首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In response to extracellular application of 50 microM ATP, all individual porcine aortic smooth muscle cells respond with rapid rises from basal [Ca2+]i to peak [Ca2+]i within 5 s. The time from stimulus to the peak of the [Ca2+]i response increases with decreasing concentration of ATP. At ATP concentrations of 0.5 microM and below, the time to the [Ca2+]i peak varies more significantly from cell to cell than at higher concentrations, and each cell shows complicated initiation and decay kinetics. For any individual cell, the lag phase before a response decreases with increasing concentration of ATP. An increase in lag time with decreasing ATP concentration is also observed in the absence of extracellular Ca2+, but the lag phase is more pronounced, especially at concentrations of ATP below 0.5 microM. Whole-cell patch-clamp electrophysiology shows that in porcine aortic smooth muscle cells, ATP stimulates an inward current carried mainly by Cl- ion efflux with a time course similar to the [Ca2+]i changes and no detectable current from an ATP-gated cation channel. A simple signal cascade initiation kinetics model, starting with nucleotide receptor activation leading to IP3-mediated Ca2+ release from IP3-sensitive internal stores, fits the data and suggests that the kinetics of the Ca2+ response are dominated by upstream signal cascade components.  相似文献   

3.
Parotid acinar cells exhibit rapid cytosolic calcium signals ([Ca2+]i) that initiate in the apical region but rapidly become global in nature. These characteristic [Ca2+]i signals are important for effective fluid secretion, which critically depends on a synchronized activation of spatially separated ion fluxes. Apically restricted [Ca2+]i signals were never observed in parotid acinar cells. This is in marked contrast to the related pancreatic acinar cells, where the distribution of mitochondria has been suggested to contribute to restricting [Ca2+]i signals to the apical region. Therefore, the aim of this study was to determine the mitochondrial distribution and the role of mitochondrial Ca2+ uptake in shaping the spatial and temporal properties of [Ca2+]i signaling in parotid acinar cells. Confocal imaging of cells stained with MitoTracker dyes (MitoTracker Green FM or MitoTracker CMXRos) and SYTO dyes (SYTO-16 and SYTO-61) revealed that a majority of mitochondria is localized around the nucleus. Carbachol (CCh) and caged inositol 1,4,5-trisphosphate-evoked [Ca2+]i signals were delayed as they propagated through the nucleus. This delay in the CCh-evoked nuclear [Ca2+]i signal was abolished by inhibition of mitochondrial Ca2+ uptake with ruthenium red and Ru360. Likewise, simultaneous measurement of [Ca2+]i with mitochondrial [Ca2+] ([Ca2+]m), using fura-2 and rhod-FF, respectively, revealed that mitochondrial Ca2+ uptake was also inhibited by ruthenium red and Ru360. Finally, at concentrations of agonist that evoke[Ca2+]i oscillations, mitochondrial Ca2+ uptake, and a nuclear [Ca2+] delay, CCh also evoked a substantial increase in NADH autofluorescence. This autofluorescence exhibited a predominant perinuclear localization that was also sensitive to mitochondrial inhibitors. These data provide evidence that perinuclear mitochondria and mitochondrial Ca2+ uptake may differentially shape nuclear [Ca2+] signals but more importantly drive mitochondrial metabolism to generate ATP close to the nucleus. These effects may profoundly affect a variety of nuclear processes in parotid acinar cells while facilitating efficient fluid secretion.  相似文献   

4.
This study examines the activation of divalent cation entry into rat parotid gland acinar cells by using Mn2+ as a Ca2+ surrogate cation. Following muscarinic-cholinergic stimulation of dispersed parotid acini with carbachol (10 microM), the onset of internal Ca2+ release (cytosolic [Ca2+], [Ca2+]i, increase) and the stimulation of Mn2+ entry (increase in fura2 quenching) are not simultaneously detected. [Ca2+]i elevation, due to intracellular release, is detected almost immediately following carbachol addition and peak [Ca2+]i increase occurs at 6.0 +/- 0.8 sec. However, there is an interval (apparent lag) between carbachol addition and the detection of stimulated Mn2+ entry. This apparent lag is decreased from 26 +/- 3.1 sec to 9.2 +/- 1.5 sec when external Mn2+ ([Mn2+]0) is increased from 12.5 to 500 microM. It is not decreased further with increase in [Mn2+]0 from 500 microM to 1 mM (9.8 +/- 2.1 sec), although both intracellular free Mn2+ and [Mn2+-fura2]/[fura2] increase. Thus, at [Mn2+]0 < 500 microM, the observed lag time is partially due to a limitation in the magnitude of Mn2+ entry. Furthermore, neither peak [Ca2+]i nor the time required to reach peak [Ca2+]i is significantly altered by [Mn2+]0 (12.5 microM to 1 mM). At every [Mn2+]0 tested (i.e., 12.5 microM-1 mM), the apparent lag is significantly greater than the time required to reach peak [Ca2+]i. However, when carbachol stimulation of the [Ca2+]i increase is attenuated by loading the acini with the Ca2+ chelator, 2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetate (BAPTA), there is no detectable lag in carbachol stimulation of Mn2+ entry (with 1 mM [Mn2+]0). Importantly, in BAPTA-loaded acini, carbachol stimulates Mn2+ entry via depletion of the internal Ca2+ pool and not via direct activation of other divalent cation entry mechanisms. Based on these results, we suggest that the apparent lag in the detection of carbachol stimulation of Mn2+ entry into parotid acinar cells is due to a retardation of Mn2+ entry by the initial increase in [Ca2+]i, due to internal release, which most likely occurs proximate to the site of divalent cation entry.  相似文献   

5.
6.
We have investigated the signaling pathways underlying muscarinic receptor-induced calcium oscillations in human embryonic kidney (HEK293) cells. Activation of muscarinic receptors with a maximal concentration of carbachol (100 microm) induced a biphasic rise in cytoplasmic calcium ([Ca2+]i) comprised of release of Ca2+ from intracellular stores and influx of Ca2+ from the extracellular space. A lower concentration of carbachol (5 microm) induced repetitive [Ca2+]i spikes or oscillations, the continuation of which was dependent on extracellular Ca2+. The entry of Ca2+ with 100 microm carbachol and with the sarcoplasmic-endoplasmic reticulum calcium ATPase inhibitor, thapsigargin, was completely blocked by 1 microm Gd3+, as well as 30-100 microm concentrations of the membrane-permeant inositol 1,4,5-trisphosphate receptor inhibitor, 2-aminoethyoxydiphenyl borane (2-APB). Sensitivity to these inhibitors is indicative of capacitative calcium entry. Arachidonic acid, a candidate signal for Ca2+ entry associated with [Ca2+]i oscillations in HEK293 cells, induced entry that was inhibited only by much higher concentrations of Gd3+ and was unaffected by 100 microm 2-APB. Like arachidonic acid-induced entry, the entry associated with [Ca2)]i oscillations was insensitive to inhibition by Gd3+ but was completely blocked by 100 microm 2-APB. These findings indicate that the signaling pathway responsible for the Ca2+) entry driving [Ca2+]i oscillations in HEK293 cells is more complex than originally thought, and may involve neither capacitative calcium entry nor a role for PLA2 and arachidonic acid.  相似文献   

7.
8.
9.
In individual fura-2 loaded cells of rat pancreatic acini endothelin-1 (ET-1) (10-50 nM) induced sustained oscillations in [Ca2+]i. At higher concentrations a larger, but transient increase in [Ca2+]i was observed, which was largely unaffected by removal of extracellular Ca2+. ET-1 induced the release of Ca2+i from the same store as cholecystokinin (CCK), but with less potency. At concentrations of endothelin which transiently increased Ca2+, ET-1 increased the accumulation of inositol phosphates. Specific binding sites for 125I-endothelin were demonstrated on rat pancreatic acini. A single class of binding sites was identified with an apparent Kd 108 +/- 12 pM and Bmax of 171 +/- 17 fmol/mg for ET-1. The relative potency order for displacing [125I]ET was ET-1 greater than ET-2 greater than ET-3. In contrast to CCK and the non-phorbol ester tumour promoter Thapsigargin (TG) which induce both transient and sustained components of [Ca2+]i elevation, ET-1 failed to increase amylase release over the range 100 pM-1 microM.  相似文献   

10.
11.
谷氨酸促进大鼠海马神经元的内钙升高   总被引:1,自引:0,他引:1  
谷氨酸能影响大鼠海马神经元胞内钙信号的变化,进而影响海马神经元神经冲动的发放和学习记忆过程。运用荧光测钙技术实时监测了大鼠海马神经元内钙信号的动态变化,同时分析了谷氨酸对其胞内钙信号的影响。试验表明:谷氨酸能够显著提高胞内游离钙离子的浓度;细胞外钙离子的存在、谷氨酸刺激时间及刺激频率的增加都能引起胞内钙信号不同程度的升高;但谷氨酸的过度刺激会引起钙离子浓度的超负荷,从而导致神经元结构和功能的损坏。  相似文献   

12.
Carbachol (CCh), a muscarinic-cholinergic agonist, increased both cytosolic free calcium concentration ([Ca2+]i) and amylase release in rat parotid acinar cells or acini in a dose-dependent manner. Treatment of acinar cells with the intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), or the intracellular Ca2+ chelator, 1,2-bis(O-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid (BAPTA), strongly attenuated the increases in [Ca2+]i evoked by CCh, but amylase release from acini was not significantly suppressed by the treatment with TMB-8 or BAPTA. Low concentrations (0.02-0.5 microM) of ionomycin, a Ca2+ ionophore, caused increases in [Ca2+]i comparable to those induced by CCh, but the same concentrations had only a little effect on amylase release. The protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated amylase release in quantities similar to those induced by CCh, although TPA alone did not cause any change in [Ca2+]i. Combined addition of TPA and ionomycin potentiated only modestly amylase release stimulated by TPA alone. Staurosporine, a protein kinase C-inhibitor, similarly inhibited both the CCh- and TPA-induced amylase release. These results suggest that an increase in [Ca2+]i elicited by CCh does not play an essential role for inducing amylase release in rat parotid acini. Amylase release by muscarinic stimulation may be mediated mainly by activation of protein kinase C.  相似文献   

13.
14.
The relationship between receptor-mediated increases in the intracellular free calcium concentration [( Ca]i) and the stimulation of ion fluxes involved in fluid secretion was examined in the rat parotid acinar cell. Agonist-induced increases in [Ca]i caused the rapid net loss of up to 50-60% of the total content of intracellular chloride (Cli) and potassium (Ki), which is consistent with the activation of calcium-sensitive chloride and potassium channels. These ion movements were accompanied by a 25% reduction in the intracellular volume. The relative magnitudes of the losses of Ki and the net potassium fluxes promoted by carbachol (a muscarinic agonist), phenylephrine (an alpha-adrenergic agonist), and substance P were very similar to their characteristic effects on elevating [Ca]i. Carbachol stimulated the loss of Ki through multiple efflux pathways, including the large-conductance Ca-activated K channel. Carbachol and substance P increased the levels of intracellular sodium (Nai) to more than 2.5 times the normal level by stimulating the net uptake of sodium through multiple pathways; Na-K-2Cl cotransport accounted for greater than 50% of the influx, and approximately 20% was via Na-H exchange, which led to a net alkalinization of the cells. Ionomycin stimulated similar fluxes through these two pathways, but also promoted sodium influx through an additional pathway which was nearly equivalent in magnitude to the combined uptake through the other two pathways. The carbachol-induced increase in Nai and decrease in Ki stimulated the activity of the sodium pump, measured by the ouabain-sensitive rate of oxygen consumption, to nearly maximal levels. In the absence of extracellular calcium or in cells loaded with the calcium chelator BAPTA (bis[o-aminophenoxy]ethane-N,N,N',N'-tetraacetic acid) the magnitudes of agonist- or ionomycin-stimulated ion fluxes were greatly reduced. The parotid cells displayed a marked desensitization to substance P; within 10 min the elevation of [Ca]i and alterations in Ki, Nai, and cell volume spontaneously returned to near baseline levels. In addition to quantitating the activation of various ion flux pathways in the rat parotid acinar cell, these results demonstrate that the activation of ion transport systems responsible for fluid secretion in this tissue is closely linked to the elevation of [Ca]i.  相似文献   

15.
Changes in cytosolic Ca2+ concentration ([Ca2+]i) following muscarinic receptor stimulation were studied with digital imaging microscopy in small clusters of Fura-2 loaded rat parotid acinar cells. In the absence of extracellular Ca2+, the increase in [Ca2+]i evoked by a high concentration (10 IM) of carbachol (CCh) was initiated in the apical pole of the acinar cells about 0.4 s after stimulation and then rapidly spread as a Ca2+ wave toward the basolateral region. The [Ca2+]i reached the maximum high level throughout the cells 1–2 s after stimulation. As Ca2+ was eliminated from the extracellular medium, the Ca2+ wave was a result of Ca2+ release from intracellular stores. The magnitude and velocity of the Ca2+ wave decreased with decreasing concentration of CCh, and the increase in [Ca2+]i induced by low CCh concentrations (≤ 0.5 μM) was always larger in the apical region of acinar cells than in the basal region. The Ca2+ wave was also observed in isolated single acinar cells, indicating that the maintenance of acinar structure is not essential for the development of the Ca2+ wave. Thapsigargin (ThG), an inhibitor of the endoplasmic reticulum Ca2+ pump, caused a slow and homogeneous increase in [Ca2+]i throughout the cells. Addition of ThG after CCh, or addition of CCh after ThG, did not stimulate further increases in [Ca2+]i suggesting that the inositol-1,4,5-trisphosphate (InsP3) and ThG-sensitive Ca2+ stores overlap in parotid acinar cells. The present study supports the hypothesis that formation of InsP3 is essential to trigger the Ca2+ wave and that the development of the Ca2+ wave may be attributed to regional differences in InsP3 sensitivity of Ca2+ stores. The agonist-induced Ca2+ wave is probably a general phenomenon in exocrine acinar cells.  相似文献   

16.
Single rat hepatocytes, microinjected with the Ca(2+)-sensitive photoprotein aequorin, respond to agonists acting through the phosphoinositide signalling pathway by the generation of oscillations in cytosolic free Ca2+ concentration ([Ca2+]i). The duration of [Ca2+]i transients generated is characteristic of the stimulating agonist; the differences lie in the rate of fall of [Ca2+]i from its peak. We considered that differential sensitivity of the InsP3 receptor may underlie agonist specificity. The thiol reagent, thimerosal, is known to increase the sensitivity of the Ca2+ stores to InsP3 by increasing the affinity of the InsP3 receptor for InsP3 in rat hepatocytes. We show here that a low dose of thimerosal (1 microM), insufficient alone to elevate [Ca2+]i, potentiates [Ca2+]i oscillations induced by phenylephrine or ATP in single, aequorin-injected, rat hepatocytes. Moreover, thimerosal enhances both the frequency and amplitude of phenylephrine-induced oscillations, whereas, in contrast, ATP-induced oscillations undergo an increase in the duration of the falling phase of individual [Ca2+]i transients. Thimerosal, therefore, enhances, rather than eliminates, agonist-specific differences in the hepatocyte [Ca2+]i oscillator.  相似文献   

17.
The hydrogen ion is an important factor in the alteration of vascular tone in pulmonary circulation. Endothelial cells modulate vascular tone by producing vasoactive substances such as prostacyclin (PGI2) through a process depending on intracellular Ca2+ concentration ([Ca2+]i). We studied the influence of CO2-related pH changes on [Ca2+]i and PGI2 production in human pulmonary artery endothelial cells (HPAECs). Hypercapnic acidosis appreciably increased [Ca2+]i from 112 +/- 24 to 157 +/- 38 nmol/l. Intracellular acidification at a normal extracellular pH increased [Ca2+]i comparable to that observed during hypercapnic acidosis. The hypercapnia-induced increase in [Ca2+]i was unchanged by the removal of Ca2+ from the extracellular medium or by the depletion of thapsigargin-sensitive intracellular Ca2+ stores. Hypercapnic acidosis may thus release Ca2+ from pH-sensitive but thapsigargin-insensitive intracellular Ca2+ stores. Hypocapnic alkalosis caused a fivefold increase in [Ca2+]i compared with hypercapnic acidosis. Intracellular alkalinization at a normal extracellular pH did not affect [Ca2+]i. The hypocapnia-evoked increase in [Ca2+]i was decreased from 242 +/- 56 to 50 +/- 32 nmol/l by the removal of extracellular Ca2+. The main mechanism affecting the hypocapnia-dependent [Ca2+]i increase was thought to be the augmented influx of extracellular Ca2+ mediated by extracellular alkalosis. Hypercapnic acidosis caused little change in PGI2 production, but hypocapnic alkalosis increased it markedly. In conclusion, both hypercapnic acidosis and hypocapnic alkalosis increase [Ca2+]i in HPAECs, but the mechanisms and pathophysiological significance of these increases may differ qualitatively.  相似文献   

18.
胞质[Ca2 ]i震荡的动力学变化在哺乳动物早期胚胎发育中发挥重要作用。卵母细胞的成熟伴随间断的、快速的[Ca2 ]i震荡的时空表达;在受精过程中精子因子诱导的反复[Ca2 ]i震荡的振幅和持续时间是卵细胞最有效的激活信号,这种信号形成自然连续的受精[Ca2 ]i波,并以长时持续[Ca2 ]i震荡形式在受精卵空间传递并持续数小时,直至受精完成;受精卵内源性的Ca2 释放所引起的[Ca2 ]i震荡形成第一次卵裂信号,启动早期胚胎的发育。精子PLCζ和cPKCs是形成受精卵[Ca2 ]波、[Ca2 ]震荡的重要因素。  相似文献   

19.
Effect of buffer systems and pHi on the measurement of [Ca2+]i with fura 2   总被引:1,自引:0,他引:1  
The fluorescent probe, fura 2, is widely used to measure agonist-induced changes in intracellular calcium concentration ([Ca2+]i) in cultured cells. However, in many instances, the results obtained in the same cell type have differed from one study to the next. The possibility that such differences might be due to experimental conditions was examined by using fura 2 in four different cell types responding to appropriate agonists when the cells were incubated in either CO2/HCO3-- or HEPES-buffered media. Examined were: 1) the response of rat glomerular mesangial cells to arginine vasopressin, 2) the response of vascular smooth muscle cells to angiotensin II, 3) the response of adrenal glomerulosa cells to angiotensin II, and 4) the response of hypothalamic cells to insulin-like growth factor-1. In each cell type there was a significant difference in the pattern of agonist-induced change in [Ca2+]i when HEPES vs. CO2/HCO3- was used as the buffer system: in HEPES buffer, agonist addition led to a transient rise in [Ca2+]i followed by a fall to a sustained plateau 27 to 34 nM higher than the original basal value, whereas in CO2/HCO3- buffer, agonist addition led to an identical transient increase in [Ca2+]i followed by a fall to a value within 10 nM or less of the preagonist level. The plateau value of [Ca2+]i in the different buffers was examined in relationship to known differences in intracellular pH (pHi). It was found that measurements of [Ca2+]i with fura 2 were influenced by shifts in pHi that occur when cells are incubated in either HEPES-buffered or CO2/HCO3- media of differing pHo values. However, at any given value of pHi, the apparent [Ca2+]i measured in cells incubated in HEPES-buffered media was slightly higher than in cells incubated in CO2/HCO3- buffered media.  相似文献   

20.
Liang WZ  Lu CH 《Life sciences》2012,90(17-18):703-711
AimsThis study examined whether the essential oil component carvacrol altered cytosolic free Ca2+ level ([Ca2+]i) and viability in human glioblastoma cells.Main methodsThe Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Cell viability was measured by detecting reagent WST-1. Apoptosis and reactive oxygen species (ROS) were detected by flow cytometry.Key findingsCarvacrol at concentrations of 400–1000 μM induced a [Ca2+]i rise in a concentration-dependent fashion. The response was decreased partially by removal of extracellular Ca2+. Carvacrol-induced Ca2+ signal was not altered by nifedipine, econazole, SK&;F96365, and protein kinase C activator phorbol myristate acetate (PMA), but was inhibited by the protein kinase C inhibitor GF109203X. When extracellular Ca2+ was removed, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) abolished carvacrol-induced [Ca2+]i rise. Incubation with carvacrol also abolished thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished carvacrol-induced [Ca2+]i rise. At concentrations of 200–800 μM, carvacrol killed cells in a concentration-dependent manner. This cytotoxic effect was not changed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N–-tetraacetic acid/acetoxy methyl (BAPTA/AM). Annexin V/propidium iodide staining data suggest that carvacrol (200, 400 and 600 μM) induced apoptosis in a concentration-dependent manner. At concentrations of 200, 400 and 600 μM, carvacrol induced production of ROS.SignificanceIn human glioblastoma cells, carvacrol induced a [Ca2+]i rise by inducing phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via protein kinase C-sensitive, non store-operated Ca2+ channels. Carvacrol induced cell death that might involve ROS-mediated apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号