首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用微波辅助水浸提法优化影响香菇多糖提取的单因子试验(料液比、浸提温度、浸提时间、微波处理时间等)和多因子的正交试验[L9(34)]。结果表明,香菇多糖的最佳提取条件为:料液比1∶30,浸提温度90℃,浸提时间2h,微波处理3m in。在此条件下,香菇多糖提取率为4.75%。香菇多糖粗品的体外免疫学研究的结果表明,在25~1600μg/mL的浓度范围内,多糖都具有促进小鼠脾淋巴细胞体外增殖的作用;在25~400μg/mL的浓度范围内,多糖对脾淋巴细胞增殖活性呈现一定的剂量依赖性。  相似文献   

2.
王瑞  朱宴妍  朱相杨  王琦 《菌物学报》2015,34(4):787-793
通过碳源、氮源单因素实验和正交实验,对野生肺形侧耳进行发酵培养基优化。选取浸提时间、浸提温度及液料比3个因素,以胞内粗多糖提取率为指标,采用正交实验设计确定菌丝体胞内多糖提取的最佳工艺。结果表明,适宜肺形侧耳深层发酵的培养基为蔗糖1.5%,麸皮5%,蛋白胨0.6%,KH2PO4 0.15%,MgSO4 0.75%,VB1 0.01%。胞内多糖提取的最佳工艺为浸提时间2h,液料比50:1,浸提温度90℃,此条件下多糖提取率为34.35%。  相似文献   

3.
运用微波辅助处理、热水浸提、乙醇沉淀、Sevag法脱蛋白的方法提取制备三角帆蚌多糖。在单因素实验基础上,运用正交实验对三角帆蚌多糖微波辅助提取及Sevag法脱蛋白的工艺参数进行优化。结果显示:三角帆蚌多糖微波辅助提取的最优条件为:水料比15 mL/g、提取温度50℃、微波处理时间150 s、微波功率1080 W。在此条件下,多糖的提取得率为4.06%。三角帆蚌多糖Sevag法脱蛋白的最优参数组合为:正丁醇与氯仿体积比0.20、正丁醇-氯仿混合液用量占多糖溶液的体积百分比20%、脱蛋白振摇时间10 min、脱蛋白次数8次。在此条件下,多糖的蛋白去除率、多糖保留率分别是52.24%和65.13%。  相似文献   

4.
采用正交试验设计,以桑黄菌丝体粗多糖含量为考察指标,用苯酚—硫酸法,分别确定了热水浸提法、微波辅助提取法和超声提取法的最佳工艺。通过极差分析得出:热水浸提法的最优工艺为浸提时间3 h、浸提3次、液料质量比50∶1、浸提温度90℃,粗多糖提取率为2.10%;微波提取法的最优工艺为微波处理15 min、液料质量比50∶1、提取3次,提取率为4.18%;超声提取法的最优工艺为超声30 min、提取2次、液料质量比60∶1、温度60℃、频率60 Hz,提取率为3.02%。微波辅助法与热水浸提法相比,时间缩短,且提取率提高近1倍;与超声提取法相比,时间缩短1/2,但提取率提高40%。因此,微波辅助提取法速度更快、提取效率更高、操作更简便,优于其他2种方法。  相似文献   

5.
以野生植物三七、金银花为材料,采用热水浸提、乙醇沉淀、Sevag法除蛋白制备多糖,探讨最佳提取工艺。结果表明,浸提温度和醇沉浓度对金银花多糖提取结果影响较大,其最佳工艺为100℃浸提3 h,氯仿萃取2次,70%乙醇沉淀;影响三七多糖提取的因素顺序为醇沉浓度提取时间提取次数料水比,最佳提取工艺组合为1∶20的料水比提3 h,提取3次,醇沉浓度为80%。根据正交试验结果,金银花粗多糖最高提取率为3.05%,三七粗多糖最高提取率为15.96%,云南文山三七与河南巩义产金银花相比含有较多的多糖。  相似文献   

6.
以塔拉(Caesalpinia spinosa)种子为原料,研究了塔拉种子多糖的脱蛋白工艺及塔拉多糖的抗氧化性质。以多糖损失率和蛋白脱除率为评价指标,比较Sevage法、三氯乙酸法和木瓜蛋白酶法对塔拉多糖的脱蛋白效果。利用正交优化组合实验设计原理,采用四因素三水平的正交分析法,对木瓜蛋白酶法脱蛋白进行正交优化。结果表明:塔拉多糖最佳脱蛋白工艺条件为酶添加量0.15mL、酶解时间90min、酶解温度60℃、酶解pH=6,蛋白脱除率95.19%,多糖保留率75.02%。通过对塔拉多糖抗氧化性的研究,发现塔拉多糖总抗氧化性较好,对DPPH自由基有较强的清除作用。  相似文献   

7.
为了优化提取方格星虫多糖工艺实验条件,本研究以海南三亚海域方格星虫为主要原料,用胰蛋白酶作为酶解酶,在单因素实验基础上,采取响应面法研究超声波辅助酶法提取方格星虫多糖最佳工艺条件;探讨了p H值、液料比、超声波时间、酶底比、超声波温度、超声波功率、反应时间等7个因素的交互作用及其最佳水平。结果表明在超声波辅助酶法提取方格星虫多糖的实验过程中,单因素的最佳条件酶底比为2.5%、温度为50℃、浸提时间为2 h、料液比为1:17 g/m L、超声时间为1 h、pH值为8、超声功率为960 W,多糖的最大提取率为3.24%。该方法实验条件要求不苛刻,浸提时间短,提取率高,是一项新的实验尝试,实验结果为优化方格星虫的多糖提取理论参考。  相似文献   

8.
为确定香菇多糖的最佳提取工艺,利用响应面分析法对香菇多糖的提取工艺进行优化。在单因素实验的基础上,以超声时间、超声功率、浸提温度和浸提时间为响应因素,多糖提取得率为响应值,根据正交旋转组合试验设计原理进行四因素三水平的响应面分析。实验结果表明,采用超声功率174.94 W,超声时间为18.94min,在80.71℃下提取3.01 h,得到的香菇多糖提取率最高,为9.61%。当香菇多糖的浓度为3 mg/mL,其·OH清除率为52.1%。  相似文献   

9.
采用传统的热水浸提法提取瘤背石磺多糖,运用响应面法优化多糖的提取工艺,并以粗多糖对其体外抗氧化活性作初步研究。通过单因素实验,探讨浸提温度、浸提时间、料液比对瘤背石磺多糖提取率的影响并选取实验水平,采用BoxBehnken设计实验方案,利用Design-Expert 8.05软件分析数据。通过清除羟基自由基和DPPH自由基的能力来检测多糖抗氧化性能。结果显示,最佳水提条件为浸提温度92℃、浸提时间30 h、料液比1∶29(g/m L),在最优工艺条件下瘤背石磺多糖的提取率为9.206%,瘤背石磺多糖对羟基自由基和DPPH自由基都具有一定的清除率。采用该方法优化提取多糖,合理可靠,为以后的工业化生产提供理论依据,且多糖具有明显的体外抗氧化活性。  相似文献   

10.
本论文采用超声-微波协同提取新工艺,通过单因素实验分别考察提取时间、微波功率、料液比等因素对黄芪多糖提取率及纯度的影响;通过正交实验得出最佳提取工艺参数;通过平行提取实验,与水提法、微波及超声波辅助提取进行比照。得出最佳提取条件为微波功率120 W,提取时间为150 s,料液比1∶25(g/mL)时,黄芪多糖的提取率最高达4.25%,并且证明了超声微波协同提取法的提取效率高于水提法、微波法及超声波法等传统的提取方法。  相似文献   

11.
利用纤维素酶从桑葚中提取桑葚多糖,通过单因素实验和L9(34)正交实验研究酶用量、酶解时间、酶解温度对桑葚多糖提取率的影响。实验结果表明:纤维素酶能够显著提高桑椹多糖的提取率,并且提取温度是最重要的影响因素,其次是酶解时间,酶用量在此实验范围内对测定结果的影响最小,提取的最佳工艺条件为:酶解温度45℃,酶解时间150 min,酶用量4.0 mL。  相似文献   

12.
本研究利用响应面法优化桑葚多糖的超声波辅助提取工艺条件;选定提取温度、时间及水料比作为影响因素,以桑葚多糖提取率为评价指标,在单因素实验的基础上,通过3因素3水平Box-Behnken中心组合试验建立多糖提取率的二次多项式回归方程,研究超声提取时间、温度、水料比对桑葚多糖提取率的影响;结果显示最佳提取工艺条件为提取温度72℃、超声时间23.5 min、水料比27∶1(v∶m,mL/g),在该条件下多糖提取率预测值为17.80%,验证值为17.78±0.85%(n=3);此方法与传统水提取法相比具有省时、高效的优点,为桑葚多糖的后续研发提供实验基础。  相似文献   

13.
利用响应面法优化金刷把多糖的提取工艺。在单因素试验的基础上,选择提取温度、提取时间、料液比为自变量,以多糖提取率为响应值,进行Box-Benhnken中心组合实验设计,应用响应曲面分析方法优化提取条件,得到金刷把多糖最佳提取工艺条件如下:提取温度95℃,提取时间2.5 h,料液比1∶20 g/m L,此时金刷把多糖提取率的理论预测值为4.62%,最优条件下多糖得率的实验值为4.42%,与理论值的相对误差为4.3%。经过响应面法优化提取工艺,提高了提取率,适用于金刷把粗多糖的提取。  相似文献   

14.
采用响应面优化酶解——微波辅助法从桑叶中提取桑叶多糖的提取工艺。在单因素试验的基础上通过采用Box-Behnken方法,研究液固比、提取时间、提取温度对桑叶多糖提取率的影响。结果显示,拟合方程显著,最终确定桑叶多糖的最优提取条件为:酶含量2%、酶解pH6、酶解温度50℃、酶解时间20 min、液固比15 mL·g-1、提取时间13 min、提取温度76℃,该条件下桑叶多糖的实际提取率为15.23%,与理论模拟值15.12%接近,建立的模型真实可靠。该方法用于提取桑叶中的多糖类成分,工艺简单、成本低,具有有较高的应用价值。  相似文献   

15.
目前,我国国内铁观音茶梗并未实现广泛的综合利用。为了避免铁观音茶梗的大规模浪费,开辟茶产业发展的新途径,本研究探讨了铁观音茶梗中茶多糖提取工艺的优化。在单因素试验的基础上,选取了浸提温度、浸提时间、料液比、醇沉时间为实验因子,以茶多糖提取率为响应面值,通过响应面试验设计方法来构建数学模型并进行数据分析。研究结果表明,铁观音茶梗中茶多糖提取的最佳工艺参数组合为:浸提温度为100℃、浸提时间为120 min、料液比为1:40、醇沉时间为60 min。在此条件下,茶多糖提取率为2.97%。本研究为实现从铁观音茶梗中分离提取茶多糖的工业化生产提供了前期理论依据。  相似文献   

16.
响应面优化绿穗苋多糖的提取工艺   总被引:1,自引:0,他引:1  
本研究旨在对热水工艺提取绿穗苋多糖的条件进行优化。在单因素实验基础上,筛选得到三个主要对绿穗苋多糖提取率相关的因素,其分别为:提取料液比、提取时间和提取温度。采用响应面试验设计软件,以提取料液比、提取时间和提取温度3因素作为试验的自变量,绿穗苋多糖提取率作为因变量,运用Box-Behnken实验设计和响应面分析法,得到了热水提取绿穗苋多糖工艺的最佳条件:料液比1:42.08(g/mL),提取温度92.30℃,提取时间219.01 min有最大多糖提取率。提取率为16.68%,与试验模型预测提取率为16.81%相近。本研究对绿穗苋多糖提取优化的研究为进一步探讨绿穗苋多糖生物活性的的研究提供了材料基础。  相似文献   

17.
本文对怀地黄多糖(polysaccharide of Rehmannia glutinosa f.hueichingensis(Chan et Schih)Hsiao,简称为RGP)双酶法提取工艺(Extracting technology by dienzyme,简称DEET)的条件进行了研究和探讨。双酶提取法即在第一次浸提时分别加入纤维素酶和中性蛋白酶两种生物酶进行多糖的辅助提取。本实验选取提取温度、纤维素酶加量、提取液pH、固液比四个因素,以多糖含量作为指标,通过L9(3^4)正交实验确定此工艺的最佳工艺参数。结果表明:RGP双酶法提取的最佳工艺参数为:浸提温度65℃、浸提液pH5.5、纤维素酶加量7.5%、固液比为1:30;浸提液浓缩比为4:1、沉降剂乙醇添加量5倍于浸提液体积;脱蛋白采用浸提过程中中性蛋白酶脱蛋白法与浸提后Sevag脱蛋白法联合应用方法(简称“S+N”法),提取得到的RGP含量及得率可分别为60.26%和8.97%。较传统的水浸醇沉提取工艺RGP含量及得率分别提高了1.5倍和1.4倍。  相似文献   

18.
选用响应面法优化及正交实验法进行淀粉酶提取枸杞多糖实验设计及分析。通过单因素实验后,正交实验确定淀粉酶酶解提取枸杞多糖的最佳条件为:pH=5.0,温度50℃,时间80 min,加酶量为0.5%,枸杞多糖提取率12.1%;响应面分析确定淀粉酶酶解提取枸杞多糖的最佳条件为酶解温度49.56℃、酶解时间140 min、酶浓度0.3%,枸杞多糖提取率为13.25%。酶法提取枸杞多糖比传统热水浸提提高了枸杞多糖的提取率,反应条件温和,而且通过响应面法进行实验设计和优化比正交实验法能得到更高的枸杞多糖提取率。  相似文献   

19.
为了进一步提高大枣多糖的提取效率,本文通过正交试验优化了超声波法提取大枣多糖的工艺条件。考察的因素包括料液比、超声功率、超声时间和浸提温度。结果显示超声波法提取大枣多糖的最佳提取工艺条件为:料液比1∶30、超声功率80W、超声时间10min,浸提温度80℃。在此工艺条件下大枣多糖的提取率达到6.97%。该工艺条件下提取率较高,因此适合于提取大枣中的多糖类化合物。  相似文献   

20.
酶辅助提取莲房原花青素工艺及其抗氧化活性研究   总被引:3,自引:0,他引:3  
主要用纤维素酶和果胶酶对莲房组织进行酶解,以提高莲房原花青素提取率。采用四因素三水平正交实验对酶解时间、加酶量和酶解温度等提取工艺参数进行优化,获得了最佳工艺参数为纤维素酶添加量为0.7%,果胶酶添加量0.1%,酶解温度55℃,酶解时间2.5h,优化后的提取工艺与直接醇提法相比,能将莲房原花青素的提取率提高约48%。在此基础上采用DPPH法进行了抗氧化性的对比,结果表明酶辅助提取和醇提法提取的原花青素有着相同的抗氧化性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号