首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. New logical and analytical frameworks for studying functional traits have led to major advances in plant and freshwater ecology at local and global scales. The ecological and taxonomic diversity of terrestrial adult beetles (Coleoptera) means that functional trait approaches should have considerable power to illuminate the function not only of these animals but also of the ecosystems in which they occur. 2. Even though the functional trait concept is not new in ecology, it is still plagued with inconsistencies in methodology and terminology. Plant‐based studies have shown that an integrated and relatively consistent functional trait approach facilitates comparisons between studies, and allows the full utility and predictive capacity of trait‐based approaches to be realised. 3. This review outlines a logical framework for adult beetle functional trait studies using uniform terminology and methodology similar to those used by plant ecologists. Beetle life‐history and ecomorphological trait studies are synthesised and it is shown that a combination of both is analogous to the functional trait approach. A general functional trait list for beetles and potential functional links is outlined, as are potential analysis approaches. A consistent functional trait approach, coupled with advances in molecular techniques, has the capability to provide deeper insights into beetle community assembly and how beetles impact ecosystems and will enable worldwide comparisons and predictions to be made.  相似文献   

2.
Abstract. Spatial patterns and temporal dynamics of light distribution were investigated using lacunarity analysis, a multi‐scale measure of spatial heterogeneity, in three mesic grasslands with different disturbance regimes. Frequency distributions of relative light intensity (RLI) were similar for the two non‐disturbed grasslands, despite different composition (forbs vs. caespitose grass) resulting from different historical disturbance regimes prior to 1985, and different from the annually disturbed grassland. Spatial heterogeneity of light distribution was greater at all scales in the native, annually disturbed grassland than in the two non‐disturbed grasslands. The disturbance regime affected temporal dynamics of the spatial patterns of light distribution in each grassland. The annually disturbed grassland exhibited a dramatic decrease in lacunarity (heterogeneity) from early to late April, likely the result of considerable growth of a cool‐season grass. A general decrease in lacunarity occurred in the native, non‐disturbed grassland, although the magnitude was much less than in the annually disturbed grassland. The reverted, non‐disturbed grassland did not exhibit an appreciable change in lacunarity until later in the growing season, and then only at smaller scales. Combining the frequency distribution of RLI and the lacunarity curves provided an effective approach to assess relationships between the dynamics of spatial pattern of light distribution and ecological processes as influenced by different disturbance regimes. Integrating lacunarity analysis with more traditional measurements of grassland ecosystems (plant spatial distribution and arrangement and plant species composition and architecture) may be an effective way to assess functional consequences of structural changes in grassland ecosystems.  相似文献   

3.
Functional roles of remnant plant populations in communities and ecosystems   总被引:5,自引:0,他引:5  
A hypothesis is suggested for functional roles of remnant plant populations in communities and ecosystems. A remnant population is capable of persistence during extended time periods, despite a negative population growth rate, due to long‐lived life stages and life‐cycles, including loops that allow population persistence without completion of the whole life cycle. A list of critera is suggested to help identification of remnant plant populations. Several community and ecosystem features may result from the presence of remnant plant populations. Apart from increasing community and ecosystem resilience just by being present, remnant populations may contribute to resilience through enhancing colonization by other plant species, by providing a persistent habitat for assemblages of animals and microorganisms, and by reducing variation in nutrient cycling. It is suggested that the common ability of plants to develop remnant populations is a contributing factor to ecosystem stability. Remnant populations are important for the capacity of ecosystems to cope with the present‐day impact caused by human society, and their occurrence should be recognized in surveys of threatened plant species and communities.  相似文献   

4.
Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts.  相似文献   

5.
Ecological Genetics and the Restoration of Plant Communities: Mix or Match?   总被引:8,自引:1,他引:7  
We present a conceptual framework for choosing native plant material to be used in restoration projects on the basis of ecological genetics. We evaluate both the likelihood of rapid establishment of plants and the probability of long-term persistence of restored or later successional communities. In addition, we consider the possible harmful effects of restoration projects on nearby ecosystems and their native resident populations. Two attributes of the site to be restored play an important role in determining which genetic source will be most appropriate: (1) degree of disturbance and (2) size of the disturbance. Local plants or plants from environments that “match” the habitat to be restored are best suited to restore sites where degree of disturbance has been low. Hybrids or “mixtures” of genotypes from different sources may provide the best strategy for restoring highly disturbed sites to which local plants are not adapted. Cultivars that have been modified by intentional or inadvertent selection have serious drawbacks. Nevertheless, cultivars may be appropriate when the goal is rapid recovery of small sites that are highly disturbed.  相似文献   

6.
We theoretically explore consequences of warming for predator–prey dynamics, broadening previous approaches in three ways: we include beyond‐optimal temperatures, predators may have a type III functional response, and prey carrying capacity depends on explicitly modelled resources. Several robust patterns arise. The relationship between prey carrying capacity and temperature can range from near‐independence to monotonically declining/increasing to hump‐shaped. Predators persist in a U‐shaped region in resource supply (=enrichment)‐temperature space. Type II responses yield stable persistence in a U‐shaped band inside this region, giving way to limit cycles with enrichment at all temperatures. In contrast, type III responses convey stability at intermediate temperatures and confine cycles to low and high temperatures. Warming‐induced state shifts can be predicted from system trajectories crossing stability and persistence boundaries in enrichment‐temperature space. Results of earlier studies with more restricted assumptions map onto this graph as special cases. Our approach thus provides a unifying framework for understanding warming effects on trophic dynamics.  相似文献   

7.
The aim of this study was to systematically analyze the potential and limitations of using plant functional trait observations from global databases versus in situ data to improve our understanding of vegetation impacts on ecosystem functional properties (EFPs). Using ecosystem photosynthetic capacity as an example, we first provide an objective approach to derive robust EFP estimates from gross primary productivity (GPP) obtained from eddy covariance flux measurements. Second, we investigate the impact of synchronizing EFPs and plant functional traits in time and space to evaluate their relationships, and the extent to which we can benefit from global plant trait databases to explain the variability of ecosystem photosynthetic capacity. Finally, we identify a set of plant functional traits controlling ecosystem photosynthetic capacity at selected sites. Suitable estimates of the ecosystem photosynthetic capacity can be derived from light response curve of GPP responding to radiation (photosynthetically active radiation or absorbed photosynthetically active radiation). Although the effect of climate is minimized in these calculations, the estimates indicate substantial interannual variation of the photosynthetic capacity, even after removing site‐years with confounding factors like disturbance such as fire events. The relationships between foliar nitrogen concentration and ecosystem photosynthetic capacity are tighter when both of the measurements are synchronized in space and time. When using multiple plant traits simultaneously as predictors for ecosystem photosynthetic capacity variation, the combination of leaf carbon to nitrogen ratio with leaf phosphorus content explains the variance of ecosystem photosynthetic capacity best (adjusted R2 = 0.55). Overall, this study provides an objective approach to identify links between leaf level traits and canopy level processes and highlights the relevance of the dynamic nature of ecosystems. Synchronizing measurements of eddy covariance fluxes and plant traits in time and space is shown to be highly relevant to better understand the importance of intra‐ and interspecific trait variation on ecosystem functioning.  相似文献   

8.
Juli G. Pausas 《Oikos》2019,128(2):147-153
Despite the existing large body of research on plant–animal interactions, plant research and animal research are still relatively independent and asymmetrical in relation to disturbance. Animals and plants are likely to have different fire responses, yet biodiversity studies in relation to disturbance may benefit from a more integrated functional approach across kingdoms. This would also force us to go deeper into the biological mechanisms and scales for persistence than a taxonomic‐based classification. An integrated view of plant and animal responses would enable us to learn from a great variety of life forms and benefit from expertise in complementary disciplines. To achieve this integrated view, I propose a functional classification for both plants and animals in relation to their fire response strategy. This classification includes the following strategies: resistance, refugia, avoidance, dormancy, recolonization, crypsis and intolerance. Given the limited knowledge of fire responses for many organisms, and especially for many animals, this classification may require further development. However, it provides a framework that facilitates finding knowledge gaps and directing future research for gaining a better understanding of the role of fire on biodiversity.  相似文献   

9.
The invasion of a target community by a non‐indigenous plant species includes the stages of arrival, establishment and spread, which tend to depend on different characteristics of the invasive species and its context. While the mechanisms behind the invasion of highly disturbed ecosystems are well known, our understanding of the invasion process in undisturbed or weakly disturbed ecosystems is much more limited. Here we propose that, once a non‐indigenous species has arrived to a new ecosystem and become established, the likelihood that it spreads, and thus becomes invasive, may depend on just one or very few characteristics, called‘triggering attributes’(TA). We propose that a TA is a vegetative or regenerative attribute discontinuously distributed in comparison to the resident community. This attribute allows the species to benefit from a resource that is permanently or temporarily unused by the resident community. We present an original study case and examples from the literature to illustrate our approach, and we also propose some ways to test it in different ecosystems.  相似文献   

10.
Soil organic matter (SOM) is an indicator of sustainable land management as stated in the global indicator framework of the United Nations Sustainable Development Goals (SDG Indicator 15.3.1). Improved forecasting of future changes in SOM is needed to support the development of more sustainable land management under a changing climate. Current models fail to reproduce historical trends in SOM both within and during transition between ecosystems. More realistic spatio‐temporal SOM dynamics require inclusion of the recent paradigm shift from SOM recalcitrance as an ‘intrinsic property’ to SOM persistence as an ‘ecosystem interaction’. We present a soil profile, or pedon‐explicit, ecosystem‐scale framework for data and models of SOM distribution and dynamics which can better represent land use transitions. Ecosystem‐scale drivers are integrated with pedon‐scale processes in two zones of influence. In the upper vegetation zone, SOM is affected primarily by plant inputs (above‐ and belowground), climate, microbial activity and physical aggregation and is prone to destabilization. In the lower mineral matrix zone, SOM inputs from the vegetation zone are controlled primarily by mineral phase and chemical interactions, resulting in more favourable conditions for SOM persistence. Vegetation zone boundary conditions vary spatially at landscape scales (vegetation cover) and temporally at decadal scales (climate). Mineral matrix zone boundary conditions vary spatially at landscape scales (geology, topography) but change only slowly. The thicknesses of the two zones and their transport connectivity are dynamic and affected by plant cover, land use practices, climate and feedbacks from current SOM stock in each layer. Using this framework, we identify several areas where greater knowledge is needed to advance the emerging paradigm of SOM dynamics—improved representation of plant‐derived carbon inputs, contributions of soil biota to SOM storage and effect of dynamic soil structure on SOM storage—and how this can be combined with robust and efficient soil monitoring.  相似文献   

11.
Forest plantations support several ecosystem services including biodiversity conservation. Establishment of a forest biomass‐based industry could significantly change the age structure of forest plantations located in its vicinity and thus, could lead to a possible loss of biodiversity. Therefore, this study assesses spatiotemporal impacts of a forest biomass‐based power plant on the age structure of surrounding forest plantations at landscape level. A cellular automata approach was adopted and interactions between economic objectives of forest landowners and a power plant owner punctuated by forest growth and management characteristics were considered. These spatiotemporal impacts were jointly assessed for four separate scenarios and four different power plant capacities using appropriate landscape‐level indices. Slash pine (Pinus elliotti L.) was selected as a representative species. Results indicate that the age structure of surrounding forest plantations continuously fluctuates with respect to each year of power plant operation. However, the age structure, once disturbed, never becomes comparable to the original age structure. We also found that the mature plantations were harvested during early years of power plant operation and were never observed again for the remaining years of power plant operation. This was particularly true for high capacity power plants. Similarly, high value of selected spatial index at the end of power plant life for a high capacity power plant relative to the original low value of the same index indicates aggregation of remaining plantation ages at landscape level. Establishment of low capacity forest biomass‐based power plants and adoption of an integrated regional level planning approach could help in maintaining original age structure characteristics of surrounding forest plantations to a large extent. This might help in sustaining various ecosystem services including biodiversity conservation obtained from forest plantations in a long run.  相似文献   

12.
陆地生态系统植物功能群研究进展   总被引:5,自引:9,他引:5  
胡楠  范玉龙  丁圣彦  廖秉华 《生态学报》2008,28(7):3302-3311
从植物功能群角度探讨陆地生态系统功能与稳定性维持机理、植物对环境变化的适应与响应以及水分、养分利用效率等成为当前生态系统生态学研究的主要技术路线.植物功能群的提出和研究,为研究复杂的生态系统提供了一个良好的方法和途径.综述了陆地生态系统功能群方面的最新研究进展,介绍了植物功能群定义的发展历程,详细比较了植物功能群划分的依据及方法,对于植物功能群与群落稳定性之间的关系、植物功能群对群落生产力的影响以及植物功能群与环境因子的动态关系等进行了深入讨论.这些研究资料表明,植物功能群整合了功能及对环境响应相似的一类植物,但植物功能特征不是绝对的、单一的,所以对植物功能群就会有不同的理解,会有不同的定义及划分方法.许多研究者从不同的角度、尺度来对植物功能群进行研究,这些研究结果有不同的针对方向和目的,使人们可以从不同的角度更全面的理解复杂的陆地生态系统.学者们在研究生态系统时,或多或少地总要与植物功能群相联系,这大大拓宽了植物功能群的应用范围.所有前人的研究使植物功能群的概念、划分、方向、应用等诸方面越来越清晰.这要求应有一个规范、统一、明确的植物功能群研究方案,这样能使对植物功能群的研究更加深入,能整合全球所有植物功能群的相关研究.  相似文献   

13.
The ability of communities or ecosystems to recover their structure and function after a disturbance is known as resilience. According to different views, resilience can be influenced by the resource‐use strategies of the plant functional types that dominate the community or by the existence of functional redundancy within plant functional types. We investigated how the dominance of different plant functional types and species affected the resilience of a mountain shrubland after an intense fire. We took advantage from a pre‐existing long‐term removal experiment in which either whole plant functional types (deciduous shrubs, graminoids, perennial forbs and annual forbs) or the dominant species within each plant functional type were removed for 10 years. We sampled species and plant functional types cover during the first growing season after the fire. First, to test whether functional redundancy increased resilience, we analyzed the existence of functional compensation inside plant functional types. Second, to test whether the dominance of plant functional types with different resource‐use strategies affected recovery, we compared resilience at the levels of species, plant functional types and total cover, estimated on the basis of a change index and multivariate Euclidean distances. No compensation was observed in any of the plant functional types. At the level of species, we found that the assemblages dominated by conservative resource‐use strategies were the ones showing higher resilience. This was due to the high recovery of the dominant species of shrubs plant functional type. The opposite (lowest recovery of conservative resource‐use strategies) was found at the plant functional type and total cover‐levels. Our study did not support the hypothesis of resilience by functional redundancy. Instead, regeneration by buried meristems from the pre‐fire stage appeared to be the factor that most influenced recovery. Resource‐use strategies explained resilience of vegetation cover, but not of floristic composition. Regeneration traits, rather than vegetative traits or mechanism of functional compensation, appeared as the most relevant to explain the response of this system after fire.  相似文献   

14.
Aim While physical constraints influence terrestrial primary productivity, the extent to which geographical variation in productivity is influenced by physiological adaptations and changes in vegetation structure is unclear. Further, quantifying the effect of variability in species traits on ecosystems remains a critical research challenge. Here, we take a macroecological approach and ask if variation in the stoichiometric traits (C: N: P ratios) of plants and primary productivity across global‐scale temperature gradients is consistent with a scaling model that integrates recent insights from the theories of metabolic scaling and ecological stoichiometry. Location This study is global in scope, encompassing a wide variety of terrestrial plant communities. Methods We first develop a scaling model that incorporates potentially adaptive variation in leaf and whole‐plant nutrient content, kinetic aspects of photosynthesis and plant respiration, and the allometry of biomass partitioning and allocation. We then examine extensive data sets concerning the stoichiometry and productivity of diverse plant communities in light of the model. Results Across diverse ecosystems, both foliar stoichiometry (N : P) and ‘nitrogen productivity’ (which depends on both community size structure and plant nutrient content) vary systematically across global scale temperature gradients. Primary productivity shows no relationship to temperature. Main conclusions The model predicts that the observed patterns of variation in plant stoichiometry and nutrient productivity may offset the temperature dependence of primary production expected from the kinetics of photosynthesis alone. Our approach provides a quantitative framework for treating potentially adaptive functional variation across communities as a continuum and may thus inform studies of global change. More generally, our approach represents one of the first explicit combinations of ecological stoichiometry and metabolic scaling theories in the analysis of macroecological patterns.  相似文献   

15.
Previous studies have shown a correspondence between the abundance of particular plant species and methane flux. Here, we apply multivariate analyses, and weighted averaging, to assess the suitability of vegetation composition as a predictor of methane flux. We developed a functional classification of the vegetation, in terms of a number of plant traits expected to influence methane production and transport, and compared this with a purely taxonomic classification at species level and higher. We applied weighted averaging and indirect and direct ordination approaches to six sites in the United Kingdom, and found good relationships between methane flux and vegetation composition (classified both taxonomically and functionally). Plant species and functional groups also showed meaningful responses to management and experimental treatments. In addition to the United Kingdom, we applied the functional group classification across different geographical regions (Canada and the Netherlands) to assess the generality of the method. Again, the relationship appeared good at the site level, suggesting some general applicability of the functional classification. The method seems to have the potential for incorporation into large‐scale (national) greenhouse gas accounting programmes (in relation to peatland condition/management) using vegetation mapping schemes. The results presented here strongly suggest that robust predictive models can be derived using plant species data (for use in national‐scale studies). For trans‐national‐scale studies, where the taxonomic assemblage of vegetation differs widely between study sites, a functional classification of plant species data provides an appropriate basis for predictive models of methane flux.  相似文献   

16.
Plant species of a functional group respond similarly to environmental pressures and may be expected to act similarly on ecosystem processes and habitat properties. However, feasibility and applicability of functional groups in ecosystems across very different climatic regions have not yet been studied. In our approach we specified the functional groups in sand dune ecosystems of the Mediterranean, Hyrcanian and Irano-Turanian phytogeographic regions. We examined whether functional groups are more influenced by region or rather by habitat characteristics, and identified trait syndromes associated with common habitat types in sand dunes (mobile dunes, stabilized dunes, salt marshes, semi-wet sands, disturbed habitats). A database of 14 traits, 309 species and 314 relevés was examined and trait-species, trait-plot and species-plot matrices were built. Cluster analysis revealed similar plant functional groups in sand dune ecosystems across regions of very different species composition and climate. Specifically, our study showed that plant traits in sand dune ecosystems are grouped reflecting habitat affiliation rather than region and species pool. Environmental factors and constraints such as sand mobility, soil salinity, water availability, nutrient status and disturbance are more important for the occurrence and distribution of plant functional groups than regional belonging. Each habitat is shown to be equipped with specific functional groups and can be described by specific sets of traits. In restoration ecology the completeness of functional groups and traits in a site may serve as a guideline for maintaining or restoring the habitat.  相似文献   

17.
Climate change will drive significant changes in vegetation cover and also impact efforts to restore ecosystems that have been disturbed by human activities. Bitumen mining in the Alberta oil sands region of western Canada requires reclamation to “equivalent land capability,” implying establishment of vegetation similar to undisturbed boreal ecosystems. However, there is consensus that this region will be exposed to relatively severe climate warming, causing increased occurrence of drought and wildfire, which threaten the persistence of both natural and reclaimed ecosystems. We used a landscape model, LANDIS‐II, to simulate plant responses to climate change and disturbances, forecasting changes to boreal forests within the oil sands region. Under the most severe climate forcing scenarios (representative concentration pathway [RCP] 8.5) the model projected substantial decreases in forest biomass, with the future forest being dominated by drought‐ and fire‐tolerant species characteristic of parkland or prairie ecosystems. In contrast, less extreme climate forcing scenarios (RCPs 2.6 and 4.5) had relatively minor effects on forest composition and biomass with boreal conifers continuing to dominate the landscape. If the climate continues to change along a trajectory similar to those simulated by climate models for the RCP 8.5 forcing scenario, current reclamation goals to reestablish spruce‐dominated boreal forest will likely be difficult to achieve. Results from scenario modeling studies such as ours, and continued monitoring of change in the boreal forest, will help inform reclamation practices, which could include establishment of species better adapted to warmer and drier conditions.  相似文献   

18.
Question: Are direct and indirect trait‐based approaches similar in their usefulness to synthesize species responses to successional stages? Location: Northern hardwood forests, Québec, Canada (45°01′–45°08′N; 73°58′–74°21′W). Methods: Two different trait‐based approaches were used to relate plant functional traits to succession on an old‐field – deciduous forest chronosequence: (i) a frequently used approach based on co‐occurrence of traits (emergent groups), and (ii) a new version of a direct functional approach at the trait level (the fourth‐corner method). Additionally, we selected two different cut‐off levels for the herb subset of the emergent group classification in order to test its robustness and ecological relevance. Results: Clear patterns of trait associations with stand developmental stages emerged from both the emergent group and the direct approach at the trait level. However, the emergent group classification was found to hide some trait‐level differences such as a shift in seed size, light requirement and plant form along the chronosequence. Contrasting results were obtained for the seven or nine group classification of the herbaceous subset, illustrating how critical is the number of groups for emergent group classification. Conclusion: The simultaneous use of two different trait‐based approaches provided a robust and comprehensive characterization of vegetation responses in the old‐field – deciduous forest chronosequence. It also underlines the different goals as well as the limitations and benefits of these two approaches. Both approaches indicated that abandoned pastures of the northern hardwood biome have good potential for natural recovery. Conversion of these lands to other functions may lead to irremediable loss of biodiversity.  相似文献   

19.
A primary goal of ecological restoration is often to return processes and functions to degraded ecosystems. Soil, while often ignored in restoration, supports diverse communities of organisms and is a fundamental actor in providing ecosystem processes and services. We investigated the impact of seeding and livestock grazing on plant communities, soil microorganisms, and soil fertility 3 years after the restoration of a disturbed pipeline corridor in southeastern Arizona. The initial soil disturbance and topsoil treatment, regardless of seeding or grazing, was the most influential factor in determining differences in both plant and microbial communities. Compared with the control, the disturbed and restored sites had greater plant species richness, greater total herbaceous plant cover, greater soil organic matter, higher pH, and differed in soil nutrients. Bacteria and fungi appeared to generally correlate with micro‐environment and soil physiochemical properties rather than specific plant species. The undisturbed control had a smaller proportion of bacterial functional groups associated with the breakdown of plant biomass (polysaccharide decomposition) and a smaller proportion of arbuscular mycorrhizal fungi (AMF) compared with disturbed and restored sites. The ability of the unseeded disturbed site to recover robust vegetation may be due in part to the high presence of AMF. These differences show selection for soil microorganisms that thrive in disturbed and restored sites and may contribute to increased plant productivity. Restoration of specific plant species or ecological processes and services would both benefit from better understanding of the impacts of disturbance on soil microorganisms and soil fertility.  相似文献   

20.
Most ecosystems are affected by anthropogenic or natural pulse disturbances, which alter the community composition and functioning for a limited period of time. Whether and how quickly communities recover from such pulses is central to our understanding of biodiversity dynamics and ecosystem organisation, but also to nature conservation and management. Here, we present a meta‐analysis of 508 (semi‐)natural field experiments globally distributed across marine, terrestrial and freshwater ecosystems. We found recovery to be significant yet incomplete. At the end of the experiments, disturbed treatments resembled controls again when considering abundance (94%), biomass (82%), and univariate diversity measures (88%). Most disturbed treatments did not further depart from control after the pulse, indicating that few studies showed novel trajectories induced by the pulse. Only multivariate community composition on average showed little recovery: disturbed species composition remained dissimilar to the control throughout most experiments. Still, when experiments revealed a higher compositional stability, they tended to also show higher functional stability. Recovery was more complete when systems had high resistance, whereas resilience and resistance were negatively correlated. The overall results were highly consistent across studies, but significant differences between ecosystems and organism groups appeared. Future research on disturbances should aim to understand these differences, but also fill obvious gaps in the empirical assessments for regions (especially the tropics), ecosystems and organisms. In summary, we provide general evidence that (semi‐)natural communities can recover from pulse disturbances, but compositional aspects are more vulnerable to long‐lasting effects of pulse disturbance than the emergent functions associated to them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号