首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we have made a systematic study on the incorporation of different homologs of Coenzyme Q in mitochondrial membranes. We have used a diluted mitochondrial suspension constituting a biphasic system membrane/H2O in which exogenous Q will be distributed depending on its water solubility and on its affinity to the mitochondrial membrane. It was found that Ubiquinones are incorporated into mitochondria in different extents ranging from zero (Q1) to 10 fold (Q10) the concentration of endogenous Q per mg of mitochondrial protein. In Q-depleted mitochondria the extents of incorporation are greater for all the quinones. This study points out that there is a reflection between the isoprenoid units of each Q-homolog and its incorporation into mitochondrial membranes.  相似文献   

2.
The thermotropic behavior of the mitochondrial enzyme cytochrome c oxidase (EC 1.9.3.1) reconstituted in dimyristoylphosphatidylcholine (DMPC) vesicles has been studied by using high-sensitivity differential scanning calorimetry and fluorescence spectroscopy. The incorporation of cytochrome c oxidase into the phospholipid bilayer perturbs the thermodynamic parameters associated with the lipid phase transition in a manner analogous to other integral membrane proteins: it reduces the enthalpy change, lowers the transition temperature, and reduces the cooperative behavior of the phospholipid molecules. Analysis of the dependence of the enthalpy change on the protein:lipid molar ratio indicates that cytochrome c oxidase prevents 99 +/- 5 lipid molecules from participating in the main gel-liquid-crystalline transition. These phospholipid molecules presumably remain in the same physical state below and above the transition temperature of the bulk lipid, thus providing a more or less constant microenvironment to the protein molecule. The effect of the phospholipid bilayer matrix on the thermodynamic stability of the cytochrome c oxidase complex was examined by high-sensitivity differential scanning calorimetry. Detergent (Tween 80)-solubilized cytochrome c oxidase undergoes a complex, irreversible thermal denaturation process centered at 56 degrees C and characterized by an enthalpy change of 550 +/- 50 kcal/mol of enzyme complex. Reconstitution of the cytochrome c oxidase complex into DMPC vesicles shifts the transition temperature upward to 63 degrees C, indicating that the phospholipid bilayer moiety stabilizes the native conformation of the enzyme. The lipid bilayer environment contributes approximately 10 kcal/mol to the free energy of stabilization of the enzyme complex. The thermal unfolding of cytochrome c oxidase is not a two-state process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Reconstitution of mitochondrial calcium transport activity requires the incorporation of membrane proteins into a lipidic ambient. Calcium uptake has been measured previously using Cytochrome oxidase vesicles. The enrichment of these vesicles with cardiolipin, an acidic phospholipid that is found only in the inner mitochondrial membrane of eukaryotic cells, strongly inhibits calcium transport, in remarkable contrast with the activation effect that cardiolipin exerts upon other mitochondrial transporters and enzymes. The relation of the inactivation of calcium transport to the physical state of the bilayer was studied by following the polarization changes of 1,6-diphenyl-1,3,5-hexatriene (DPH) and by flow cytometry in the cardiolipin-enriched liposomes with incorporated mitochondrial solubilized proteins. Non-bilayer molecular arrangements in the cardiolipin-supplemented liposomes, detected by flow cytometry, may produce the fluidity changes observed by fluorescence polarization of DPH. Fluidity changes correlate with the abolition of calcium uptake, but have no effect on the establishment of a membrane potential in the vesicles required for calcium transport activity. Changes in the membrane structure and uniporter function are observed in the combined presence of cardiolipin and calcium leading to a modified lipid configuration.  相似文献   

4.
The quenching of fluorescence of n-(9-anthroyloxy)stearic acids and other probes by different ubiquinone homologues and analogues has been exploited to assess the localization and lateral mobility of the quinones in lipid bilayers of model and mitochondrial membranes. The true bimolecular collisional quenching constants in the lipids together with the lipid/water partition coefficients were obtained from Stern-Volmer plots at different membrane concentrations. A monomeric localization of the quinone in the phospholipid bilayer is suggested for the short side-chain ubiquinone homologues and for the longer derivatives when cosonicated with the phospholipids. The diffusion coefficients of the ubiquinones, calculated from the quenching constants either in three dimensions or in two dimensions, are in the range of (1-6) X 10(-6) cm2 s-1, both in phospholipid vesicles and in mitochondrial membranes. A careful analysis of different possible locations of ubiquinones in the phospholipid bilayer, accounting for the calculated diffusion coefficients and the viscosities derived therefrom, strongly suggests that the ubiquinone 10 molecule is located within the lipid bilayer with the quinone ring preferentially adjacent to the polar head groups of the phospholipids and the hydrophobic tail largely accommodated in the bilayer midplane. The steady-state rates of either ubiquinol 1-cytochrome c reductase or NADH:ubiquinone 1 reductase are proportional to the concentration of the quinol or quinone substrate in the membrane. The second-order rate constants appear to be at least 3 orders of magnitude lower than the second-order constants for quenching of the fluorescent probes; this is taken as a clear indication that ubiquinone diffusion is not the rate-determining step in the quinone-enzyme interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have devised a method to determine the true Km of membrane enzymes for hydrophobic substrates dissolved in lipid bilayers, and the lipid/water partition coefficients, by simple steady-state kinetic measurements at varying membrane phospholipid fractional volumes in the assay medium. The method has been applied to mitochondrial ubiquinol cytochrome c reductase, using short-chain ubiquinols as reductants at saturating cytochrome c. The partition coefficients of the quinols, as obtained by this method, are in good agreement with those determined directly by other procedures; Km values obtained by this method, when expressed as concentrations in the lipid bilayer, are in the millimolar range. The kinetics of the ubiquinol analog duroquinol are independent of phospholipid concentration, as expected from its partition coefficient close to unity.  相似文献   

6.
Bovine enterokinase was incorporated into vesicles reconstituted from a soybean phospholipid mixture. A thin film hydration procedure (MacDonald, R. I., and MacDonald, R. C. (1975) J. Biol. Chem. 250, 9206-9214) produced vesicles with 40% of the enterokinase activity bound in the membrane. The highest incorporation was observed when cholesterol or dimyristoylphosphatidylethanolamine was added to the soybean phospholipids. Crude and highly purified enterokinase preparations were incorporated to the same extent suggesting that other membrane components were not required for a successful reconstitution. The properties of enterokinase in phospholipid vesicles were compared with those of alkaline phosphatase, which was also added to the reconstitution system, and with the enzyme activities present in vesicles prepared from brush-border membranes. The enzyme activities were not released by solutions of high ionic strength and remained associated with the phospholipid vesicles on gel filtration, ultracentrifugation, and sucrose density centrifugation. Enterokinase and alkaline phosphatase had their active sites exposed to substrate in the brush-border membrane vesicles. In soybean phospholipid vesicles half of the active sites of both enzymes were on the outside, since release of the enzyme with Triton X-100 almost doubled the units of enzyme present. Incubation of the soybean phospholipid and brush-border membrane vesicles with papain released the exposed molecules of enterokinase. The released enzyme molecules were fully active but could not be reincorporated into phospholipid vesicles. This suggests that the structure imbedded in the lipid bilayer was essential for a successful reconstitution. We conclude that the reconstituted soybean phospholipid vesicles are a suitable membrane system for the further study of membrane-bound enterokinase.  相似文献   

7.
The outer membrane of yeast mitochondria was studied with respect to its lipid composition, phospholipid topology and membrane fluidity. This membrane is characterized by a high phospholipid to protein ratio (1.20). Like other yeast cellular membranes the outer mitochondrial membrane contains predominantly phosphatidylcholine (44% of total phospholipids), phosphatidylethanolamine (34%) and phosphatidylinositol (14%). Cardiolipin, the characteristic phospholipid of the inner mitochondrial membrane (13% of total phospholipids) is present in the outer membrane only to a moderate extent (5%). The ergosterol to phospholipid ratio is higher in the inner (7.0 wt%) as compared to the outer membrane (2.1 wt.%). Attempts to study phospholipid asymmetry by selective degradation of phospholipids of the outer leaflet of the outer mitochondrial membrane failed, because isolated right-side-out vesicles of this membrane became leaky upon treatment with phospholipases. Selective removal of phospholipids of the outer leaflet with the aid of phospholipid transfer proteins and chemical modification with trinitrobenzenesulfonic acid on the other hand, gave satisfactory results. Phosphatidylcholine and phosphatidylinositol are more or less evenly distributed between the two sides of the outer mitochondrial membrane, whereas the majority of phosphatidylethanolamine is oriented towards the intermembrane space. The fluidity of mitochondrial membranes was determined by measuring fluorescence anisotropy using diphenylhexatriene (DPH) as a probe. The lower anisotropy of DPH in the outer as compared to the inner membrane, which is an indication for an increased lipid mobility in the outer membrane, was attributed to the higher phospholipid to protein and the lower ergosterol to phospholipid ratio. The data presented here show, that the outer mitochondrial membrane, in spite of its close contact to the inner membrane, is distinct not only with respect to its protein pattern, but also with respect to its lipid composition and physical membrane properties.  相似文献   

8.
The goal of the present study is to elucidate the mechanism of quercetin on modulating Naja naja atra phospholipase A2 (PLA2) activities. Sphingomyelin inhibited PLA2 enzymatic activity and membrane-damaging activity against egg yolk phosphatidylcholine (EYPC), while cholesterol and quercetin abrogated the sphingomeyelin inhibitory effect. Quercetin incorporation led to a reduction in PLA2 enzymatic activity and membrane-damaging activity toward EYPC/sphingomyelin/cholesterol vesicles. Both cholesterol and quercetin increased detergent resistance and reduced membrane fluidity of EYPC/sphingomyelin vesicles. Quercetin reduced detergent insolubility but increased ordered lipid packing of EYPC/sphingomyelin/cholesterol vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that quercetin altered the membrane-bound mode of PLA2 differently upon absorption onto the membrane bilayers of different lipid compositions. However, 8-anilinonaphthalene sulphonate-binding assay revealed that quercetin marginally affected the interaction between active site of PLA2 with phospholipid vesicles. Collectively, our data indicate that membrane-inserted quercetin modulates PLA2 interfacial activity and membrane-damaging activity via its effects on membrane structure and membrane-bound mode of PLA2.  相似文献   

9.
D-beta-Hydroxybutyrate dehydrogenase is a lipid-requiring enzyme which is localized on the inner face of the mitochondrial inner membrane. The apoenzyme has been purified to homogeneity from beef heart; it is devoid of lipid and inactive. It can be functionally reconstituted with lecithin or phospholipid mixtures containing lecithin. The active form of the enzyme is the enzyme-phospholipid complex. Classical target analysis of radiation-inactivation data has now been used to determine the molecular size of the enzyme both in the native membrane (submitochondrial vesicles) and in the reconstituted enzyme inserted into phospholipid vesicles containing lecithin. For both forms of the enzyme, we find the same molecular size, approximately 110,00 daltons. This size is consistent with a tetramer. Radiation results in fragmentation of the polypeptide and the destruction of the polypeptide correlates with loss of enzymic function. A similar size is obtained when purified D-beta-hydroxybutyrate dehydrogenase is inserted into a nonactivating mixture of phospholipid (i.e. in the absence of lecithin). We conclude that: 1) the native enzyme in submitochondrial vesicles and the purified active enzyme in phospholipid vesicles are the same size, approximating a tetramer; 2) radiation of D-beta-hydroxybutyrate dehydrogenase results in loss of activity and fragmentation of the polypeptide; and 3) the role of lecithin in activation of D-beta-hydroxybutyrate dehydrogenase is unrelated to determining oligomeric size of the enzymes since both active and nonactive forms exhibit the same structural size.  相似文献   

10.
Considering that cerebrocrast stimulates oligomycin-inhibited state 3 respiration simultaneously with mitochondrial transmembrane potential (Deltapsi) dissipation, the mechanism underlying the uncoupler activity of cerebrocrast was assessed by its ability to permeabilize the mitochondrial inner membrane to H(+) or to K(+) or to cotransport anions with H(+). The partition coefficient of cerebrocrast in mitochondrial membrane and its ability to act as a membrane-active compound disturbing membrane lipid organization were also investigated. Cerebrocrast induced no permeabilization of mitochondrial inner membrane to H(+) or K(+), but it was able to transport H(+) in association with Cl(-). Cerebrocrast showed a strong incorporation into the mitochondrial membrane, with a partition coefficient (Kp(m/w)) of 2.7(+/-0.1)x10(5). Cerebrocrast also reduced, in a concentration dependent manner, the phase transition temperature, the cooperative unit size, and the enthalpy associated with the phase transition temperature of DMPC membrane bilayers. It was concluded that the uncoupler activity of cerebrocrast is due to its ability to promote the cotransport of H(+) with Cl(-) through the rat liver mitochondrial inner membrane, and that this cerebrocrast mechanism of action may be potentiated by alterations of membrane lipid organization and membrane lateral heterogeneity.  相似文献   

11.
The effect of n-butanol on the mobility of phospholipids in phospholipid vesicles and beef heart mitochondrial membranes has been studied using three stearic acid spin labels having a paramagnetic doxyl group in positions 5,12, and 16, respectively, and the fluorescent probe 1-anilinonaphthalene-8-sulfonate (ANS). The mobility of the spin labels in the phospholipid aliphatic chains increases from the polar heads toward the methyl groups both in vesicles and in mitochondrial membranes; however, in the latter there is a higher constriction of rotational mobility observed at all levels in the lipid bilayer. Butanol determines a moderate increase in mobility of phospholipids in lipid vesicles, but the effect is more striking in the mitochondrial membranes, where the protein-induced constraint of mobility of the fatty acyl chains is removed at low concentrations of the alcohol. Butanol also enhances the mobility of tightly bound phospholipids residual in lipid-depleted mitochondrial preparations, although higher concentrations of butanol are required for this effect. The effect of the series of aliphatic n-alcohols is related to their hydrophobicity.Alcohols induce a decrease of the fluorescence of ANS bound to both lipid vesicles and mitochondrial membranes. The fluorescence decrease is not the result of a decreased partition of ANS from the aqueous medium to the bilayer, but depends upon a change in the chromophore environment. Since no shift of the emission maximum is observed after alcohol addition, such a change must be ascribed to increased mobility of the probe, in accord with the spin label data.As for the spin label data, the effect of the series of aliphatic n-alcohols is related to their hydrophobicity; at difference with the electron spin resonance results, however, the effects are maximal for pure phospholipid vesicles. It is calculated that alcohols affect both the long-range interactions between phospholipids and proteins in mitochondrial membranes (as detected by spin labels) and the order of phospholipid bilayers near the glycerol region (as detected by ANS). The differences between the two kinds of probes may be related to their differing localization in the lipid bilayer.  相似文献   

12.
Isolated mitochondrial outer membrane vesicles (OMV) are a suitable system for studying various functions of the mitochondrial outer membrane. For studies on mitochondrial lipid import as well as for studies on the role of lipids in processes occurring in the outer membrane, knowledge of the phospholipid composition of the outer membrane is indispensable. Recently, a mild subfractionation procedure was described for the isolation of highly purified OMV from mitochondria of Neurospora crassa (Mayer, A., Lill, R. and Neupert, W. (1993) J. Cell Biol. 121, 1233–1243). This procedure, which consists of swelling and mechanical disruption of mitochondria followed by two steps of sucrose density gradient centrifugation, was adapted for the isolation of OMV from rat liver mitochondria. Using the appropriate enzyme markers it is shown that the resulting OMV are obtained in a yield of 25%, and that their purity is superior to that of previous OMV preparations. Analysis of the phospholipid composition of the OMV showed that phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol are the major phospholipid constituents, and that cardiolipin is only present in trace amounts. The phospholipid composition is very similar to that of the highly purified OMV from mitochondria of Neurospora crassa, although the latter still contain a small amount of cardiolipin.  相似文献   

13.
A novel development has allowed for the direct observation of single, pairwise interactions of linear DNA with cationic vesicles and of DNA-cationic lipid complexes with anionic vesicles. A new cationic phospholipid derivative, l,2-dioleoyl-sn-glycero-3-ethylphosphocholine, was used to prepare giant bilayer vesicles and to form DNA-cationic lipid complexes (lipoplexes). The cationic vesicles were electrophoretically maneuvered into contact with DNA, and similarly, complexes were brought into contact with anionic phospholipid vesicles composed of dioleoylphosphatidylglycerol (DOPG; 100%), DOPG/dioleoylphosphatidylethanolamine (DOPE; 1:1) or DOPG/dioleoylphosphatidylcholine (DOPC; 1:1). Video fluorescence microscopy revealed that upon contact with phospholipid anionic vesicles, lipoplexes exhibited four different types of behavior: adhesion, vesicle rupture, membrane perforation (manifested as vesicle shrinkage and/or content loss), and expansion of DNA (which was always concomitant with membrane perforation.) In one instance, the lipoplex was injected into the target vesicle just prior to DNA expansion. In all other instances, the DNA expanded over the outer surface of the vesicle, and expansion was faster, the larger the area of vesicle over which it expanded. Given the likelihood of incorporation of cellular anionic lipids into lipoplexes, the expansion of the DNA could be important in DNA release during cell transfection. Upon contact with naked DNA, giant cationic vesicles usually ruptured and condensed the DNA into a small particle. Contact of cationic vesicles that were partially coated with DNA usually caused the DNA to wrap around the vesicle, leading to vesicle rupture, vesicle fusion (with other attached vesicles or lipid aggregates), or simply cessation of movement. These behaviors clearly indicated that both DNA and vesicles could be partly or fully covered by the other, thus modifying surface charges, which, among others, allowed adhesion of DNA-coated vesicles with uncoated vesicles and of lipid-coated DNA with uncoated DNA.  相似文献   

14.
G M Omann  M Glaser 《Biochemistry》1984,23(21):4962-4969
A fluorescence quenching method was developed for determining partition coefficients and diffusional rates of small molecules in cell membranes. This method involves quenching the fluorescence of carbazole-labeled membranes by hydrophobic molecules that partition into membranes. Cell membrane phospholipids of mouse LM cells in tissue culture were biosynthetically labeled with the carbazole moiety by supplementing the growth media with 11-(9-carbazolyl)undecanoic acid. Plasma membranes, microsomes, and mitochondria were isolated free of nonmembranous neutral lipids, and the incorporation of the fluorescent probe was characterized. Quenching studies of the carbazole moiety by a series of N-substituted picolinium perchlorate salts showed that the carbazole moiety was located in the hydrophobic interior of the membrane bilayer. The carbazole fluorescence also was quenched by the hydrophobic quenchers lindane, methoxychlor, and 1,1-dichloro-2,2-bis(rho-chlorophenyl)ethylene, indicating that these compounds partitioned into the membrane. Stern-Volmer quenching constants determined by fluorescence lifetime and intensity measurements were identical, as expected for dynamic quenching. The effects of different lipid compositions on quenching constants and partition coefficients were determined by comparing different membrane fractions. These parameters also were measured in membranes from cells in which the phospholipid composition was altered by substituting ethanolamine for choline in the growth medium. Changes in the lipid composition produced changes in the bimolecular quenching constants. For example, bimolecular quenching constants for 1,1-dichloro-2,2-bis(rho-chlorophenyl)ethylene were higher in mitochondrial membranes than in plasma membranes and microsomes. They were also higher in dispersions made from membrane phospholipids as compared with intact membranes or total lipid dispersion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Inclusion of some glycosides, gangliosides and ceruloplasmin into large (300-400 nm in diameter) unilamellar liposomes was performed. About 100% of the gangliosides, 30-50% of ceruloplasmin and 3-5% of the glycosides were incorporated into the phospholipid vesicles under these conditions. The liposomes containing ceruloplasmin or gangliosides, in contrast to the glycoside-containing vesicles, were precipitated in the presence of agglutinin from Ricinus communis. The interaction of phospholipid vesicles containing gangliosides with rat hepatocytes "in vitro" was studied. It was found that the incorporation of gangliosides into the liposomal membrane increased the liposomal lipid uptake by 50% as can be judged from the uptake of radioactive cholesterol. Possible mechanisms of incorporation of carbohydrate-containing compounds into liposomes are discussed. It is concluded that beside the density of carbohydrates the degree of their exposure on the liposomal membrane is important for specific interactions of the vesicles with lectins.  相似文献   

16.
《FEBS letters》2014,588(23):4457-4463
We studied α-synuclein (αS) aggregation in giant vesicles, and observed dramatic membrane disintegration, as well as lipid incorporation into micrometer-sized suprafibrillar aggregates. In the presence of dye-filled vesicles, dye leakage and fibrillization happen concurrently. However, growing fibrils do not impair the integrity of phospholipid vesicles that have a low affinity for αS. Seeding αS aggregation accelerates dye leakage, indicating that oligomeric species are not required to explain the observed effect. The evolving picture suggests that fibrils that appear in solution bind membranes and recruit membrane-bound monomers, resulting in lipid extraction, membrane destabilization and the formation of lipid-containing suprafibrillar aggregates.  相似文献   

17.
Peptides which correspond to the NH2-terminal 23 or 22 residues of the mannitol and glucitol permeases (enzymes IImtl and IIgut of the bacterial phosphotransferase system; mtl-23 and gut-22) and which are believed to function in envelope targeting were synthesized chemically, and their interactions with lipid model membranes were studied. Both wild-type peptides penetrated phospholipid monolayers up to high surface pressures, and partition constants of 8.0 x 10(4) M-1 and 4.2 x 10(4) M-1, respectively, were derived from the incorporation isotherms of mtl-23 and gut-22 with monolayers of 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine at 32 mN/m or bilayers of the same lipid. The mtl-23 peptide was highly alpha-helical in trifluoroethanol, sodium dodecyl sulfate, lysolecithin, or vesicles of 1-palmitoyl-2-oleoyl-3-sn-phosphatidylglycerol, with estimated percentages of alpha-helix ranging between 60 and 85%. The interactions with model membranes of several single site mutants (S3P, D4P, and D4K) of mtl-23 which were defective in properly assembling the mannitol permease in the cytoplasmic membrane of Escherichia coli were also studied. The contents of alpha-helix of these peptides in detergent micelles or phospholipid bilayers were not significantly changed compared with those of the wild type, suggesting that the amphiphilic NH2-terminal membrane-targeting domain could still be formed in these mutants. However, the mutants which contained a proline in positions 3 or 4, i.e. NH2-terminal to the proposed amphiphilic alpha-helix, partitioned into phospholipid monolayers with partition constants that were 2 or 4 times smaller than those of the wild type. Based on these data, a model of the amphiphilic structure of the NH2-terminal domain of the mannitol permease is discussed. This domain may interact physiologically with amphiphilic interfaces of lipids and/or proteins during membrane insertion.  相似文献   

18.
In an attempt to define the mechanism by which endotoxin induces its biological activity, we studied the effect of the incorporation of lipopolysaccharide and lipid A into phospholipid vesicles (liposomes) on the stimulation of the macrophage cell-line RAW 264.7 and on the coagulation of Limulus amoebocyte lysate. The incorporation of Salmonella minnesota smooth-and rough (Re) lipopolysaccharide or primarily monophosphoryl lipid A into multilamellar and small unilamellar vesicles consisting of phosphatidylcholine, phosphatidylserine and cholesterol (molar ratio 4:1:4) reduced the interleukin 1 inducing potency of these substances about 1000-fold. When corrected for the actual uptake of radiolabeled free and liposome-incorporated lipopolysaccharide by the cells, this difference amounted to 100- to 1000-fold. In addition, liposome-associated Re-lipopolysaccharide was about 1000-fold less potent in stimulating the Fc-receptor mediated uptake of IgG-coated sheep erythrocytes by the cells. The ability of lipopolysaccharide and lipid A to coagulate the Limulus amoebocyte lysate appeared to be at least 100-fold decreased upon incorporation into phospholipid vesicles. Control experiments demonstrated that liposomes prepared without lipopolysaccharide did not reduce the studied activities of free lipopolysaccharide. In conclusion, the incorporation of lipopolysaccharide into the liposomal membrane probably prevents the interaction of the hydrophobic portion of the lipid A component of lipopolysaccharide with the plasma-membrane structures involved in the activation of macrophages and with the proteins of the Limulus amoebocyte lysate. This indicates that the direct interaction of the lipid A moiety of lipopolysaccharide with the macrophage plasma-membrane is required to optimally trigger the studied responses.  相似文献   

19.
This study compares the side-chain cleavage of aqueous suspensions of cholesterol sulfate with the side-chain cleavage of cholesterol sulfate which is incorporated into phospholipid vesicles. Three different cholesterol desmolase systems are examined: the membrane-bound cholesterol side-chain cleavage system present in inner mitochondrial membranes isolated from bovine adrenal mitochondria; a soluble, lipid-depleted, reconstituted side-chain cleavage system prepared from cytochrome P-450scc, adrenodoxin and adrenodoxin reductase; a membrane associated side-chain cleavage system prepared by adding phospholipid vesicles, prepared from adrenal mitochondrial, to the reconstituted system. Soluble cholesterol sulfate, in low concentration, is a good substrate for the lipid-depleted reconstituted side chain cleavage system. However, at concentrations above 2 microM, in the absence of phospholipids, the sterol sulfate appears to bind at a non-productive site on cytochrome P-450scc which leads to substrate inhibition. Phospholipids, while inhibiting the binding of cholesterol sulfate to the cytochrome, also appear to prevent non-productive binding of the sterol sulfate to the cytochrome. Thus the addition of phospholipids to the lipid-depleted enzyme system leads to an activation of side-chain cleavage of high concentrations of the sterol sulfate. Soluble cholesterol sulfate is a good substrate for both the native and reconstituted membrane-bound systems and no substrate inhibition is observed when the membrane bound enzyme systems are employed in the assay of side-chain activity. However, the cleavage of cholesterol sulfate, which is incorporated into phospholipid vesicles, by both membrane bound enzyme systems appears to be competitively inhibited by the phospholipids of the vesicles. The results of this study suggest that the regulation of the side-chain cleavage of cholesterol sulfate may be entirely different than the regulation of the side-chain cleavage of cholesterol, if cholesterol sulfate exists intracellularly as a soluble non-complexed substrate. If, on the other hand, cholesterol sulfate is present in the cell in lipid droplets as a complex with phospholipids, its metabolism may be under the same constraints as the side-chain cleavage of cholesterol.  相似文献   

20.
We previously applied the Poisson-Boltzmann equation to atomic models of phospholipid bilayers and basic peptides to calculate their electrostatic interactions from first principles (Ben-Tal, N., B. Honig, R. M. Peitzsch, G. Denisov, and S. McLaughlan. 1996. Binding of small basic peptides to membranes containing acidic lipids. Theoretical models and experimental results. Biophys. J. 71:561-575). Specifically, we calculated the molar partition coefficient, K (the reciprocal of the lipid concentration at which 1/2 the peptide is bound), of simple basic peptides (e.g., pentalysine) with phospholipid vesicles. The theoretical predictions agreed well with experimental measurements of the binding, but the agreement could have been fortuitous because the structure(s) of these flexible peptides is not known. Here we use the same theoretical approach to calculate the membrane binding of two small proteins of known structure: charybdotoxin (CTx) and iberiotoxin (IbTx); we also measure the binding of these proteins to phospholipid vesicles. The theoretical model describes accurately the dependence of K on the ionic strength and mol % acidic lipid in the membrane for both CTx (net charge +4) and IbTx (net charge +2). For example, the theory correctly predicts that the value of K for the binding of CTx to a membrane containing 33% acidic lipid should decrease by a factor of 10(5) when the salt concentration increases from 10 to 200 mM. We discuss the limitations of the theoretical approach and also consider a simple extension of the theory that incorporates nonpolar interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号