首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: Does grazing by large herbivores affect species composition or community‐wide variation in plant functional traits? Location: Dune grasslands at the Belgian coast. Methods: Plant cover and soil data were collected in 146 plots that were randomly selected at 26 grazed and ungrazed grassland sites. Plant community composition was assessed by Detrended Correspondence Analysis and mean values of plant trait categories were calculated across the plots. Results: Differentiation of plant composition and community‐wide plant trait characteristics was largely determined by grazing, soil acidity and their interaction. In ungrazed situations, a clear floristic distinction appears between acidic (non‐calcareous) and alkaline (calcareous) grasslands. In grazed situations, these floristic differences largely disappeared, indicating that grazing results in a decrease of natural variation in species composition. At higher soil pH, a larger difference in plant community composition and community‐wide plant traits was observed between grazed and ungrazed plots. In ungrazed situations, shifts in plant functional traits along the acidity gradient were observed. Conclusions: Grazing is responsible for shifts in plant community composition, and hence a decrease in plant diversity among grasslands at opposing acidity conditions in coastal dune grasslands. Therefore, care should be taken when introducing grazing as a system approach for nature conservation in dune grasslands as it may eliminate part of the natural variation in plant diversity along existing abiotic gradients.  相似文献   

2.
Question: What are the effects of grazing abandonment on the vegetation composition of Estonian coastal wetlands? Location: Vormsi Island and Silma Nature Reserve in western Estonia, Europe. Methods: Local knowledge and field reconnaissance were used to identify current and historical management levels of wetland sites within the west Estonian study area. Nine study sites, with varying management histories, were selected comprising an area of 287 ha. A total of 198 quadrats were taken from 43 distinct vegetation patches in five of the sites. TWINSPAN analysis was used to identify community type, and a phytosociological key was constructed for character taxa. This vegetation classification was then applied within a GIS‐based context to classify all the study sites, using a ground survey technique and 1:2000 scale air photos. Results: We identified 11 different brackish coastal wetland community types. Indicator species were defined with community characteristics for the seven main vegetation types readily recognisable in the field. Coastal wet grasslands were most extensive in grazed sites, or sites that had been more intensively grazed, while abandoned sites were largely composed of Phragmites australis stands, tall grassland, and scrub. Site variations based on vegetation composition were significantly correlated with past grazing intensity. Plant community types showed significant edaphic differences, with particularly low soil moisture and high conductivity and pH for open pioneer patches compared to other vegetation types. Conclusion: Abandonment of traditionally grazed coastal grasslands threatens their characteristic biodiversity. This study found that grazing abandonment reduced the extent of coastal wetland grasslands of particular conservation value. Nevertheless, plant species of conservation interest were found across the sequence of community types described. The study shows that grazing is an important factor influencing coastal wetland plant communities but suggests that vegetation distribution is affected by environmental variables, such as topography.  相似文献   

3.
Question: What are the consequences of grazing abandonment on the Stipa lessingiana dominated steppe‐like grasslands? What is the relative importance of management and environmental factors in causing variation in species composition and abundance in the continuously grazed and abandoned grassland stands? Location: Transylvanian Lowland, Romania. Methods: Repeated vegetation mapping of a grassland stand, where grazing was abandoned 35 years ago; re‐sampling six grassland stands surveyed 29–57 years ago. For revealing long‐term changes in species composition and rank abundance PCoA ordination was applied. The relative importance of management and environmental factors in structuring vegetation were explored by CCA ordination. Diversity, evenness and the relative number and abundance of red‐listed species were compared between managed and abandoned stands. Results: Our results pointed out that grasslands which were formerly grazed and dominated by S. lessingiana, in the long‐term absence of grazing, have been transformed into a S. pulcherrima dominated type. Management, probably by creating bare surfaces and preventing litter accumulation, had the strongest effect on the species composition and abundance in the grasslands. Abandoned grassland stands had lower diversity and evenness compared to continuously grazed stands. While at the same time, the relative number of threatened, rare species did not differ between managed and abandoned sites. Conclusion: Maintaining extensively grazed, as well as un‐managed, Stipa dominated grasslands would be important in order to create various habitat conditions for plant species, especially threatened and rare species, and promote diversity on the landscape scale.  相似文献   

4.
Question: Which management treatments are suitable to replace historically applied grazing regimes? How and why does vegetation structure change following changes in management? Location: Semi‐natural calcareous dry grasslands in southwest Germany. Methods: We analysed changes in floristic and functional composition induced by different management treatments (grazing, mowing, mulching, succession) in long‐term experimental sites. First, floristic and functional distances between the initial conditions and the following years were determined. Second, we used RLQ analyses to include data on abiotic conditions, vegetation composition and functional traits in one common analysis. Finally, we applied cluster analyses on RLQ species scores to deduce functional groups. Results: In contrast to the historical management regime of grazing, all alternative management treatments led to changes in floristic and functional composition, depending on their intensity with respect to biomass removal. The distance analyses showed that mulching twice per year and mowing did not lead to strong changes in floristic or functional composition. However, RLQ analysis clearly provided evidence that only the grazed sites are in equilibrium, indicating that vegetation change still goes ahead. Conclusions: The current study clearly shows that RLQ is a powerful tool to elucidate ongoing processes that may remain hidden when separately analysing floristic and functional data. Alternative management treatments are not appropriate to sustain the typical disturbance dynamics of species‐rich semi‐natural grasslands. The less frequent an alternative management treatment is with respect to biomass removal, the less the floristic and functional structure can be maintained.  相似文献   

5.
Grazing impacts the structure and functional properties of vegetation through floristic changes (i.e., long-term effect) and current defoliation (i.e., short-term effect). The aim of this study was to assess the relative importance of these two grazing effects on productivity (ANPP) and plant quality (C/N ratio) among plant patches submitted to a variety of grazing intensity for several years. Long-term grazing effect was measured by comparing ANPP and C/N ratio among plant patches with contrasting floristic composition. Short-term impact of grazing was measured by comparing ANPP and C/N in plant patches, with and without defoliation. Floristic contrasts led to a lower ANPP in highly grazed patches than in lightly grazed ones. This result may be related to the increasing proportion of grazing-tolerant and grazing-avoiding species with increasing grazing intensity. Vegetation C/N contrasts were recorded among grazed patches but did not linearly relate to grazing intensity. Short-term effect of current-year defoliation on ANPP was limited as vegetation compensated for biomass removal. No evidence for grazing-enhancement of ANPP was found even at moderate grazing intensity. Long-term floristic changes with grazing thus appeared to be the main driving factor of variations in ANPP. In contrast, C/N ratio showed no general and consistent variation along the grazing gradient but varied consistently depending on the community investigated, thus suggesting an effect of the species pool available.  相似文献   

6.
Abstract. Grazing by domestic livestock in native woodlands can have major effects on ecosystem functioning by the removal of plant species that form important functional groups. This paper documents the changes in floristics in a large group of remnants of native woodland left after agricultural clearing in southwestern Australia. Species richness and diversity were significantly reduced in remnants and the proportion of exotic species increased. Detrended Correspondence Analysis (DCA) was used to identify floristic and environmental patterns among plots and identified two distinct groups based on grazing intensity. This indicated that the significance of the relationship between grazing effects and DCA floristic axes was greater than edaphic characteristics that normally influence floristic patterns. Floristic characteristics of sites that were influencing the position of plots on the ordination diagram included proportion of exotic species and proportion of native perennial shrubs and herbs. Numbers of species of native shrubs and perennial herbs were significantly reduced in grazed plots and numbers of exotic annual grasses and herbs were significantly higher. Other life form groups such as native perennial grasses and geophytes were not significantly affected by grazing. Reproductive strategies of perennial species showed a significant decrease in numbers of resprouters and a significant increase in numbers of facultative seeder/sprouters. Exclosure plots showed increases in number and cover of perennial shrubs and herbs after three years whereas number and cover of exotic species did not change. Time series DCA showed that the floristic composition of exclosure plots in grazed sites became closer to that of the ungrazed sites.  相似文献   

7.
A major obstacle for predicting the effects of climate and land use changes on global soil carbon (C) stores is the very limited knowledge about the long timescale dynamics of the relatively stable fraction of soil C, which represents the bulk of soil C and the primary determinant of the long‐term C balance of terrestrial ecosystems. In this study, we examined how variable topo‐edaphic conditions and herds of native migratory ungulates influenced turnover of the stable pool (total minus active fraction) of soil C in grasslands of Yellowstone National Park (YNP). Soil C properties were determined for grasslands located inside and outside long‐term ungulate exclosures established 1958–1962 at seven variable topographic positions. Active C pool sizes, estimated with soil laboratory incubations, and soil radiocarbon measures were used to parameterize a process‐based model to determine turnover of the stable C pool at the sites. Stable C turnover ranged 37–653 and 89–869 years for 0–10 and 0–20 cm soils, respectively. Among ungrazed communities, there was a trend for stable soil C turnover to slow along topographic gradients of increasing soil moisture, soil C content, and shoot biomass from hilltop to slope‐bottom positions. This was likely a result of an increasing amount of support tissue resulting in greater concentrations of lignin and cellulose as shoot biomass increased down slope. In contrast, across the grazed landscape, stable C turnover sped up from hilltop to slope‐bottom positions, which was likely a consequence of grazer effects on plant species composition along the topographic gradient. These findings indicated that despite topography playing the primary role in controlling such important site characteristics as soil moisture, soil C content, and plant production in YNP grassland, the long‐term turnover of the stable C pool was determined by herbivores. The results demonstrate the important regulatory role of herbivores in controlling the C balance of this semiarid grassland ecosystem.  相似文献   

8.
Large vertebrate herbivores, as well as plant–soil feedback interactions are important drivers of plant performance, plant community composition and vegetation dynamics in terrestrial ecosystems. However, it is poorly understood whether and how large vertebrate herbivores and plant–soil feedback effects interact. Here, we study the response of grassland plant species to grazing‐induced legacy effects in the soil and we explore whether these plant responses can help us to understand long‐term vegetation dynamics in the field. In a greenhouse experiment we tested the response of four grassland plant species, Agrostis capillaris, Festuca rubra, Holcus lanatus and Rumex acetosa, to field‐conditioned soils from grazed and ungrazed grassland. We relate these responses to long‐term vegetation data from a grassland exclosure experiment in the field. In the greenhouse experiment, we found that total biomass production and biomass allocation to roots was higher in soils from grazed than from ungrazed plots. There were only few relationships between plant production in the greenhouse and the abundance of conspecifics in the field. Spatiotemporal patterns in plant community composition were more stable in grazed than ungrazed grassland plots, but were not related to plant–soil feedbacks effects and biomass allocation patterns. We conclude that grazing‐induced soil legacy effects mainly influenced plant biomass allocation patterns, but could not explain altered vegetation dynamics in grazed grasslands. Consequently, the direct effects of grazing on plant community composition (e.g. through modifying light competition or differences in grazing tolerance) appear to overrule indirect effects through changes in plant–soil feedback.  相似文献   

9.
We have delineated the spatio-temporal plant assemblages prevailing under contrasting environmental conditions at the southernmost part of the North American Graminetum in central México and discuss the relative importance of these factors in determining plant community structure and composition. 353 line-transect samples were collected during 11 years from exclosures and adjacent grazed areas within three Bouteloua-dominated grasslands and one Acacia schaffneri shrubland and analyzed using TWINSPAN. In addition, eight edaphic variables were utilized to evaluate similarities in soil properties among sites, using unweighted-pair groups method. Results from TWINSPAN were translated into mosaic patterns to show the distribution of communities as a function of environmental factors over time. Under no or moderate grazing, summer precipitation promotes an initial differentiation of vegetation into high, low or average rainfall communities. This situation is altered in grasslands degraded by intensive grazing pressure, where rainfall patterns play a subordinate role to that of livestock herbivory. Soil influences are secondary to those of precipitation and grazing in affecting grassland structure and composition. In shrubland, community stability is related to high floristic and edaphic spatial heterogeneity in the face of climatic variability.  相似文献   

10.
1. The Qilian Mountains represent one of the key livestock‐raising grasslands in China. The two main herbivore species raised in this area – yaks and sheep – are of critical economical value. Grasshoppers compete with these animals for available nutrients, creating multifaceted relationships between livestock, grasshoppers and plants. A clear understanding of such relationships is lacking and is urgently needed to guide conservation efforts. 2. This study aims to document the effects of yak and sheep grazing on grasshopper assemblages and to elucidate the underlying mechanisms of such effects. 3. It is shown here that yaks and sheep impact grasshopper assemblages differently. Grasshopper assemblages exhibited lower density, biodiversity, richness, and evenness of distribution in yak‐grazed pastures than in grazing‐free grasslands. Sheep‐grazed pastures exhibited a dramatically divergent picture, with elevated density, biodiversity and richness, and a slightly decreased evenness of distribution. Grasshoppers were generally larger in grazed pastures than in grazing‐free grasslands, especially in yak‐grazed plots. 4. The present study suggests that differences between yak and sheep pastures in plant assemblage structure and plant traits are probably the underlying forces driving the differences in grasshopper assemblage structure and grasshopper traits, respectively. 5. The study shows that the grasshopper habitat indicator species differ between yak and sheep pastures, raising the possibility that such indicators can be used to monitor grassland usage and degradation in the Qilian Mountains. 6. These results provide novel insights into the dynamic interactions of common domesticated herbivore species, grasshoppers and plants in Qilian Mountains, which augment current knowledge and may ultimately lead to better conservation practices.  相似文献   

11.
Abstract. We present a gradient analysis of 620 vegetation samples covering most of the floristic and environmental variation in semi‐natural grassland vegetation on well‐drained soils in Denmark. Vegetation was sampled using frequency in subplots. Explanatory variables were surface inclination, aspect, pH, geographical co‐ordinates together with indications of soil type. Detrended Correspondence Analysis revealed four floristic gradients that could be interpreted in ecological terms by measured variables supplemented with site calibrations based on weighted averaging of Ellenberg's indicator values. All four axes were interpreted using rank correlation statistics, and linear and non‐linear multiple regression of sample scores on explanatory variables. The first gradient was from dry calcareous to humid acidic grasslands; the second reflected an underlying gradient in fertility; the third reflected regional differentiation and the fourth was associated with variation in intensity of competition as indicated by association with calibrated Grime‐CSR values for the plots. We applied subset ordination to the data as a supplement to traditional permutation and correlation statistics to assess the consistency of ordination results. DCA axes 1 and 2 were consistent in space and time. This gradient analysis is discussed in a context of plant strategy theory and species diversity models. Ecocline patterns lend support to the view that grazing not only favours the ruderal strategy but also the stress‐tolerant strategy. The low rank of competition as an explanatory variable for the floristical gradients supports the notion that competitive effects play a subordinate role for species composition compared to microclimate and soil conditions in infertile semi‐natural grasslands.  相似文献   

12.
放牧对青藏高原高寒草地种子萌发性状选择的影响 以前的研究表明放牧能够引起草地生物与非生物环境的显著变化,但这种变化影响草地群落对种子萌发特征的选择机制尚不清楚。因此,我们旨在回答:放牧是否对草地群落中萌发特征的组成和多样性产生显著影响。我们在实验室检测了研究草地群落内主要物种种子的萌发特性,并比较了这些植物在放牧和非放牧草地上的表现。在此基础上,比较了放牧草地和非放牧草地的各萌发性状的群落加权平均值和萌发性状多样性,从而了解放牧草地和非放牧草地是否存在不同的萌发性状结构。研究结果表明,在物种水平上,放牧和非放牧草地各物种的多度变化与物种的萌发性状无显著关系。但在群落水平上,与非放牧草地相比,放牧草地的物种普遍具有较高的种子萌发率;放牧草地种子萌发对变温的正响应显著大于非放牧草地,而且放牧草地种子萌发温度生态位宽度小于非放牧草地。与非放牧草地相比,放牧草地种子萌发性状多样性增加,萌发性状均匀度降低。放牧可以改变微生境,从而通过环境过滤改变草地群落对萌发性状的选择,导致草地群落的萌发性状于放牧前后在群落水平上存 在显著差异。  相似文献   

13.
Question: Does long‐term grazing exclusion affect plant species diversity? And does this effect vary with long‐term phytomass accumulation across a regional productivity gradient? Location: Lowland grassy ecosystems across the state of Victoria, southeast Australia. Methods: Floristic surveys and phytomass sampling were conducted across a broad‐scale productivity gradient in grazing exclusion plots and adjacent grazed areas. Differences in species richness, evenness and life‐form evenness between grazed and ungrazed areas were analysed. The environmental drivers of long‐term phytomass accumulation were assessed using multiple linear regression analysis. Results: Species richness declined in the absence of grazing only at the high productivity sites (i.e. when phytomass accumulation was >500 g m?2). Species evenness and life‐form evenness also showed a negative relationship with increasing phytomass accumulation. Phytomass accumulation was positively associated with both soil nitrogen and rainfall, and negatively associated with tree cover. Conclusions: Competitive dominance is a key factor regulating plant diversity in productive grassy ecosystems, but canopy disturbance is not likely to be necessary to maintain diversity in less productive systems. The results support the predictions of models of the effects of grazing on plant diversity, such as the dynamic equilibrium model, whereby the effects of herbivory are context‐dependent and vary according to gradients of rainfall, soil fertility and tree cover.  相似文献   

14.
Abundance and diversity of small mammals are usually affected strongly by grazing either due to decreased food availability or quality, decreased suitability of soil for building burrow systems due to trampling and/or due to increased predation risk in the structurally simpler grazed areas. We estimated the effects of grazing-induced changes in vegetation and soil and of increased predation on small mammals in a Mediterranean grassland landscape. We measured vegetation structure, soil compaction and small mammal abundance and species composition in 22 plots of 8 Sherman live traps each, arranged according to an unbalanced two-way ANOVA design with two grazing levels (grazed areas and cattle exclosures) and two predator abundance levels (increased densities of Eurasian kestrels Falco tinnunculus by means of nest boxes and control). Plots were sampled during 2 consecutive years in early summer and early fall. Exclosure from cattle increased significantly vegetation height and volume and decreased soil compaction. Grazing-induced changes in vegetation height and volume and in soil compaction produced strong effects on small mammal abundance and species richness. Increased kestrel densities did not have significant additive or interactive effects, with the effects of grazing-induced vegetation and soil gradients on abundance or richness of small mammals. Our results suggest that the effects of grazing on small mammal communities in Mediterranean montane grasslands were mainly due to reduced food availability and by negative effects of trampling on the suitability of soils for building burrow systems. Decreased food quality and increased predation in grazed areas seemed to play a minor role, if any. Reductions in stock densities would then favor generalist predator populations in Mediterranean grasslands through the expected positive effects of such reductions on the availability of food and burrows for small mammals.  相似文献   

15.
Spatial heterogeneity in the plant species composition of tropical forests is expected to influence animal species abundance and composition because vegetation constitutes the primary habitat feature for forest animals. Floristic variation is tied to variation in soils, so edaphic properties should ultimately influence animal species composition as well. The study of covariation in floristic and faunistic turnover has been hindered by the difficulty of completing coordinated surveys in hyperdiverse tropical communities, but this can be overcome with the use of a few plant taxa that function as surrogates for general floristic turnover. We used avian and plant transect surveys and soil sampling in a western Amazonian upland (terra firme) forest landscape to test whether spatial variation in bird community composition is associated with floristic turnover and corresponding edaphic gradients. Partial Mantel tests and Non‐metric Multidimensional Scaling showed floristic distinctiveness between two forest types closely associated with differences in soil cation concentrations, and differences in both floristic composition and cation concentrations were further linked to compositional differences in avian species, independent of geographic distances among sites. Ten percent of bird species included in Indicator Species Analyses showed significant associations with one of the two forest types. The upland forest types that we sampled, each corresponding to a different geological formation, are intermediate relative to edaphically extreme environments in the region. Models of avian diversification should take into account this environmental heterogeneity, as should conservation planning approaches that aim to represent faunal diversity. Abstract in Spanish is available in the online version of this article.  相似文献   

16.
Extensively managed pastures are of crucial importance in sustaining biodiversity both in local- and landscape-level. Thus, re-introduction of traditional grazing management is a crucial issue in grassland conservation actions worldwide. Traditional grazing with robust cattle breeds in low stocking rates is considered to be especially useful to mimic natural grazing regimes, but well documented case-studies are surprisingly rare on this topic. Our goal was to evaluate the effectiveness of traditional Hungarian Grey cattle grazing as a conservation action in a mosaic alkali landscape. We asked the following questions: (i) How does cattle grazing affect species composition and diversity of the grasslands? (ii) What are the effects of grazing on short-lived and perennial noxious species? (iii) Are there distinct effects of grazing in dry-, mesophilous- and wet grassland types? Vegetation of fenced and grazed plots in a 200-ha sized habitat complex (secondary dry grasslands and pristine mesophilous- and wet alkali grasslands) was sampled from 2006–2009 in East-Hungary. We found higher diversity scores in grazed plots compared to fenced ones in mesophilous- and wet grasslands. Higher cover of noxious species was typical in fenced plots compared to their grazed counterparts in the last year in every studied grassland type. We found an increasing effect of grazing from the dry- towards the wet grassland types. The year-to-year differences also followed similar pattern: the site-dependent effects were the lowest in the dry grassland and an increasing effect was detected along the moisture gradient. We found that extensive Hungarian Grey cattle grazing is an effective tool to suppress noxious species and to create a mosaic vegetation structure, which enables to maintain high species richness in the landscape. Hungarian Grey cattle can feed in open habitats along long moisture gradient, thus in highly mosaic landscapes this breed can be the most suitable livestock type.  相似文献   

17.
Abstract

Islands crucially contribute to the Mediterranean Basin’s high floristic diversity, which, however, is at risk facing climate and land-use changes. Besides the identification of highly diverse areas, the knowledge about factors favouring diversity is of great importance. We analysed plant species diversity and composition related to environmental factors over varied vegetation units on a former Italian prison island in the northwest of Sardinia. Due to a long history of land use with grazing and later abandonment the nowadays protected island features a semi-natural landscape and can serve as an example for strongly anthropogenic altered insular ecosystems. Floristic composition, soil properties, microclimate and ungulate abundance were assessed. Relationships of vegetation composition and diversity with abiotic variables were examined by Canonical Correspondence Analysis, which indicated the importance of air temperature, soil moisture, slope gradient and C/N ratio for floristic differentiation. Most important abiotic factors for plant species richness were relative air humidity and soil moisture, while floristic diversity was mainly determined by air temperature and pH. Furthermore, observation data pointed to an adverse influence of ungulate abundance for plant species diversity. Regarding nature conservation, grazing intensity thus must be critically taken into account, especially for sensitive vegetation units like the coastal garrigue.  相似文献   

18.
Abstract. The cessation of coppicing and grazing in Quercus woodlands, with its subsequent changes in the structure, composition and functioning of vegetation communities, is becoming more frequent throughout the Mediterranean Basin. In southern France, we have studied successional changes in Quercus pubescens woodlands by visiting previously studied sites 18 yr later. Changes in vertical structure, species richness, floristic composition, life form and dispersal type were analysed and compared between woodlands that had previously been grazed or ungrazed. Both successions showed a decline in vegetation cover in the 0–25 cm height class and in the height class immediately under the canopy layer, due to oak litter accumulation and tree ageing. In post‐grazing succession, the abandonment of grazing and associated burning has allowed the vegetation cover to increase in the 0.25‐2 m height class. In both successions, grassland species decreased in frequency and forest species increased, a trend which was stronger in undisturbed succession. Species richness decreased with time in the undisturbed succession, but remained stable in the post‐grazing succession mainly because of the slow decline of plants linked to grazing. In undisturbed succession, therophytes and hemicryptophytes decreased. In contrast, therophytes and hemicryptophytes remained stable in post‐grazing succession. In both successions, endozoochorous species (notably Ruscus aculeatus) increased. Plants dispersed by non‐animal vectors decreased in undisturbed succession, but stability was observed in most of the dispersal types in post‐grazing succession. These results showed that a time‐lag existed between undisturbed succession and post‐grazing succession, the latter remaining at a younger stage of successional development due to more recent impact of grazing. However, both successions have converged suggesting that most of the traces of grazing on vegetation will disappear within a few years. The vegetation of these coppices, regardless of the previous grazing regime, will become increasingly similar to the vegetation of undisturbed woodlands. However, their floristic composition will probably never be identical to that of undisturbed woodlands, mainly because of the rarity of these undisturbed woodlands and of the short‐distance dispersal of many forest plant species.  相似文献   

19.
Aim of this study was to evaluate the influence of flood pulse regime attributes (pulse frequency, pulse average intensity and amplitude, and flooded days) on the floristic differentiation of the Argentinian Middle Parana river floodplain vegetation in a 39-year period. Besides on floristic composition richness, diversity, evenness, percentage of woody species and topographic position were assessed for 7 communities. Pulse regime attributes were evaluated for each community taking into account different topographic positions and hydrological levels of the Parana River. Our result showed that fluvial vegetation is not floristically differentiated according to its topographic position and there is a weak relation between pulse regime attributes and diversity of woody and herbaceous species. Because of the same topographic position has been colonized by different vegetation communities, floristically different communities share similar pulse frequency, pulse average intensity and amplitude, and flooded days. Pulse regime effects on fluvial vegetation are dependent on more than the topographic position; other aspects of the dynamics of fluvial systems such as the geomorphologic architecture, sediment load and channel dynamics should be included in order to explain the floristic differentiation of the Parana River floodplain vegetation.  相似文献   

20.
Question: What are the changes in vegetation structure, soil attributes and mesofauna associated with grazing in mesic grasslands? Location: Southern Campos of the Río de la Plata grasslands, in south‐central Uruguay. Methods: We surveyed seven continuously grazed and ungrazed paired plots. Plant and litter cover were recorded on three 5‐m interception lines placed parallel to the fence in each plot. We extracted soil fauna from a 10 cm deep composite sample and analysed the oribatids. Soil attributes included bulk density, water content, organic carbon (in particulate and mineral associated organic matter) and nitrogen content and root biomass at different depths. Changes in floristic, Plant Functional Types and mesofauna composition were analysed by Non‐metric Multidimensional Scaling. Results: Species number was lower in ungrazed than in grazed plots. Of 105 species in grazed plots only three were exotics. Shrub and litter cover were significantly higher inside the exclosures, while the cover of Cyperaceae‐Juncaceae was lower. Grazing treatments differed significantly in plant and oribatid species composition. Grazing exclusion significantly reduced soil bulk density and increased soil water content. Carbon content in particulate organic matter was lower in the upper soil of ungrazed sites, but deeper in the profile, grazing exclosures had 8% more carbon in the mineral associated organic matter. Conclusions Our results generally agree with previous studies but deviate from the results of previous analyses in (1) the increase of shrub cover in ungrazed sites; (2) the redistribution of the soil organic carbon in the profile and (3) the low invasibility of the prairies regardless of grazing regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号