首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Chironomus tentans-repressor splicing factor (Ct-RSF) represses the activation of splicing by SR proteins in vitro. Ct-RSF colocalizes with the Ser-Arg-rich (SR) protein hrp45 in interchromatin granule clusters and coimmunoprecipitates with hrp45 in nuclear extracts. Ct-RSF and hrp45 can also interact directly in vitro. Ct-RSF and hrp45 are recruited together to transcribing genes and associate with growing pre-mRNAs. Ct-RSF and hrp45 colocalize at a large number of gene loci. Injection of anti-Ct-RSF antibodies into nuclei of living cells blocks association of both Ct-RSF and hrp45 with the growing pre-mRNA, whereas binding of U2 small nuclear ribonucleoprotein particle (snRNP) to the pre-mRNA is unaffected. On the intron-rich Balbiani ring (BR) 3 pre-mRNA, hrp45 as well as U1 and U2 snRNPs bind extensively, whereas relatively little Ct-RSF is present. In contrast, the BR1 and BR2 pre-mRNAs, dominated by exon sequences, bind relatively much Ct-RSF compared with hrp45 and snRNPs. Our data suggest that Ct-RSF represses SR protein function at exons and that the assembly of spliceosomes at authentic splice sites displaces Ct-RSF locally.  相似文献   

2.
3.
4.
SR proteins function in coupling RNAP II transcription to pre-mRNA splicing   总被引:2,自引:0,他引:2  
Das R  Yu J  Zhang Z  Gygi MP  Krainer AR  Gygi SP  Reed R 《Molecular cell》2007,26(6):867-881
  相似文献   

5.
6.
7.
8.
9.
10.
We have characterized a novel mRNA-binding protein, designated hrp84, in the dipteran Chironomus tentans and identified it as a DEAD-box RNA helicase. The protein contains the typical helicase core domain, a glycine-rich C-terminal part and a putative nuclear export signal in the N terminus. The protein belongs to the Ded1 subgroup of DEAD-box helicases, which is highly conserved from yeast (Ded1p) to mammals (DDX3). In tissue culture cells, hrp84 is present both in the nucleus and cytoplasm and, as shown by in vivo UV cross-linking, is bound to mRNA in both compartments. Immunoprecipitation experiments revealed that hpr84 is associated with the C. tentans homologue (ctYB-1) of the vertebrate Y-box protein YB-1 both in the nucleus and cytoplasm, and the two proteins also appear together in polysomes. The interaction is likely to be direct as shown by in vitro binding of purified components. We conclude that the mRNA-bound hrp84.ctYB-1 complex is formed in the nucleus and is translocated with mRNA into the cytoplasm and further into polysomes. As both Ded1 and YB-1 are known to regulate the initiation of translation, we propose that the RNA helicase-Y-box protein complex affects the efficiency of mRNA translation, presumably by modulating the conformation of the mRNP template.  相似文献   

11.
The serine-arginine-rich (SR) proteins belong to a conserved splicing factor family that not only is essential for constitutive pre-mRNA splicing, but also plays important roles in regulation of alternative splicing. Dx16 is a member of SR protein family in Drosophila. In order to get more insight of dx16 function, we identified the proteins interacting with DX16 through yeast two-hybrid and GST-pull down assays. DX16 interacts with the U1 snRNP subunit CG7564, the SR protein RBP1 and the SR protein kinase DOA. The first and second serine-and arginine-rich regions of DOA are required for the interaction between DOA and DX16. DX16 could be phosphorylated by DOA in vitro and DX16 is highly phosphorylated in vivo. Immunofluorescence microscopy results reveal that doa and dx16 are both highly expressed in embryonic central nervous system. These results suggest that DX16 could be a novel SR protein phosphorylated by DOA and it may participate in the formation of splicing complex through its interactions with other splicing related proteins.  相似文献   

12.
SR45 is a serine/arginine-rich (SR)-like protein with two arginine/serine-rich (RS) domains. We have previously shown that SR45 regulates alternative splicing (AS) by differential selection of 5' and 3' splice sites. However, it is unknown how SR45 regulates AS. To gain mechanistic insights into the roles of SR45 in splicing, we screened a yeast two-hybrid library with SR45. This screening resulted in the isolation of two spliceosomal proteins, U1-70K and U2AF(35) b that are known to function in 5' and 3' splice site selection, respectively. This screen not only confirmed our prior observation that U1-70K and SR45 interact, but also helped to identify an additional interacting partner (U2AF(35) ). In vitro and in vivo analyses revealed an interaction of SR45 with both paralogs of U2AF(35) . Furthermore, we show that the RS1 and RS2 domains of SR45, and not the RNA recognition motif (RRM) domain, associate independently with both U2AF(35) proteins. Interaction studies among U2AF(35) paralogs and between U2AF(35) and U1-70K revealed that U2AF(35) can form homo- or heterodimers and that U2AF(35) proteins can associate with U1-70K. Using RNA probes from SR30 intron 10, whose splicing is altered in the sr45 mutant, we show that SR45 and U2AF(35) b bind to different parts of the intron, with a binding site for SR45 in the 5' region and two binding regions, each ending with a known 3' splice site, for U2AF(35) b. These results suggest that SR45 recruits U1snRNP and U2AF to 5' and 3' splice sites, respectively, by interacting with pre-mRNA, U1-70K and U2AF(35) and modulates AS.  相似文献   

13.
14.
Purine-rich exonic splicing enhancers (ESEs) stimulate splicing of the adjacent introns with suboptimal splice sites. To elucidate the mechanism regarding ESEs, factors specifically associated with ESEs in HeLa cell nuclear extracts were previously investigated, and shown to include SR (serine/arginine-rich) proteins. However, factors associated with ESEs in vivo have not yet been explored. Here we show that a GAA repeat RNA sequence, a typical ESE, is associated in Xenopus oocyte nuclei with at least one SR protein, SF2/ASF, as was expected. Moreover, components of SF3a/b complexes, U2 snRNA, and U2AF(65) were also found to be associated with the ESE in the nucleus. Since SF3a/b complexes are the constituents of the 17S U2 snRNP, these results suggest that the 17S U2 snRNP is associated with the ESE in the nucleus, probably through bridging interactions of U2AF and SR proteins. The identified factors may represent a functional splicing enhancer complex in vivo.  相似文献   

15.
Ser/Arg-rich (SR) proteins play important roles in the constitutive and alternative splicing of pre-mRNA. We isolated 20 rice (Oryza sativa) genes encoding SR proteins, of which six contain plant-specific characteristics. To determine whether SR proteins modulate splicing efficiency and alternative splicing of pre-mRNA in rice, we used transient assays in rice protoplasts by cotransformation of SR protein genes with the rice Waxy(b) (Wx(b))-beta-glucuronidase fusion gene. The results showed that plant-specific RSp29 and RSZp23, an SR protein homologous to human 9G8, enhanced splicing and altered the alternative 5' splice sites of Wx(b) intron 1. The resulting splicing pattern was unique to each SR protein; RSp29 stimulated splicing at the distal site, and RSZp23 enhanced splicing at the proximal site. Results of domain-swapping experiments between plant-specific RSp29 and SCL26, which is a homolog of human SC35, showed the importance of RNA recognition motif 1 and the Arg/Ser-rich (RS) domain for the enhancement of splicing efficiencies. Overexpression of plant-specific RSZ36 and SRp33b, a homolog of human ASF/SF2, in transgenic rice changed the alternative splicing patterns of their own pre-mRNAs and those of other SR proteins. These results show that SR proteins play important roles in constitutive and alternative splicing of rice pre-mRNA.  相似文献   

16.
SR proteins play important roles in the recognition and selection of the 3' and 5' splice site of a given intron and contribute to the phosphorylation/dephosphorylation-mediated regulation of pre-mRNA splicing. Recent studies have demonstrated that the U1 snRNP is recruited to the 5' splice site by protein/protein interactions involving the SR domains of the U1-70K protein and SF2/ASF. Recently, it was suggested that SR proteins might also contribute to the binding of the [U4/U6.U5] tri-snRNP to the pre-spliceosome (Roscigno RF, Garcia-Blanco MA, 1995, RNA 1:692-706), although it remains unclear whether these SR proteins interact with proteins of the tri-snRNP complex. As a first step toward the identification of proteins that could potentially mediate the integration of the [U4/U6.U5] tri-snRNP complex into the spliceosome, we investigated whether purified [U4/U6.U5] tri-snRNP complexes contain SR proteins. Three proteins in the tri-snRNP complex with approximate molecular weights of 27, 60, and 100 kDa were phosphorylated by purified snRNP-associated protein kinase, which has been shown previously to phosphorylate the serine/ arginine-rich domains of U1-70K and SF2/ASF (Woppmann A et al., 1993, Nucleic Acids Res 21:2815-2822). These proteins are thus prime candidates for novel tri-snRNP SR proteins. Here, we describe the biochemical and molecular characterization of the 27K protein. Analysis of a cDNA encoding the 27K protein revealed an N-terminal SR domain strongly homologous (54% identity) to the SR domain of the U1 snRNP-specific 70K protein. In contrast to many other SR proteins, the 27K protein does not contain an RNA-binding domain. The 27K protein can be phosphorylated in vitro by the snRNP-associated protein kinase and exhibits several isoelectric variants upon 2D gel electrophoresis. Thus, the tri-snRNP-specific 27K protein could potentially be involved in SR protein-mediated protein/protein interactions and, additionally, its phosphorylation state could modulate pre-mRNA splicing.  相似文献   

17.
18.
We recently reported that serine–arginine-rich (SR) protein-mediated pre-mRNA structural remodeling generates a pre-mRNA 3D structural scaffold that is stably recognized by the early spliceosomal components. However, the intermediate steps between the free pre-mRNA and the assembled early spliceosome are not yet characterized. By probing the early spliceosomal complexes in vitro and RNA-protein interactions in vivo, we show that the SR proteins bind the pre-mRNAs cooperatively generating a substrate that recruits U1 snRNP and U2AF65 in a splice signal-independent manner. Excess U1 snRNP selectively displaces some of the SR protein molecules from the pre-mRNA generating the substrate for splice signal-specific, sequential recognition by U1 snRNP, U2AF65 and U2AF35. Our work thus identifies a novel function of U1 snRNP in mammalian splicing substrate definition, explains the need for excess U1 snRNP compared to other U snRNPs in vivo, demonstrates how excess SR proteins could inhibit splicing, and provides a conceptual basis to examine if this mechanism of splicing substrate definition is employed by other splicing regulatory proteins.  相似文献   

19.
The U1 small nuclear ribonucleoprotein 70-kDa protein, a U1 small nuclear ribonucleoprotein-specific protein, has been shown to have multiple roles in nuclear precursor mRNA processing in animals. By using the C-terminal arginine-rich region of Arabidopsis U1-70K protein in the yeast two-hybrid system, we have identified an SC35-like (SR33) and a novel plant serine/arginine-rich (SR) protein (SR45) that interact with the plant U1-70K. The SR33 and SR45 proteins share several features with SR proteins including modular domains typical of splicing factors in the SR family of proteins. However, both plant SR proteins are rich in proline, and SR45, unlike most animal SR proteins, has two distinct arginine/serine-rich domains separated by an RNA recognition motif. By using coprecipitation assays we confirmed the interaction of plant U1-70K with SR33 and SR45 proteins. Furthermore, in vivo and in vitro protein-protein interaction experiments have shown that SR33 protein interacts with itself and with SR45 protein but not with two other members (SRZ21 and SRZ22) of the SR family that are known to interact with the Arabidopsis full-length U-70K only. A Clk/Sty protein kinase (AFC-2) from Arabidopsis phosphorylated four SR proteins (SR33, SR45, SRZ21, and SRZ22). Coprecipitation studies have confirmed the interaction of SR proteins with AFC2 kinase, and the interaction between AFC2 and SR33 is modulated by the phosphorylation status of these proteins. These and our previous results suggest that the plant U1-70K interacts with at least four distinct members of the SR family including SR45 with its two arginine/serine-rich domains, and the interaction between the SR proteins and AFC2 is modulated by phosphorylation. The interaction of plant U1-70K with a novel set of proteins suggests the early stages of spliceosome assembly, and intron recognition in plants is likely to be different from animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号