首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Attempts to restore species‐rich flood‐plain meadows from abandoned arable fields in the valley of the river Meuse, NE France, were studied. The study area was sown with a commercial seed mixture, composed of Phleumpratense, Festuca pratensis, Lolium perenne and Trifolium repens. The above‐ground vegetation in the study area 1, 2 and 3 yr after restoration was compared to (1) the vegetation present during the previous 5‐yr fallow stage and (2) target flood‐plain meadows. Before restoration, the above‐ground fallow vegetation was dominated by ruderal and annual species, while only very few meadow species were present. Sowing led to tall, dense vegetation, mainly dominated by the sown species. Ruderal and annual species had decreased 3 yr after restoration, but target species were still poorly represented. Species richness was significantly lower in the sown site than in the semi‐natural target meadows and the vegetation had a different composition. Analysis of the soil seed bank of the restored meadow showed that only a few meadow species were present and that it was dominated by a few ruderal species. Three years after sowing, the vegetation of our experimental site is moving slowly towards the target communities but impoverished seed sources seem to limit the success of this restoration operation and will lead to under‐saturated communities.  相似文献   

2.
Question: Is the failure of establishment of rare flood‐meadow species in habitat restoration primarily due to seed or microsite limitation? How do sown species respond to artificially created gaps and added litter at two neighbouring sites with similar physical conditions but contrasting vegetation matrix (young arable fallow field vs species‐poor meadow sward)? Location: Upper Rhine valley, southwestern Germany, 85 m a.s.l . Methods: Seeds of six typical flood‐meadow species were sown in four treatment combinations of the factors gap creation and litter addition. Seedling recruitment was monitored for three years. Results: Five of the six species established successfully at both sites largely irrespective of treatments, indicating seed limitation. Only in the small‐seeded Arabis nemorensis, which was revealed to be strictly gap‐dependent at the meadow site, could an obvious microsite limitation be shown. The non‐significance of gap treatments in all other species at the relatively high productive meadow site is probably due to biomass removal by mowing in early summer. Only at the extremes of the seed size spectrum did the results meet predictions of plant ecological theory, such as the strict gap dependence of small‐seeded species in closed swards or the positive to neutral response of large‐seeded species to litter layers. Conclusions: Species identity was revealed to be the major factor influencing differences in recruitment. Due to the lack of a general trend in the response towards treatments the results support conceptual models that describe the interplay of facilitation and interference as a highly dynamic equilibrium, driven by variable abiotic and biotic marginal conditions.  相似文献   

3.
Abstract. The study site, Somerford Mead, is located on the river Thames floodplain and was a species‐rich flood‐meadow in the 1950s. In the 1960s and 1970s it was subjected to intensive grassland management with regular NPK additions and occasional herbicide treatment. In 1981 Somerford Mead was ploughed for the first time and converted to arable land. Seeds of an Alopecuruspratensis‐Sanguisorba officinalis flood‐meadow community (MG4; Rodwell 1992) were sown onto prepared soil in the autumn of 1986, and botanical records were made from 1985 to 1999. From 1989 to 1999, three replicates of three treatments: cow‐grazing, sheep‐grazing and no‐grazing were introduced after hay‐cutting. Analysis successfully separated the establishment phase from the experimental phase and showed a significant difference between the grazed and ungrazed treatments. Abiotic and biotic factors which might contribute to successional trends are discussed. A convoluted pattern for each treatment could be attributed in part to intrinsic‘cycles’of perennial hemicryptophytes behaving as short‐lived species and in part to the percentage frequency of many species which was reduced in 1990 and 1995/1996, years of drought. After the initial inoculation of MG4 seed and the disappearance of arable therophytes, recruitment of new species was very slow. Coefficients for Somerford Mead matched against MG4 (Rodwell 1992) produced an equilibrium within three years. It subsequently fluctuated over a 10‐yr period well below the level of Oxey Mead, the donor site. Land managers should ensure that their proposed site has the right soils and hydrology for MG4 grassland and that traditional management of hay‐cutting and aftermath grazing is practised. Only one cut a year in July could lead to a reduction in percentage frequency of most species except Arrhenatherum elatius.  相似文献   

4.
Successful establishment of plants is limited by both biotic and abiotic conditions and their interactions. Seedling establishment is also used as a direct measure of habitat suitability, but transient changes in vegetation might provide windows of opportunity allowing plant species to colonize sites which otherwise appear unsuitable. We aimed to study spatio-temporal variability in the effects of resident vegetation on establishment, growth and reproduction of dry grassland species in abandoned arable fields representing potentially suitable habitats. Seeds were sown in disturbed (bare of vegetation and roots) and undisturbed plots in three fields abandoned in the last 20 years. To assess the effects of temporal variation on plant establishment, we initiated our experiments in two years (2007 and 2008). Seventeen out of the 35 sown species flowered within two years after sowing, while three species completely failed to become established. The vegetation in the undisturbed plots facilitated seedling establishment only in the year with low spring precipitation, and the effect did not hold for all species. In contrast, growth and flowering rate were consistently much greater in the disturbed plots, but the effect size differed between the fields and years of sowing. We show that colonization is more successful when site opening by disturbance coincide with other suitable conditions such as weather or soil characteristics. Seasonal variability involved in our study emphasizes the necessity of temporal replication of sowing experiments. Studies assessing habitat suitability by seed sowing should either involve both vegetation removal treatments and untreated plots or follow the gradient of vegetation cover. We strongly recommend following the numbers of established individuals, their sizes and reproductive success when assessing habitat suitability by seed sowing since one can gain completely different results in different phases of plant life cycle.  相似文献   

5.
Abstract. A local seed mixture from plants growing in a species‐rich, traditionally managed hay meadow site at Varaldsoy, Hardanger, western Norway, where many endangered hay meadow species of the region are growing, was sown in a newly harrowed experimental field 1 km from the source meadow in order to increase the habitat area for the endangered species. Of 25 endangered species recorded in the source meadow, only one (Holcus lanatus) was present in the target meadow. After sowing, 16 of the endangered species in addition to Holcus lanatus were recorded in the new site. Six species were only present in sown plots and seven others were more frequent there, while three species might have arrived by chance or originated from the seed bank. Replacing the traditional management regime, including one late cut and grazing in spring and in autumn, with three cutting times and the creation of gaps in the sward, resulted in a higher number of endangered species in plots which were only cut, possibly because the grazing was too intensive in the small enclosures.  相似文献   

6.
The present loss of species‐rich grasslands makes it vital to restore these valuable habitat types, including novel habitat variants such as road verges. Due to the lack of knowledge on long‐term outcomes of restoration initiatives, well‐designed studies comparing different restoration methods are needed. In this study, we examined fine‐scale vegetation recovery patterns over 9 years in a field experiment with several near‐natural restoration methods (adding local seed mixtures, transferring hay from local grasslands using hard or light raking, and natural regeneration) in a road verge. We compared this to standard revegetation (hydroseeding species‐poor commercial seed mixtures). We found major temporal changes in vegetation restored by local seed or hay transfer, before it gradually became more similar to the donor grasslands and seed mixtures, which served as references for the experiment. Natural (spontaneous) regeneration with seed dispersal from surroundings gave similar results, whereas areas revegetated using standard methods became more dissimilar to the reference sites during the study period. The main variation in species composition reflected the contrast between local donor grasslands and seed mixtures and the species‐poor early successional grasslands. We conclude that near‐natural methods (hay transfer and seeding) successfully restored species‐rich grassland, including road verges. This study underlines the importance of comparing several treatments over a sufficiently long period to assess their success in restoring species‐rich grassland.  相似文献   

7.
Abstract. We studied the restoration success of flood plain meadows in the northern Upper Rhine valley, where between 1988 and 1992, 35 ha of arable land was converted into grassland and subsequently managed for nature conservation. Remnant populations of typical alluvial meadow species were found in old meadows and along drainage ditches that dissect the whole area. We analysed the site conditions and phytosociological relevés in old and new meadows. Small differences in site parameters between old and new meadows contrasted with a clear floristic differentiation between the two meadow types. The vegetation of old meadows was much more differentiated along prevailing environmental gradients than the vegetation of new meadows. Despite the favourable site conditions for the re‐establishment of species‐rich meadows on the former arable land, restoration success was limited to the vicinity of remnant stands. In contrast to old meadows, indicator species of new grassland were still typical species of regularly disturbed ruderal and arable habitats, often capable of building up a persistent seed bank. The precise mapping of 23 target species revealed that even wind dispersal predominantly leads to re‐establishment in the close circumference of parent plants. We found no indication that regular flooding, hay‐making and autumnal grazing had an impact on recolonization of newly created grassland. Even under favourable conditions for the re‐establishment of target species, restoration success in alluvial meadows proved to be strongly dispersal limited. We discuss the implications of our findings for future restoration management in grasslands.  相似文献   

8.
The area of arable land devoted to ecological compensation in Switzerland has increased markedly in the last decade. We studied the influence of plant cover upon nitrogen (N) dynamics in the uppermost soil layer in experimental plots representing three types of ecological compensation area (set-aside sown with two different seed mixtures and without sowing) and a grass-clover ley. Potential losses, apparent uptake and net mineralisation of N were investigated during critical periods: during the early development of the vegetation, after a first mowing, and before and after ploughing and sowing with winter wheat.The four plant-cover types differed in species richness as well as in the proportions of forbs, grasses and legumes, and annuals and perennials. N dynamics varied with time of sampling, but differences between plant-cover types were small, and neither early mowing nor ploughing had a significant effect. We conclude that as far as N dynamics in the uppermost soil layer is concerned, both species-poor and species-rich seed mixtures and natural regeneration can be recommended for set-aside.  相似文献   

9.
Semi-natural grasslands and their species and populations are declining rapidly throughout Europe, bringing about a need for successful vegetation recreation methods. To maintain biodiversity and ecological services of semi-natural grasslands, we need more knowledge on the relative performance of different recreation methods. In a replicated experiment in western Norway, we evaluated two hay transfer methods (hard or light raking of local hay), sowing of local seeds and natural regeneration for recreating semi-natural grassland in a road verge. We compared treated trial plots with their respective donor plots (where hay and seeds were harvested) for three successive years by evaluating vegetation cover, species richness and species transfer rates, and vegetation dynamics analysed by Bray–Curtis compositional dissimilarity (BC) and GNMDS (Global Non-Metric Multidimensional Scaling) ordination. Vegetation cover at the trial site exceeded that of donor sites in three years. Transfer rates of common species were high for seed sowing and both hay transfer procedures. Species composition in trial plots for all three treatments became significantly more similar to donor plots, but was still relatively dissimilar after three years. Natural regeneration showed a different temporal pattern and also had a higher successional rate. The species composition of the other treatments followed the same trajectory toward the donor sites as revealed by GNMDS. We found relatively small differences between the two hay transfer methods and seed sowing. Transfer of local hay therefore appears to be a successful method of establishing local species when recreating semi-natural grasslands, and is generally cheaper than using commercial local seed mixtures.  相似文献   

10.
Questions: Can seed addition enhance the success of establishing species‐rich grassland on former arable land? Are sowing date and cutting regime important in determining success? Location: Aberdeen and Elgin, northeast Scotland, United Kingdom. Methods: A field experiment was conducted at two sites to assess the effect of seed addition, sowing date and cutting regime on the vegetation developing on former arable land, the aim being to compare the success of different treatments at producing a species‐rich grassland. Results: Sowing a seed mix resulted in the establishment of vegetation very distinct from the species‐poor vegetation dominated by perennial grasses which otherwise developed, though establishment success of the sown grassland species was highly variable between sites. Where establishment of the sown species was poor, sowing date had no significant effect on species composition, whereas the cutting regime was very important. Cutting the vegetation significantly increased both the number and abundance of sown species compared with the uncut control. Conversely, where establishment had been good, the cutting regime in the first year had little effect on species composition. Cutting the vegetation at least twice a year appeared to be the most effective management over the length of the experiment. Conclusions: Sowing a seed mixture significantly reduced the abundance and number of naturally colonising species, effectively controlling problem weed species such as Senecio jacobaea and Cirsium vulgare, highlighting the agronomic value of sowing seed mixtures on fallow farmland. The sowing of a seed mix on former arable land has demonstrated that it is feasible to create vegetation similar in character to that of species‐rich grasslands.  相似文献   

11.
Almost all dry Afromontane forests of Northern Ethiopia have been converted to agricultural, grazing or scrub lands except for small fragments left around churches (‘Church forests’). Species regeneration in these forests is limited. We investigated (i) how intense postdispersal seed predation was in church forest, and if this seed predation varied with species and/or habitat, and (ii) for how long tree seeds maintained their viability while buried in forest soil. In the seed predation experiment, we monitored seeds of six tree species in four habitats for a period of 14 weeks (the peak seeding season). In the seed viability experiment, we assessed seed viability of five species in four habitats after being buried 6, 12, or 18 months. Ninety‐two percent of the tree seeds were predated within 3.5 months. Predation was mainly dependent on species whereas habitat had a weaker effect. Seed viability decreased sharply with burial time in soil for all species except for Juniperus. To minimize seed availability limitation for regeneration of such species in the forest, the standing vegetation needs to be persistently managed and conserved for a continuous seed rain supply. Additional seed sowing, and seed and seedling protection (by e.g. animal exclosures) may increase successful regeneration of important species in these forests.  相似文献   

12.

Background and Aims

Information on soil seed bank processes is crucial for understanding vegetation dynamics. Despite the documented importance of soil seed banks in many ecosystems, their role is not fully understood in some sensitive habitats, such as the alpine meadows of the Tibetan Plateau.

Methods

We studied the seasonal dynamics of the germinable soil seed bank under four disturbance intensities in an alpine meadow on the Tibetan Plateau as well as seed size distribution relative to disturbance intensity. Composition of the seed bank was compared with that of the standing vegetation.

Results

Density of buried seeds increased with disturbance intensity, but species richness and species diversity decreased. Seed density and species richness of the seed bank varied seasonally in all layers (0–2, 2–7, 7–12 cm) and the whole (0–12 cm). The species composition of seed bank was not significantly influenced by season. There was no trend in seed size distribution as disturbance increased. Seasonal seed bank turnover rates increased with increase in disturbance. The result of the NMDS showed that species composition of seed bank and vegetation exhibited a fairly uniform pattern in each season.

Conclusions

Although as a whole the species composition of the vegetation and seed bank showed a relatively low degree of similarity in each season, similarity was highest in the most disturbed habitat. There was no alteration in species composition of seed bank regardless of disturbance intensity, but seed density decreased as disturbance increased. Disturbances in alpine plant communities might increase persistence of regeneration niches. Regeneration from the seed bank together with vegetative reproduction contributed to aboveground vegetation in highly disturbed habitats. Clonal species played an important role in regeneration of vegetation in slightly disturbed areas, where there was little contribution of ruderals from soil seed banks.  相似文献   

13.
Abstract. This paper compares the regeneration by seeds of heath and meadow and studies relationships between the floristic composition of phases in the regeneration pathway. Seed densities in the seed rain and seed bank as well as the densities of emerged seedlings in gaps and in closed vegetation were greater in the meadow than in the heath. In the heath, environmental constraints hindered seedling emergence almost completely so seeds accumulated in the seed bank. In the meadow, the decrease in the seed bank was due to high seedling emergence. Within both plant communities, seedling emergence in gaps and in closed vegetation was comparable. In the meadow, the seed rain and seedling emergence in gaps, as well as the seed bank and seedling emergence in gaps were positively correlated. Differences in seed and adult plant sizes were reasons for the low correlation between the standing vegetation and the other phases. In DCA ordination the first axis separated the phase of seedling emergence in closed vegetation and seed bank. The second axis separated the standing vegetation from the other phases. The structure of the seed rain was more heterogeneous than that of other phases. In the heath, the standing vegetation and the seed rain were positively correlated. The ordination of these phases reflected the patchiness of standing vegetation and the ability of the diaspores of Betula nana to disperse over long distances.  相似文献   

14.
Abstract. We assessed the significance of flooding for the floristic composition of seed banks in flood‐meadows of the northern valley of the Upper Rhine. We compared three hydrological compartments of the alluvial plain, consisting of the regularly flooded land between the river and low summer dykes (functional flood‐plain), the occasionally flooded land between summer dykes and high winter dykes (hybrid floodplain) and the land behind the winter dykes, which is now only submerged by ascending groundwater (fossil flood‐plain). Due to their different flooding regime, the three compartments should differ with respect to the prevailing conditions of diaspore input. The seed density of soil samples increased with the duration of flooding in the three compartments, while species richness and the proportion of species not occurring in the vegetation was constant. The increase in seed density can be largely attributed to an increase of disturbance indicators, which are present in the above‐ground vegetation and capable of forming a long‐term persistent seed bank. No effects of flooding on the composition of seed banks in the three flood‐plain compartments were found. The differences in seed bank composition can be largely explained by corresponding differences in above‐ground vegetation and former and present‐day meadow management. Seeds of species absent from above‐ground vegetation can be attributed to the local species pool present in the immediate vicinity of the study plots. We discuss consequences of the results for the restoration of species‐rich flood‐plain meadows.  相似文献   

15.
青藏高原东缘封育和退化高寒草甸种子库差异   总被引:1,自引:0,他引:1  
采用幼苗萌发法研究了青藏高原东部高寒草甸封育和退化地区土壤种子库的差异.结果表明:(1)两个样地总共有10161株幼苗萌发,分属55个物种,23个科.封育样地多年生植物比例高于退化样地,禾草和单子叶植物比例在两个样地间差异不大.(2)退化样地土壤种子库种子密度((6105±1530) m-2)显著高于封育样地((3883±798) m-2),而物种丰富度差异不显著.所研究区域拥有较为丰富的种子库资源,退化地区资源更丰富,说明恢复不存在种子限制问题,土壤种子库可以成为植被恢复的潜在资源.(3)种子密度和物种丰富度在垂直分层上差异显著,且随着深度的增加而显著减小.(4)用Srensen coefficient指数计算出土壤种子库和地上植被之间的相似性在整体上较低,封育样地(45.3%)略高于退化样地(40.4%),两个样地地上植被之间的相似性为50%,而种子库之间相似性高达84.6%,说明种子库起到一个"缓冲器"的作用.(5)Shannon-Wiener多样性指数分析显示,无论在地上植被或种子库中,物种多样性都是封育样地显著高于退化样地.过度放牧不仅导致地上植被的生物多样性丧失,而且使种子库中的物种多样性降低,而封育管理可以维持地上植被和种子库中的物种多样性.  相似文献   

16.
In this study we investigated the variations in soil seed banks along an altitudinal gradient in the Alborz mountains, Iran, covering three habitats from lower to upper altitudes: forest, forest-subalpine grassland ecotone and subalpine meadow. In each habitat from 1850 to 2400 m, 20 quadrats were established along four transects, and the above-ground vegetation and the germinable seed banks were determined. Results show that the similarity between seed bank and vegetation was lowest in the ecotone located at intermediate altitudes. Together with the contrasting highest density and species diversity of seeds at these altitudes, the ecotonal role of this habitat was confirmed.We found evidence that lower altitudes could act as storage for seeds of some species growing at higher altitudes; the role of the ecotone was more prominent as a reserve for the meadow plant seeds than the role of the forest as a reserve for seeds of the meadow and ecotone habitats. Soil seed banks, particularly from the ecotone, can be used for restoring vegetation in some degraded sites.  相似文献   

17.

Questions

Can drainage ditches in agricultural marsh grassland provide a suitable habitat for the persistence of fen meadow species? How does the ditch margin vegetation develop as a function of regular dredging? Is ornithologically oriented management also beneficial for plant biodiversity?

Location

Riparian marshes, Eider‐Treene‐Sorge lowland, Schleswig‐Holstein, Germany.

Methods

We performed vegetation surveys of drainage ditches along with their water body, slope and margin structures annually for 3 years. The data were analysed with respect to date and means of ditch dredging. In addition, we recorded vegetation of the surrounding agricultural grassland, measured nutrient status of the soil and the water body and sampled seed bank of the ditch slopes. We used ANOVA and multivariate methods to describe the development of the ditch vegetation and the persistence of target meadow species.

Results

Vegetation re‐development of ditch margins proceeds quite rapidly after disturbance from dredging. Dominance of mudbank species was observed only in the first year, followed by an increase of reed species and reduction of phytodiversity. Target species of wet meadow communities reach highest abundance in the second and third year and build a significant seed bank before being suppressed by reeds.

Conclusions

In heavily eutrophicated, intensively used marsh grassland, regularly disturbed ditch margins are important secondary habitats for pioneer and subdominant wetland species, which have nearly disappeared in a larger area. Current management cycles of ditch dredging every 3–4 years comply with the successional development, allowing the mudbank and wet meadow species to persist in the vegetation and seed bank. In contrast to the frequency, the form of dredging (ditch profile), which is crucial for bird protection, plays a minor role for plants. We recommend moderate disturbance (mowing of ditch margins) to suppress strong competitors in the years between dredging for additional support to target plant species.  相似文献   

18.
Abstract. Wooded meadows on the Baltic Island of Öland result from traditional agricultural management over centuries which has led to a species‐rich vegetation with high species diversity. Today, nearly all of these meadows have been abandoned and became rapidly overgrown by deciduous shrub and tree species forming a closed canopy which resulted in a rapid and strong decrease in species numbers of the herb layer. Recent efforts aim to restore overgrown wooded meadows by cutting single shrubs and trees to open the canopy. However, the effects of abandonment as well as of any restoration management in wooded meadows have rarely been documented until now. Mechanisms driving succession after restoration such as the dispersal potential of the respective species over time and space have not been analysed yet. Therefore, a chronosequence was studied which included a traditionally managed wooded meadow, an overgrown meadow which has been abandoned for more than 100 yr and a meadow which was restored 36 yr ago by cutting and is now grazed. We analysed the soil seed bank of the 3 meadows in comparison with the established vegetation and endozoochorous seed dispersal by cattle and sheep. After abandonment 87% of the typical grassland species vanished from the established vegetation and were replaced by species characteristic of woodland and disturbed grassland communities. The mean number of species decreased from 52 species per plot (4 m2) to 18 species. Mean species number and number of seeds in the seed bank declined significantly from the traditionally managed to the overgrown meadow. Most of the grassland species were assigned to a transient seed bank type while only 1/3 could be classified as having a short‐term persistent seed bank. Thus, restoration of wooded meadows cannot rely on the soil seed bank. Endozoochorous seed dispersal by cattle and sheep was shown for 15% of the species with seed densities per 100 g air dried dung of 737 and 767, respectively. Movement of animals between ancient and restored wooded meadows is recommended since many of the species only occurred in low densities and therefore, will probably not be found in the dung samples.  相似文献   

19.
Changes in land use strongly influence habitat attributes (e.g., herbaceous ground cover and tree richness) and can consequently affect ecological functions. Most studies have focused on the response of these ecological functions to land‐use changes within only a single vegetation type. These studies have often focused solely on agricultural conversion of forests, making it nearly impossible to draw general conclusions across other vegetation types or with other land‐use changes (e.g., afforestation). We examined the consequences of agricultural conversion for seed removal by ants in native grassland, savanna, and savanna‐forest habitats that had been transformed to planted pastures (Brachiaria decumbens) and tree plantations (Eucalyptus spp.) and explored if changes in seed removal were correlated with differences in habitat attributes between habitat types. We found that land‐use changes affected seed removal across the tree cover gradient and that the magnitude of impact was influenced by similarity in habitat attributes between native and converted habitats, being greater where there was afforestation (Eucalyptus spp in grassland and savanna). Herbaceous ground cover, soil hardness, and tree richness were the most important habitat attributes that correlated with differences in seed removal. Our results reveal that the magnitude of impact of land‐use changes on seed removal varies depending on native vegetation type and is associated with the type of habitat attribute change. Our findings have implications for biodiversity in tropical grassy systems: afforestation can have a greater detrimental impact on ecological function than tree loss.  相似文献   

20.
Wicken Fen National Nature Reserve (NNR) in Cambridgeshire, U.K. is a wetland of international importance isolated in a landscape dominated by arable farming. The prospect of species extinctions within the NNR led to the creation of the Wicken Fen Vision, an ambitious project that will eventually expand the reserve boundary by the purchase and restoration of c.50 km2 of arable land. We sampled three fields from each of three distinct age‐categories of restoration land (5, 15, and 60 years post‐arable), and three fields within the adjacent, undrained NNR, to determine (1) differences in seed bank composition across age‐categories, (2) relationships between restoration age, the seed bank and standing vegetation, and (3) changes in species traits across age‐categories. Historic arable management contributed to an apparent “vertical mixing” effect in the seed bank of the youngest two age‐categories, with associated and significant differences in species functional traits across the study area. Almost all plants associated with NNR vegetation were absent from restoration area seed banks and standing vegetation. Seed bank species common to all ages‐categories exhibited a bias toward moderate to high Ellenberg F (moisture) values, persistent seed banks, and lateral vegetative spread. Relatively short (c. 6 years) periods of drainage and plowing impact heavily upon seed bank diversity and soils, resulting in a lack of predrainage vegetation, even after decades of subsequent restoration adjacent to intact, species‐rich habitat. However, the seed banks of highly degraded fields can contribute toward the creation of novel wetland vegetation assemblages over time and under suitable environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号