首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism by which Rous sarcoma virus (RSV) induces a reorganization of actin and its associated proteins and a reduction in microfilament bundles is at present poorly understood. To examine the relationship between the organization of the microfilament system and the polymerization state of actin after transformation, we have investigated these changes in a Rat-1 cell line transformed by LA29, a temperature-sensitive (ts) mutant of RSV. Parallel immunofluorescence and biochemical analysis demonstrated that LA29 pp60v-src was ts for tyrosine kinase activity and cytoskeletal association. Changes in the distribution and organization of actin, alpha-actinin and vinculin were dependent on the association of a kinase-active pp60v-src molecule with the detergent-insoluble cytoskeleton. Whilst there was a transformation-dependent loss of microfilament bundles, biochemical quantitation demonstrated that the polymerization state of the actin in both detergent-soluble and insoluble fractions of these cells grown at temperatures either permissive or restrictive for transformation was quantitatively unchanged. These results indicate that the loss of microfilament bundles after transformation is not due to a net depolymerization of filamentous actin but rather to a reorganization of polymeric actin from microfilament bundles and stress fibers to other polymeric forms within the cell. The polymeric nature of the actin in these cells was confirmed by electron microscopy of cytoskeletons and substrate-adherent membranes.  相似文献   

2.
Tyrosine-specific phosphorylation of cellular proteins has been implicated in the neoplastic transformation of cells by Rous sarcoma virus (RSV). One of the putative substrates for the src gene product (pp60v-src) of RSV is the cytoskeletal protein vinculin, giving rise to the hypothesis that tyrosine-specific phosphorylation of vinculin disrupts adhesion plaque integrity, leading to the characteristic rounded morphology of RSV-transformed cells. We have investigated this hypothesis by analysing the properties of fibroblasts transformed by conditional and non-conditional mutants of RSV which confer different morphologies on infected cells, with respect to formation of microfilament bundles, formation of vinculin-containing adhesion plaques, the deposition of a fibronectin-containing extracellular matrix, the localization of pp60v-src and the tyrosine-specific phosphorylation of vinculin. Cells transformed by the temperature-sensitive (ts) RSV mutant LA32 cultured at 41 degrees C were morphologically normal, and contained prominent microfilament bundles and well-developed adhesion plaques. However, these cells had a fully active pp60v-src kinase, had pp60v-src concentrated in their adhesion plaques and contained vinculin which was heavily phosphorylated on tyrosine residues. Cells transformed by a recovered avian sarcoma virus, rASV 2234.3 exhibited a markedly fusiform morphology with pp60v-src concentrated in well-developed adhesion plaques and an elevation of the phosphotyrosine content of vinculin. Cells transformed by LA32 at restrictive temperature comprise morphologically normal cells, indistinguishable from untransformed CEF, yet which contain tyrosine-phosphorylated vinculin and suggest that neither tyrosine-specific phosphorylation of vinculin nor pp60v-src concentration in adhesion plaques is sufficient for the rounded morphology of RSV-transformed cells.  相似文献   

3.
The transforming protein of Rous sarcoma virus, pp60v-src, is known to be a tyrosine protein kinase, but the mechanism of cell transformation remains unclear. In further investigating pp60v-src structure and function, we have analyzed two temperature-sensitive (ts) Rous sarcoma virus src gene mutants, tsLA29 and tsLA32. The mutations in tsLA29 and tsLA32 map in the carboxy-terminal region and the amino-terminal half of pp60v-src, respectively, and encode mutant proteins with either temperature-labile (tsLA29) or -stable (tsLA32) kinase activities. Here we examined the intracellular processing and localization of these pp60v-src mutants and extended our characterization of transformation parameters expressed by cells infected by the Rous sarcoma virus variants. No obvious defects in functional integrity of the tsLA32 pp60v-src could yet be demonstrated, whereas the tsLA29 pp60v-src was perturbed not only in kinase activity, but also in aspects of protein processing and localization. Analysis of transformation parameters expressed by infected cells demonstrated the complete temperature lability of both mutants.  相似文献   

4.
BALB/c 3T3 cells infected with a temperature-sensitive mutant (LA90) of RSV have been used to investigate possible heterologous interactions between the pp60v-src tyrosyl kinase and the epidermal growth factor (EGF) and bradykinin receptors. The LA90 pp60v-src exhibits a very rapid activation t1/2 (less than 5 min) of protein kinase activity on decreasing the temperature from 40 degrees C to 35 degrees C. This change in temperature was also found to induce a very rapid decrease in the affinity for 125I-EGF of receptors on the RSV-LA90-infected cells but not of those on control parental cells. However, no significant changes were detected in the binding of 3H-bradykinin to either cell line. Two separable processes control the desensitization of the EGF receptor by pp60v-src, both of which are independent of protein kinase C. The first is rapid and transient, while the second is sensitive to cycloheximide and persists long after inactivation of pp60v-src.  相似文献   

5.
When Rat-1 cells bearing the ts LA29 mutant of Rous sarcoma virus (Rat1 LA29) are shifted from restrictive to permissive temperature, the pp60v-Src tyrosine kinase is activated and there is an increase in the cellular level of sn1,2-diacylglycerol (DRG) within 30 min which is not accompanied by increased inositol phospholipid hydrolysis. Temperature shift also increases the hydrolysis of phosphatidylcholine (PC), as determined by an increase in the generation of water soluble choline metabolites. Transphosphatidylation studies have shown that this occurs at least in part via a phospholipase D (PLD) catalysed pathway.  相似文献   

6.
Rous sarcoma virus (RSV) stimulates in quail embryo neuro-retina (NR) cultures the specific activity of glutamic acid decarboxylase (GAD), the enzyme responsible for the synthesis of gamma-aminobutyric acid, a major inhibitory neurotransmitter in NR and in central nervous system. In quail embryo NR cultures transformed by ts NY-68, a thermodependent transformation-defective mutant of RSV, stimulation of GAD activity is regulated by pp60v-src, the product of the src gene of RSV. Fibroblasts and myoblasts have a very low GAD activity that is not stimulated after transformation by RSV. Neuronal clones, previously derived from ts NY-68-transformed established NR cell lines, have a high GAD activity which is regulated by pp60v-src, while other clones have a low GAD activity apparently not regulated by pp60v-src. These data indicate that pp60v-src selectively activates the expression of GAD in distinct neuronal cells of quail embryo NR cultures transformed by RSV. GAD activity is also stimulated in NR cells infected with viruses containing v-mil.  相似文献   

7.
The phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), and diacylglycerol kinase activities in the plasma membrane-rich fraction of chicken embryo fibroblasts infected with a temperature-sensitive mutant of Rous sarcoma virus increased when the cells were shifted from the nonpermissive temperature, 41 degrees C, to the permissive temperature, 35 degrees C. Temperature shift from 35 to 41 degrees C decreased the lipid kinase activities in the membrane vesicles. These changes accompanied the changes observed in pp60v-src protein kinase activity. Thermal inactivation at 41 degrees C did not appreciably reduce PI and PIP kinase activities in membrane vesicles prepared from uninfected or Rous sarcoma virus-transformed cells, whereas pp60v-src protein kinase activity in the membrane vesicles was rapidly inactivated under the same conditions. These data suggest that pp60v-src may indirectly enhance PI and PIP phosphorylation but not directly contribute to this pathway.  相似文献   

8.
9.
The v-src oncogene of Rous sarcoma virus (RSV) is able to transform both avian and mammalian cells, but the mutant allele v-src-L displays a host range dependence for transformation, transforming chicken but not rat cells with wild-type efficiency. This host range restriction can be detected by measuring growth in low serum, saturation density, and anchorage independent growth. In addition, rat cells expressing v-src-L do not form tumors in syngeneic rats or nude mice, but RSV carrying the mutant allele causes tumors in chicks, although at a reduced efficiency and with increased latency. To determine the lesion responsible for this phenotype, we sequenced the entire v-src gene from the parental B77 strain of RSV, as well as the mutant allele. v-src-L is missing 3 nucleotides present in the wild-type parent, RSV B31, eliminating Phe-172, an invariant residue in a conserved region of src-related proteins known as SH-2. The kinase activity of pp60v-src-L was indistinguishable from that of the wild type in chicken cells but was significantly reduced in rat cells as assayed by an in vitro immune complex assay; in vivo phosphorylation of one specific substrate, p36 (calpactin I heavy chain); and total phosphotyrosine-containing proteins. In addition, the pattern of phosphotyrosine-containing proteins in rat cells was qualitatively different when cells containing pp60v-src-L were compared with cells with wild-type pp60v-src, even though both pp60v-src proteins were membrane associated. The data are consistent with a role for the SH-2 region in substrate specificity.  相似文献   

10.
Phosphatidylinositol kinase (E.C. 2.7.1.67) activity of rat fibroblasts transformed by Rous sarcoma virus (RSV) was measured and compared with immunoprecipitated protein tyrosine kinase activity associated with pp60v-src. Both enzyme activities were elevated in the particulate fractions from wild-type RSV-transformed cells and cells transformed by a temperature-sensitive mutant of RSV when grown at the permissive temperature. The presence of the non-ionic detergent Nonidet P-40 in the phosphatidylinositol kinase assays stimulated the soluble and particulate forms of the enzyme to different degrees but did not affect the relative differences between transformed and untransformed cells. Our results indicate that phosphatidylinositol kinase activity is a good correlate of RSV transformation and suggest a functional relationship between pp60v-src and phosphatidylinositol kinase.  相似文献   

11.
12.
13.
The Schmidt-Ruppin or the B77 strain of Rous sarcoma virus (RSV) was inoculated into limb buds of 4.5-days-old avian embryos. No sarcoma but blister formation was observed in those RSV-inoculated embryos. Protein kinase activity of pp60v-src in RSV-inoculated embryos, even in the site of virus inoculation, was the same as that in mock-infected embryos. This indicated that the expression of the v-src gene did not attain superiority over that of the c-src gene in RSV-inoculated embryos. The v-src gene was detected in every DNA from tissues of RSV-inoculated embryos but not in DNAs from tissues of RSV-inoculated chicken except for the DNA from Rous sarcoma. Those results confirmed that the lack of sarcoma induction in early avian embryos by RSV was due to the lack of the expression of the v-src gene which was present in the target cells.  相似文献   

14.
Antiserum to the Rous sarcoma virus (RSV)-transforming protein, pp60v-src, was produced in rabbits immunized with p60 expressed in Escherichia coli. alpha p60 serum immunoprecipitated quantitatively more pp60v-src than did tumor-bearing rabbit (TBR) sera. When RSV-transformed cell lysates were preadsorbed with TBR serum, the remaining lysate contained additional pp60v-src, which was recognized only by reimmunoprecipitation with alpha p60 serum and not by TBR serum. In subcellular fractions of RSV-infected chicken embryo fibroblasts (RSV-CEFs) and field vole cells probed with TBR serum, the majority of the pp60v-src was associated with the plasma membrane-enriched P100 fraction. However, alpha p60 serum revealed equal distribution of pp60v-src and its kinase activity between the P1 (nuclear) and P100 fractions. The same results were obtained for pp60c-src in uninfected CEFs. On discontinuous sucrose gradients nearly 50% of the P1-pp60v-src sedimented with nuclei, in fractions where no plasma membrane was detected. Indirect immunofluorescence microscopy of RSV-CEFs with alpha p60 serum revealed a distinct pattern of perinuclear fluorescence, in addition to staining at the cell periphery. Thus the use of a highly specific antibody reveals that enzymatically active pp60v-src and pp60c-src molecules are present in other intracellular structures, probably juxtareticular nuclear membranes, in addition to the plasma membrane in normal, uninfected, and wild-type RSV-infected cells.  相似文献   

15.
The oncogenic pp60v-src product of ASV (avian sarcoma virus) is shown to be a potent endogenous mitogen, which, unlike mitogens such as PDGF (platelet derived growth factor), is able to stimulate host cell proliferation without the help of other growth factors. Thus, NRK rat cells, infected with a temperature-sensitive ASV mutant which produces an abnormally thermolabile pp60v-src, became proliferatively quiescent at a pp60v-src-inactivating 40 degrees C in medium containing either 0.2% calf serum or no serum at all. Adding PDGF stimulated the quiescent tsASV-NRK cells at 40 degrees C to initiate DNA replication in medium containing 0.2% serum, but not in serum-free medium. By contrast, activating internal pp60v-src by dropping the temperature to a permissive 36 degrees C stimulated these quiescent cells to transit G1, initiate DNA replication and to enter mitosis even in serum-free medium. Thus, relative to PDGF, endogenous pp60v-src behaves as a complete mitogen.  相似文献   

16.
We have previously shown that an intracellular mechanism down regulates epidermal growth factor (EGF) receptor levels in rodent fibroblasts transformed by the src oncogene (W. J. Wasilenko, L. K. Shawver, and M. J. Weber, J. Cell. Physiol. 131:450-457, 1987). We now report that this down regulation is due to an inhibition of EGF receptor biosynthesis. With Rat-1 (R1) cells infected with a temperature-sensitive src mutant, we found that 125I-labeled EGF binding to cells began to decrease soon after the activation of pp60v-src by shift down to the permissive temperature for transformation. This effect of src on EGF receptors was reversible. Pulse-chase studies with [35S]methionine-labeled cells revealed that the tyrosine protein kinase activity of pp60v-src had little if any effect on EGF receptor degradation rate. By contrast, the expression of pp60v-src caused a large reduction in the apparent rate of EGF receptor biosynthesis. Northern (RNA) blot analysis demonstrated that pp60v-src also caused marked reductions in the steady-state level of EGF receptor mRNA. These data indicate that one way the expression of the src oncogene can affect the machinery of growth control is by affecting the expression of specific genes for growth factor receptors.  相似文献   

17.
Expression of p60v-src of Rous sarcoma virus in cultured chicken embryo neuroretinal cells was previously shown to result in the transformation and sustained proliferation of normally quiescent cell populations. We show here that Rous sarcoma virus variants that encode p60c-src, the cellular homolog of p60v-src, lack the ability to induce morphological transformation and cell proliferation of cultured neuroretinal cells. Neuroretinal cells infected with c-src-containing viruses, however, possess no less p60 protein kinase activity assayed in the immune complex than those infected with the transformation-defective Rous sarcoma virus mutants PA101 or PA104, which do stimulate the growth of these cells.  相似文献   

18.
19.
An artificial membrane system was developed to study the molecular basis for interaction of pp60v-src, the Rous sarcoma virus transforming protein, with lipid bilayers. pp60v-src was extracted from cell membranes by detergent solubilization and reincorporated into phospholipid vesicles. Reconstituted pp60v-src retained tyrosine kinase activity and was integrally associated with the liposome through a 10-kilodalton (kDa) amino-terminal domain. The same 10-kDa domain was shown to anchor pp60v-src to the plasma membrane of transformed cells. Reconstitution experiments performed with nonmyristylated pp60v-src proteins revealed that these polypeptides did not interact with phospholipid vesicles. In contrast, myristylated, soluble pp60v-src molecules (including a highly purified pp60v-src preparation) could be reconstituted into liposomes, but their interaction with the liposomal bilayer was not mediated by the 10-kDa amino-terminal domain. When membrane proteins were included during reconstitution of purified pp60v-src, binding through the 10-kDa anchor was restored. A model is presented to accommodate the different types of interactions of pp60v-src with liposomes; the model postulates the existence of an additional membrane component that anchors the pp60v-src polypeptide to the phospholipid bilayer.  相似文献   

20.
A single point mutation has pleiotropic effects on pp60v-src function.   总被引:13,自引:4,他引:9  
The Rous sarcoma virus mutant tsLA29 encodes a pp60v-src molecule that is temperature sensitive for both tyrosine kinase activity and its ability to locate at the cell periphery. The defect in localization appears to be due to a perturbation in events following complex dissociation, since the mutant enzyme shows a rapidly reversible association with the cytoskeleton when shifted between permissive and restrictive temperatures. Although tsLA29 pp60v-src differs from the wild type at three amino acid residues, studies with chimeric proteins show that only one of the mutations, an alanine-for-proline substitution at residue 507, accounts for all the temperature-sensitive characteristics. Moreover, a single second site mutation, at residue 427, can restore the wild phenotype. Cells infected with a chimeric virus encoding only the alanine substitution at position 507 have a conspicuously fusiform morphology, suggesting that this mutation also has subtle effects on pp60v-src function that are apparently compensated for by the other mutations in native tsLA29.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号