发生抽氢反应的键离解能(BDE)、质子解离反应过程的质子解离能(DPE)受分子间氢键的影响。结果表明:与H2O形成的分子间氢键会影响化合物结构,改变化合物B环与AC环的二面角,A5位酚羟基更容易发生抽氢反应和质子解离反应,此位点的BDE和DPE均明显降低,同时也降低C3位质子解离的DPE。分子间氢键的形成促使酚羟基的抽氢和质子解离反应,提高化合物抗氧化活性。  相似文献   

3.
靛红衍生物的合成及其对稻瘟菌的生物活性   总被引:2,自引:0,他引:2  
以靛红为原料合成了系列3-亚胺基/亚甲基-吲哚-2-酮化合物及其Mannich碱衍生物,研究了它们在抗稻瘟菌方面的活性,发现了这两种类型的若干化合物有较好的抑制稻瘟菌孢子萌发的活性,初步讨论了构效关系。认为1位的羟甲基和胺甲基、3位的亚甲基是药效团,芳基亚甲基苯环上对位取代基、羟基取代基和吸电子取代基不利于活性的提高,邻位的供电子取代基有利于活性的提高。  相似文献   

4.
为研究竹黄菌与竹红菌化学成分及细胞毒活性的差异,本研究通过高效液相色谱(HPLC)分析结合常规色谱方法,分离鉴定了两种真菌的6个相同成分,分别为3个主要成分竹红菌甲素(1)、竹红菌乙素(2)和竹红菌丙素(3),以及3,6,8-三羟基-1-甲基口山酮(7)、3,8-二羟基-6-甲氧基-1-甲基口山酮(8)和过氧麦角甾醇(9)。另外,从竹黄菌中还分离得到11,11′-二去氧沃替西林(5)、麦角甾-7,22E-二烯-3β,5α,6β-三醇(10)和麦角甾-7,22E-二烯-2β,3α,9α-三醇(11),并首次从竹红菌中分离得到竹红菌丁素(4)、灰黄霉素(6)、化合物7和8。活性筛选发现,化合物5对三株肿瘤细胞NCI-H1975、HepG2和MCF-7有很强细胞毒活性,化合物1有较强细胞毒活性,而化合物6活性较弱。  相似文献   

5.
以黄芩素为先导化合物利用磺化反应首次合成水溶性黄酮——黄芩素-8-磺酸钠,采用IR、1HNMR和元素分析对黄芩素-8-磺酸钠结构进行了表征;同时,对磺化反应条件进行了优化。通过DPPH(1,1-二苯基-2-苦肼基自由基)法对黄芩素-8-磺酸钠清除自由基作用进行了研究;以溴化乙錠(EB)为荧光探针,研究了黄芩素-8-磺酸钠与CT-DNA的相互作用。实验结果表明:最佳的磺化反应条件为:黄芩素与浓硫酸比例1∶8(g/mL),100℃时反应12h。黄芩素-8-磺酸钠具有强抗氧化活性,与DNA结合作用显著。  相似文献   

6.
本研究以三七二醇型皂苷原料,通过琼斯氧化得到化合物1,将化合物1的3位羰基经还原胺化反应转化为氨基得到化合物4,再用化合物4与酰化试剂反应得到化合物5~8,此外还通过其它两种反应得到化合物2和3,总共8个化合物,其中6个化合物未见文献报道,结构均经过核磁共振、质谱确证。所得化合物用MTS法对人白血病细胞株HL-60、肝癌细胞株SMMC-7721、肺癌细胞株A-549、乳腺癌细胞株MCF-7、结肠癌细胞株SW480等肿瘤细胞株进行抗肿瘤活性评价。药理活性评价结果显示,化合物3有一定的抗肿瘤活性,值得进一步研究。  相似文献   

7.
为改善柚皮素的水溶性而不降低其抗血小板聚集活性,本文以柚皮苷为原料,经"4'位羟基苄基化-酸水解苷键-酰化-加氢脱苄基"四步反应,合成出柚皮素-7-O-乙酸酯和柚皮素-7-O-丙酸酯。两种衍生物在水中的溶解度分别为637.34±53.23μg/m L和59.74±4.81μg/m L,均高于柚皮素的溶解度。两种衍生物均对二磷酸腺苷诱导的兔体外和大鼠体内血小板聚集有显著的抑制活性,且抑聚率均高于柚皮素。实验结果表明,通过选择酰化柚皮素的7位羟基,引入含1~2个碳的短脂肪烃基链,能显著改善水溶性,提高抗血小板聚集活性。  相似文献   

8.
首次从窄萼凤仙花(Impatiens stenosepala Pritz.ex Diels)中分离得到九个化合物,通过波谱学方法分别鉴定为槲皮素(1)、山柰酚(2)、阿魏酸(3)、对羟基苯甲酸(4)、4’-OH黄芩素(5)、洋芹素(6)、2,5,7,8-四羟基萘醌(7)、5,8-二羟基萘醌(8)及东莨菪素(9)。  相似文献   

9.
湖北旋覆花化学成分的研究(英文)   总被引:1,自引:0,他引:1  
从湖北旋覆花(Inula hupehensis)地上部分分离得到19个化合物,经波谱数据分析分别鉴定为9-羟基-百里香酚(1),8,10-去氢-β-羟基-百里香酚(2),2-羟基-4-甲基苯乙酮(3),8,9-双羟基-9-百里香酚(4),10-羟基-8,9-双氧亚异丙基百里香酚(5),8,10-二羟基-9-异丁酰百里香酚(6),8-羟基-9-异丁酰-10-(2-甲基丁酰)百里香酚(7),8,9,10-三羟基百里香酚(8),8-羟基-9,10-二异丁酰百里香酚(9),neoechinulin A(10),3-醛基吲哚(11),3-羟乙酰基吲哚(12),丁香酸(13),4,6-二羟基-2-甲氧基苯乙酮(14),7-甲氧基-8-羟基香豆素(15),6-甲氧基山奈酚(16),(+)-正丁香酯素(17),β-棕榈精(18)和豆甾醇(19)。除了化合物8和9外,其他化合物均为首次从该植物中分离得到。  相似文献   

10.
将具有氨基的活性基团引入到木犀草素分子结构中6'位。一是起到增强药效的作用,二是可以对整个分子的脂/水分布系数作一个调整,影响先导化合物的药代动力学参数,以便进行药理试验其抗炎活性。以木犀草素为原料,分别与脂肪胺、醇胺、苄胺等反应,在特定酸度下,经空气氧化及迈克尔加成反应合成较稳定的基于木犀草素结构的氨基醌类化合物。合成步骤较少,反应条件温和,环境污染小。对目标化合物用红外、紫外、核磁共振和质谱等进行结构表征。对产物的抗氧化性及水溶性进行初步研究。  相似文献   

11.
We examined the structure-activity relationships of isocoumarins, phthalides and stilbenes isolated from Hydrangeae Dulcis Folium and related compounds for the inhibition of histamine release in rat peritoneal mast cells. The activities of isocoumarins such as thunberginols A and B were more potent than those of dihydroisocoumarins such as hydrangenol and thunberginol G. The double bond at the 3-position seemed to be essential to potentiate the activity. The hydroxyl groups at the 8-, 3'- and 4'-positions of isocoumarin were essential for the activity, while the hydroxyl group at the 6-position was scarcely needed. Since the activities of benzylidenephthalides such as thunberginol F were more potent than those of hydramacrophyllols A and B, the presence of a double bond at the 3-position was needed to increase the activity. Moreover, the hydroxyl group at the 8-position was essential for the activity. On the time course study, thunberginols A, B and F completely inhibited histamine release by pretreatment at 100 microM for 1 to 15 min, whereas DSCG inhibited histamine release only following 1-min pretreatment at 1000 microM. These results suggested that the mechanisms of the inhibitory effect of thunberginols are different from that of DSCG.  相似文献   

12.
1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino)propane hydrochloride (DDPH) is a potent α?-adrenoceptor antagonist that is currently under Phase II clinic trials. However, the fast metabolism has restricted its further use. In this paper, 11 DDPH analogs were designed according to the probable metabolism pathways of DDPH, and featured the structures of halogen, methyl, and cyano groups at the 3-, or 4-position of aromatic ring A to block the hydroxylation, and one hydroxyl group at the 3-, or 4-position of aromatic ring B to extend the duration time. These compounds were synthesized in moderate to good yields from the reductive amination of substituted phenoxyacetones with substituted phenylethylamines, and fully characterized with 1H NMR, IR, and HRMS. Biological evaluation indicated that most of the compounds exhibited strong blocking and moderate to good antihypertensive activities. It is clear that the compounds having 4-OH/3-OMe on group B exhibited higher blocking activities and longer duration time than their corresponding analogs having 4-OMe/3-OMe (and also 3-OH/4-OMe). Among them, compound 13 having bromo group at the 4-position of ring A and 4-OH/3-OMe on group B, exhibited the highest blocking activity, whereas compound 17 that had a methyl group at the 4-position of ring A and a hydroxyl group at the 4-position of ring B, was more active than potent DDPH in terms of both blocking and antihypertensive activities. In addition, the possible correlations between the blocking and antihypertensive activities are also briefly discussed.  相似文献   

13.
Nitrophenols structurally similar to 4-hydroxy-3-nitrobenzoic acid and 4-hydroxy-3-nitrobenzaldehyde have been examined for their ability to inhibit chloroplast development in linseed and oat seedlings, and their activity has been estimated quantitatively in specifically designed clover and Lemna bioassays. Twelve compounds were found to be active and activity is considered in relation to chemical structure. A nitro group in the 3-position and a hydroxyl group or ether linkage in the 4-position were found to be essential for activity whereas the nature of the functional group in the 1-position could vary considerably. Possibilities in which activity might arise from metabolism of the applied compound were investigated using excised wheat and pea tissue, and compounds with various groupings in the 1-position were shown to be converted to the corresponding active benzoic acid derivative.  相似文献   

14.
The complex formation of flavonoids with anthocyanins, resulting in increase in both absorbance and in a bathochromic shift of the visible absorption maximum of the latter, is based mainly on hydrogen bond formation between the carbonyl group of the anthocyanin anhydrobase and aromatic hydroxyl groups of the complex-forming flavonoids. The larger the number of hydroxyl groups in the flavonoid molecule, the stronger the complex formation. The presence of a 3-hydroxyl group in the flavonoid molecule has little effect on the complex-forming ability. The nature of the sugar substituent of the complex-forming flavonoid compound has no influence on the reaction. The 5-hydroxyl group of flavonoids is strongly bound by intramolecular hydrogen bond to the 4-carbonyl and does not participate in the complex formation. The most important hydroxyl group in the flavonoid molecule is the one in the 7-position. Unsaturation at C2C3 in the heterocyclic ring is an important factor for complex formation. Aromatic hydroxyl groups in the flavonoid system alone cannot account for all the complex-forming ability, suggesting additional involvement by electrostatic forces and configurational or steric effects.  相似文献   

15.
Arachidonate 8-lipoxygenase was identified in phorbol ester induced mouse skin. We expressed the enzyme in an Escherichia coli system using pET-15b carrying an N-terminal histidine-tag sequence. The enzyme, purified by nickel-nitrilotriacetate affinity chromatography, showed specific activity of about 0.1 micromol/min/mg of protein with arachidonic acid as a substrate. When metabolites of arachidonic acid were reduced and analyzed by reverse-phase HPLC, 8-hydroxy derivative was a major product as measured by absorbance at 235 nm. In addition, three polar compounds (I, II, and III) were detected by measuring absorbance at 270 nm. These compounds were also produced when the enzyme was incubated with 8-hydroperoxyeicosa-5,9,11,14-tetraenoic acid. Neither heat-inactivated enzyme nor mutated enzyme produced these compounds, suggesting that they are enzymatically generated. Ultraviolet spectra of these compounds showed typical triplet peaks around 270 nm, indicating that they have a triene structure. Molecular weight of these compounds was determined to be 336 by liquid chromatography-mass spectrometry, indicating that they carry two hydroxyl groups. Compounds I and III were generated even under anaerobic condition, indicating that oxygenation reaction was not required for their generation from 8-hydroperoxyeicosa-5,9,11,14-tetraenoic acid. By analogy to the reactions of 5-lipoxygenase pathway where leukotriene A4 is generated, it is suggested that 8-hydroperoxyeicosa-5,9,11,14-tetraenoic acid is converted by the 8-lipoxygenase to 8,9-epoxyeicosa-5,10,12,14-tetraenoic acid which degrades to compounds I and III by non-enzymatic reaction. In contrast, compound II was not generated under anaerobic condition, indicating that it was produced by oxygenation reaction. Taken together, 8-lipoxygenase catalyzes both dehydration reaction to yield 8,9-epoxy derivative and oxygenation reaction presumably at 15-position of 8-hydroperoxyeicosa-5,9,11,14-tetraenoic acid.  相似文献   

16.
In recent years, dipeptidyl peptidase IV inhibitors have been noted as valuable agents for treatment of type 2 diabetes. Herein, we report the discovery of a novel potent DPP-4 inhibitor with 3H-imidazo[4,5-c]quinolin-4(5H)-one as skeleton. After efficient optimization of the lead compound 2a at the 7- and 8-positions using a docking study, we found 28 as a novel DPP-4 inhibitor with excellent selectivity against various DPP-4 homologues. Compound 28 showed strong DPP-4 inhibitory activity compared to marketed DPP-4 inhibitors. We also found that a carboxyl group at the 7-position could interact with the residue of Lys554 to form a salt bridge. Additionally, introduction of a carboxyl group to 7-position led to both activity enhancement and reduced risk for hERG channel inhibition and induced phospholipidosis. In our synthesis of compounds with 7-carboxyl group, we achieved efficient regioselective synthesis using bulky ester in the intramolecular palladium coupling reaction.  相似文献   

17.
The inhibitory effects of glabridin, an isoflavan isolated from licorice (Glycyrrhiza glabra) root, and its derivatives on the oxidation of LDL induced by copper ions or mediated by macrophages were studied, in order to evaluate the contribution of the different parts of the isoflavan molecule to its antioxidant activity. The peak potential (E1/2) of the isoflavan derivatives, their radical scavenging capacity toward 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical and their ability to chelate heavy metals were also analyzed and compared to their inhibitory activity on LDL oxidation. In copper ion-induced LDL oxidation, glabridin (1), 4′-O-methylglabridin (2), hispaglabridin A (3), and hispaglabridin B (4), which have two hydroxyl groups at positions 2′ and 4′ or one hydroxyl at position 2′ on ring B, successfully inhibited the formation of conjugated dienes, thiobarbituric acid reactive substances (TBARS) and lipid peroxides, and inhibited the electrophoretic mobility of LDL under oxidation. Compounds 1–3 exhibited similar activities, whereas compound 4 was less active. In macrophage-mediated LDL oxidation, the TBARS formation was also inhibited by these isoflavans (1–4) at a similar order of activity to that obtained in copper ion-induced LDL oxidation. On the other hand, 2′-O-methylglabridin (5), a synthesized compound, whose hydroxyl at 2′-position is protected and the hydroxyl at 4′-position is free, showed only minor inhibitory activity in both LDL oxidation systems. 2′,4′-O-Dimethylglabridin (6), whose hydroxyls at 2′- and 4′-positions are both protected, was inactive. Resorcinol (7), which is identical to the phenolic B ring in glabridin, presented low activity in these oxidation systems. The isoflavene glabrene (8), which contains an additional double bond in the heterocyclic C ring, was the most active compound of the flavonoid derivatives tested in both oxidation systems. The peak potential of compounds 1–5 (300 μM), tested at pH 7.4, was similar (425–530 mV), and that for compound 6 and 8 was 1078 and 80 mV, respectively. Within 30 min of incubation, compounds 1, 2, 3, 4, 8 scavenged 31%, 16%, 74%, 51%, 86%, respectively, of DPPH radical, whereas compounds 5 and 6, which almost did not inhibit LDL oxidation, also failed to scavenge DPPH. None of the isoflavan derivatives nor the isoflavene compound were able to chelate iron, or copper ions. These results suggest that the antioxidant effect of glabridin on LDL oxidation appears to reside mainly in the 2′ hydroxyl, and that the hydrophobic moiety of the isoflavan is essential to obtain this effect. It was also shown that the position of the hydroxyl group at B ring significantly affected the inhibitory efficiency of the isoflavan derivatives on LDL oxidation, but did not influence their ability to donate an electron to DPPH or their peak potential values.  相似文献   

18.
Recently, we have identified 9-benzyl-8-hydroxyadenines bearing an appropriate substituent (a butoxy, propylthio or butylamino group) at the 2-position as potent interferon (IFN)-inducers. Herein we report the design, synthesis, and IFN-inducing activity of 8-substituted 9-benzyladenines possessing such an appropriate substituent at the 2-position. Introduction of the appropriate substituent into the 2-position of the adenine nucleus gave rise to expression of the activity even in 9-benzyladenines bearing no hydroxyl group at the 8-position. An amino group at the 6-position and a hydroxyl or thiol group carrying an acidic proton at the 8-position are required to express excellent IFN-inducing activity. 9-Benzyl-2-butoxy-8-mercaptoadenine (9) indicated the most potent activity with MEC of 0.001 microM.  相似文献   

19.
Comparative studies based on x-ray crystallography and NMR spectroscopy were used for structural characterization of the novel minor, imidazolidinone moiety containing, product 2b of the Maillard reaction obtained in vitro by using the galactose-modified endogenous opioid pentapeptide leucine-enkephalin (Tyr-Gly-Gly-Phe-Leu) 1. The x-ray analysis uniquely defined the molecular structure as cyclo-(N-(12-[-4)-D-galacto-pentitol-1-yl]-4-(4-hydroxybenzyl)-5-oxoimidazolidin-1-yl-(1 --> O]acetyl]glycyl-L-phenylalanyl-L-leucyl-] (3), having an 18-membered ring with an ester bond between the secondary (C4') hydroxyl group of a D-galacto-pentitolyl residue and the C-terminal carboxy group of leucine-enkephalin. The absolute configuration of the new chiral centre at the imidazolidinone moiety was established as C2(S), indicating a cis arrangement of C2 and C4 substituents at the 5-membered heterocyclic ring. The NMR analysis of compound 2b carried out in CH3CN-d3 and DMSO-d6, indicated the existence of two isomers in solution, differing only in the position of the ester group in the molecule. NMR data for the minor isomer (13%-16%) are in agreement with structure 3. The migratory tendency of the peptidyl group from the primary (2b) to the secondary hydroxyl group (3) of a D-galacto-pentitolyl residue in methanol/water solution was confirmed by RP HPLC analysis.  相似文献   

20.
Synthetic 6-chromanol derivatives were prepared with several chlorine substitutions, which conferred both electron-withdrawing inductive effects and electron-donating resonance effects. A trichlorinated compound (2), a dichlorinated compound (3), and three monochlorinated compounds (4, 5, and 6) were synthesized; compounds 2, 3, and 6 were novel. The antioxidant activities of the compounds, evaluated in terms of their capacities to scavenge galvinoxyl radical, were associated with the number and positioning of chlorine atoms in the aromatic ring of 6-chromanol. The activity of compound 1 (2,2-dimethyl-6-chromanol) was slightly higher than the activities of compounds 2 (2,2-dimethyl-5,7-dichloro-6-chromanol) or 3 (2,2-dimethyl-5,7,8-trichloro-6-chromanol), in which the chlorine atoms were ortho to the phenolic hydroxyl group of 6-chromanol. The scavenging activity of compound 3 was slightly higher than that of 2, which contained an additional chlorine substituted in the 8 position. The activities of polychlorinated compounds 2 and 3 were higher than the activities of any of the monochlorinated compounds (4-6). Compound 6, in which a chlorine was substituted in the 8 position, exhibited the lowest activity. Substitution of a chlorine atom meta to the hydroxyl group of 6-chromanol (compounds 2 and 6) decreased galvinoxyl radical scavenging activity, owing to the electron-withdrawing inductive effect of chlorine. Positioning the chloro group ortho to the hydroxyl group (compounds 4 and 5) retained antioxidant activity because the intermediate radical was stabilized by the electron-donating resonance effect of chlorine in spite of the electron-withdrawing inductive effect of chlorine. Antioxidant activities of the synthesized compounds were evaluated for correlations with the O-H bond dissociation energies (BDEs) and the ionization potentials. The BDEs correlated with the second-order rate constants (k) in the reaction between galvinoxyl radical and the chlorinated 6-chromanol derivatives in acetonitrile. This indicated that the antioxidant mechanism of the synthesized compounds consisted of a one-step hydrogen atom transfer from the phenolic OH group rather than an electron transfer followed by a proton transfer. The synthesized compounds also exhibited hydroxyl radical scavenging capacities in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号