首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gordon J  Shapley R 《Spatial Vision》2006,19(2-4):133-146
A gray region can be made to look colored by a colored surround. This phenomenon, chromatic induction, depends on color differences around the boundary of the region. We performed experiments on chromatic induction with small, initially achromatic, targets on nine different colored surrounds ranging in color from blue to red. Using scaling of saturation as our measure of perceived color strength, we found that chromatic induction is at its maximum when the brightness contrast at the boundary between target and surroundings is minimal. This implies that the neural mechanism in the cerebral cortex that mediates the appearance of brightness at a boundary inhibits the activity of chromatic mechanisms at that same boundary. Observers matched the apparent brightness and luminance of each of the colored surrounds. For surround colors where brightness and luminance matches differ, brightness contrast, not luminance contrast, controls chromatic induction. These new findings, taken together with other evidence, require a new theory of color appearance that includes mutually inhibitory interactions between color and brightness mechanisms that are sensing color and brightness contrast at visual boundaries.  相似文献   

2.
郭昆  李朝义 《生理学报》1993,45(6):543-551
用定量的心理物理测量方法,研究了错觉图形组成成分间的亮度对比和颜色对比方位错觉、长度觉及面积错觉幅度的影响。测试结果表明:与通常的错觉效应相比,当错觉图形组成成分间存在亮度对比或颜色对比(等亮度)时,受试者的错觉程度明显降低;其中,当存在颜色对比时,方位错觉的下降幅度更为显著,达到69.3%。此外还观察到,在单纯亮度对比条件下,只需1.8%和5.3%的低对比度即可分别产生轮廓和边缘错觉;但在等亮度  相似文献   

3.
Dresp B 《Spatial Vision》1999,12(2):129-142
Psychophysical thresholds for the detection of luminance targets improve significantly when the targets are presented in a specific context of spatially separated, collinear inducing stimuli defining visual contours. This phenomenon is generally referred to as a special case of detection facilitation called spatial facilitation. Spatial facilitation has been observed with luminance-defined. achromatic stimuli on achromatic backgrounds as well as with targets and inducers defined by colour contrast. This paper reviews psychophysical results from detection experiments with human observers showing the conditions under which spatially separated contour inducers facilitate the detection of simultaneously presented target stimuli. The findings point towards two types of spatial mechanisms: (i) Short-range mechanisms that are sensitive to narrowly spaced stimuli of small size and, at distinct target locations, selective to the contrast polarity of targets and inducers. (ii) Long-range mechanisms that are triggered by longer stimuli, generate facilitation across wider spatial gaps between targets and inducers, and are insensitive to their contrast polarity. Spatial facilitation with chromatic stimuli requires a longer inducer exposure than spatial facilitation with achromatic stimuli, which is already fully effective at inducer exposures of 30 ms. This difference in temporal dynamics indicates some functional segregation between mechanisms for colour and luminance contrast in spatial coding. In general, spatially induced detection facilitation can to a large extent be explained by mechanisms involving from-short-to-long-range interactions between cortical detectors.  相似文献   

4.
New neurophysiological results show the existence of multiple transformations of color signals in the primary visual cortex (V1) in macaque monkey. These different color mechanisms may contribute separately to the perception of color boundaries and colored regions. Many cells in V1 respond to color and to black-white (luminance) patterns. These neurons are spatially selective and could provide signals about boundaries between differently colored regions. Other V1 neurons that prefer color over luminance respond without much spatial selectivity to colored stimuli, and could be the neural basis for the response to local color modulation within a region. How these different types of color cells combine inputs from cone photoreceptors is what gives them their different spatial selectivities for color.  相似文献   

5.
We asked whether the detection range of two-coloured centre-surround patterns differs from that of single-coloured targets. Honeybees Apis mellifera were trained to distinguish between the presence and absence of a single-coloured disc or a coloured pattern at different visual angles. The patterns presented colours which were either different in chromatic and L-receptor contrasts to the background, equal in chromatic but different in L-receptor contrasts, or vice-versa. Patterns with colours presenting only chromatic contrast were also tested. Patterns with higher L-receptor contrast in its outer than in its inner element were better detected than patterns with a reversed L-contrast distribution. However, both were detected worse than single-coloured discs of the respective colours. When the L-receptor contrast was the same for both elements, the detection range of the two-coloured and single-coloured targets was the same. Patterns whose colours lacked L-receptor contrast were detected just as single-coloured targets of the same colours. These results demonstrate that both chromatic and L-receptor contrasts mediate the detection of coloured patterns and that particular distributions of L-receptor contrast within a target are better detected than others. This finding is consistent with the intervention of neurons with centre-surround receptive fields in the detection of coloured patterns.  相似文献   

6.
An illusory contour is an image that is perceived as a contour in the absence of typical contour characteristics, such as a change in luminance or chromaticity across the stimulus. In cats and primates, cells that respond to illusory contours are sparse in cortical area V1, but are found in greater numbers in cortical area V2. We propose a model capable of illusory contour detection that is based on a realistic topographic organization of V1 cells, which reproduces the responses of individual cell types measured experimentally. The model allows us to explain several experimentally observed properties of V2 cells including variability in orientation tuning and inducer spacing preference. As a practical application, the model can be used to estimate the relationship between the severity of a cortical injury in the primary visual cortex and the deterioration of V2 cell responses to real and illusory contours.  相似文献   

7.
The spatial extent of directed visual attention (DVA) was examined in a series of experiments using precuing in a suprathreshold luminance detection (reaction time) paradigm. Previous findings (Hughes, H. C. and Zimba, L. D. J. Exp. Psychol.; Human Percept Perf., 1985, 11, 409-430) indicated that, in an empty visual field, the effects of DVA were primarily manifest as a uniform elevation of response times to all probe targets in the hemifield contralateral to the observer's expectancy. The present experiments were designed to determine whether increased spatial selectivity could be found when luminous markers indicated the exact location of the expected visual target. To maintain equivalent states of adaptation in both hemifields, luminous markers were also present at the same location in the contralateral hemifield. In general, hemifield effects were again obtained, but with two notable exceptions. First, marking locations in the unattended hemifield produced a local increase (enhanced interference) in RTs above the level characteristic of other locations within that hemifield. Second, when multiple locations were indicated with identical luminous markers, graded costs were obtained in both hemifields. However, scaling the markers according to estimates of cortical magnification factor (M) substantially reduced the slope of these inhibitory gradients, and the results once again approached those characteristic of an unstructured visual field. The findings suggest that when attention is directed to a marked location along the horizontal meridian, a transition in performance typically occurs at the vertical meridian. In addition, irrelevant stimuli some distance from the attentional focus interfere with detection times to unexpected targets that appear in the same vicinity. This interference may relate to an enhanced susceptibility to spatial interactions between the distractors and target away from the attentional focus. The interference appears to extend over a constant area of visual cortex, since it is reduced when the markers are M-scaled.  相似文献   

8.
Trichromatic primates have a 'red-green' chromatic channel in addition to luminance and 'blue-yellow' channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines) are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini), consisting of both dichromats (n = 12) and trichromats (n = 9) in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations.  相似文献   

9.
This paper demonstrates a new magnetophoretic position detection method for multiplexed immunoassay using colored microspheres as an encoding tool in a microchannel. Colored microspheres conjugated with respective capture molecules are incubated with a mixture of target analytes, followed by reaction with the probe molecules which had been conjugated with superparamagnetic nanoparticles (SMNPs). Under the magnetic field gradient, the resulting microspheres are deflected from their focused streamlines in a microchannel, and respective colored microspheres are detected using color charge-coupled device (CCD) in a specific detection region of the microchannel. The color and position of respective colored microspheres are automatically decoded and analyzed by MATLAB program, and the position was correlated with the concentration of corresponding target analytes. As a proof-of-concept, we attempted to assay simultaneously three types of biotinylated immunoglobuline Gs (IgGs), such as goat, rabbit and mouse IgGs, using colored microspheres (red, yellow and blue, respectively). As the capture molecules, corresponding anti-IgGs were employed and target analytes were probed using streptavidin-modified superparamagnetic nanoparticles. As a result, three analytes were simultaneously assayed using colored microspheres with high accuracy, and detection limits of goat IgG, rabbit IgG and mouse IgG were estimated to be 10.9, 30.6 and 12.1fM, respectively. In addition, with adjustment of the flow rate and detection zone, the dynamic range could be controlled by more than one order of magnitude.  相似文献   

10.
M J Morgan 《Spatial Vision》1986,1(4):291-303
Thresholds were measured for the detection of spatial discontinuities (notches and bumps) along luminance boundaries. At high contrasts of the boundary, thresholds expressed in terms of the spatial notch/bump height fell well inside the hyperacuity range. Expressed as luminance increment thresholds between adjacent photoreceptors, the same thresholds were similar to those previously reported by Hartridge and by Hecht and Mintz for the detection of a single line. The ability of observers to detect differences in the height of a boundary on either side of a mean luminance gap was also investigated, and the effect of the gap was found to depend upon stimulus contrast. At high contrasts the introduction of a gap increased thresholds, but at the lowest contrasts, thresholds were unaffected by a gap. The role of different spatial frequency and orientational mechanisms in vernier acuity is discussed.  相似文献   

11.

Background

Humans can effortlessly segment surfaces and objects from two-dimensional (2D) images that are projections of the 3D world. The projection from 3D to 2D leads partially to occlusions of surfaces depending on their position in depth and on viewpoint. One way for the human visual system to infer monocular depth cues could be to extract and interpret occlusions. It has been suggested that the perception of contour junctions, in particular T-junctions, may be used as cue for occlusion of opaque surfaces. Furthermore, X-junctions could be used to signal occlusion of transparent surfaces.

Methodology/Principal Findings

In this contribution, we propose a neural model that suggests how surface-related cues for occlusion can be extracted from a 2D luminance image. The approach is based on feedforward and feedback mechanisms found in visual cortical areas V1 and V2. In a first step, contours are completed over time by generating groupings of like-oriented contrasts. Few iterations of feedforward and feedback processing lead to a stable representation of completed contours and at the same time to a suppression of image noise. In a second step, contour junctions are localized and read out from the distributed representation of boundary groupings. Moreover, surface-related junctions are made explicit such that they are evaluated to interact as to generate surface-segmentations in static images. In addition, we compare our extracted junction signals with a standard computer vision approach for junction detection to demonstrate that our approach outperforms simple feedforward computation-based approaches.

Conclusions/Significance

A model is proposed that uses feedforward and feedback mechanisms to combine contextually relevant features in order to generate consistent boundary groupings of surfaces. Perceptually important junction configurations are robustly extracted from neural representations to signal cues for occlusion and transparency. Unlike previous proposals which treat localized junction configurations as 2D image features, we link them to mechanisms of apparent surface segregation. As a consequence, we demonstrate how junctions can change their perceptual representation depending on the scene context and the spatial configuration of boundary fragments.  相似文献   

12.
We measured reaction time (RT), P300, and subjective evaluation for color Landolt-Cs with a gray color background presented on a CRT display. Seven young and 7 elderly subjects (mean ages: 21.6 and 68.4 years, respectively) participated, and the young subjects wore glasses with filters simulating spectral transmittance of an aging human lens as a test condition. The results for young subjects not wearing the filters showed that RT and P300 latency are constant among different test colors. In contrast, the results for elderly subjects showed that RT and P300 varied substantially depending upon the test colors and RT and P300 latency became longer than those of young subjects, particularly for gray and blue stimuli. In addition, the results for the young subjects with filters showed tendencies similar to those in elderly subjects. These results indicate that the yellowing of the human lens strongly influences reaction time and cognition time for color targets, suggesting that wearing the filters enables the young to simulate RT qualitatively as well as visibility of the elderly because both the simulated filter and the aging human lens modify the effective luminance, effective luminance contrast and effective color difference between the color target and the background on the retina. We also found that the reciprocal of RT and P300 latency could be expressed in a multiple regression model consisting of effective luminance, effective luminance contrast, effective color difference and age. Absolute values of RT and P300 latency in young subjects with filters, however, did not quantitatively coincide with those of the elderly subjects. There were differences of RT and P300 latency between the young with filters and the elderly, indicating that higher order age-related delay could be involved.  相似文献   

13.
The camel tick,Hyalomma dromedarii, exhibited positive scototaxis in an arena, e.g. it oriented towards a black or grey target in front of a white background. The degree of the scototactic response varied with the size and the elevation of the target, with its luminance contrast, with its shape and with the speed by which the target was moved: (1) the response to stationary and moving targets increased with increasing target size; (2) presentation of the targets at an elevation of 11o–15o induced the highest response; (3) the response decreased with decreasing luminance contrast of the target; (4) targets with the shape of a disk, a triangle standing on a vertex, a vertical bar or a silhouette of a dromedary caused high responses; a low response was observed when the target was a horizontal bar and there was no response to a striped pattern; (5) the smaller the size of a disk, the faster it had to be moved to elicit an optimum response.The smallest disk which elicited a significant response appeared under a visual angle of 4.8o for a thick at the starting point. The smallest dromedary-shaped silhouette which elicited a significant response corresponded to the silhouette of a real dromedary at a distance of 18 m.  相似文献   

14.
15.
Color signals in human motion-selective cortex   总被引:4,自引:0,他引:4  
The neural basis for the effects of color and contrast on perceived speed was examined using functional magnetic resonance imaging (fMRI). Responses to S cone (blue-yellow) and L + M cone (luminance) patterns were measured in area V1 and in the motion area MT+. The MT+ responses were quantitatively similar to perceptual speed judgments of color patterns but not to color detection measures. We also measured cortical motion responses in individuals lacking L and M cone function (S cone monochromats). The S cone monochromats have clear motion-responsive regions in the conventional MT+ position, and their contrast-response functions there have twice the responsivity of S cone contrast-response functions in normal controls. But, their responsivity is far lower than the normals' responsivity to luminance contrast. Thus, the powerful magnocellular input to MT+ is either weak or silent during photopic vision in S cone monochromats.  相似文献   

16.
Nam JM  Jang KJ  Groves JT 《Nature protocols》2007,2(6):1438-1444
The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).  相似文献   

17.
The colors of fruits and flowers are traditionally viewed as an adaptation to increase the detectability of plant organs to animal vectors. The detectability of visual signals increases with increasing contrasts between target and background. Contrasts consist of a chromatic aspect (color) and an achromatic aspect (light intensity), which are perceived separately by animals. To evaluate the relative importance of fruits’ chromatic and achromatic contrasts for the detection by avian fruit consumers we conducted an experiment with artificial fruits of four different colors in a tropical forest. We displayed the fruits against two different backgrounds, an artificial background and a natural one, because they differed in achromatic properties. We found no effect of the type of background on fruit detection rates. Detection rates differed for the four fruit colors. The probability of detection was explained by the chromatic contrast between fruits and their background, not by the achromatic contrasts. We suggest that birds attend primarily to chromatic contrast probably because these are more reliably detected under variable light conditions. Consistent with this hypothesis, we found habitat-specific differences in the conspicuousness of natural fruit colors in the study area. Fruits of understory species that are subjected to the variable light conditions within a forest displayed higher chromatic contrasts than species growing in the open restinga forest with constant bright illumination. There was no such difference for achromatic contrasts. In sum, we suggest that fruit colors differ between habitats because fruit colors that have strong chromatic contrasts against background can increase plants’ reproductive success, particularly under variable light conditions.  相似文献   

18.
Dougherty RF  Press WA  Wandell BA 《Neuron》1999,24(4):893-899
The influence of contrast and color on perceived motion was measured using a speed-matching task. Observers adjusted the speed of an L cone contrast pattern to match that of a variety of colored test patterns. The dependence of speed on test contrast was the same for all test colors measured, differing only by a sensitivity factor. This result suggests that the reduced apparent speed of low contrast targets and certain colored targets is caused by a common cortical mechanism. The cone contrast levels that equate perceived speed differ substantially from those that equate visibility. This result suggests that the neural mechanisms governing speed perception and visibility differ. Perceived speed differences caused by variations in color can be explained by color responses that are characteristic of motion-selective cortex.  相似文献   

19.
Dresp B 《Spatial Vision》2000,13(4):343-357
Thresholds for line contrast detection (experiment 2) were measured with a two-alternative temporal forced-choice procedure as a function of the spatial position of a vertical target line with regard to two co-linear context lines. The different spatial positions of the target line corresponded to values near the position discrimination threshold (experiment 1) reflecting the just detectable lateral offset, or non-co-linearity, between the context lines which were vertically separated by about 100 minutes of visual arc. Target and context lines were vertically separated by about 30 minutes of arc, had equal contrast polarity in one case, and opposite contrast polarity in the other. Strong line contrast detection facilitation is found at perceptually co-linear target locations. This facilitation decreases noticeably at a horizontal target offset that corresponds to the alignment threshold measured with the context lines. The effects are independent of the relative contrast polarity of target and context and, as shown in a third experiment, also independent of both the relative length or number of lines, and the magnitude of their absolute co-axial separation. This independence seems to hold, provided individual line length and co-axial distance between lines are larger than what appears to be the lower limit of the long-range spatial domain for orientation or contour integration (i.e. 20 minutes of arc), as determined by previous studies. The findings reported here suggest that alignment thresholds are likely to define a critical lateral boundary in long-range detection facilitation with co-linear lines. They support models of contour integration based on interactions between neural mechanisms that integrate local signals of contrast, orientation, and relative position or end-to-end alignment. Such mechanisms may help to explain the formation of representations of virtual contours and object contours in human perception.  相似文献   

20.
We examined the threshold at which a camouflaged color texture pattern (target) embedded in a surrounding colored texture pattern (background) was discriminated by making the difference between their color distributions serve as a cue. The texture consisted of 900 colored disks. The color applied to the disk was chosen from a normal distribution with the mean and the standard deviation set beforehand. The mean of the background's distribution was a standard achromatic color set at L*=40, u*=0, and v*=0 of CIELUV. In experiment 1, the mean of the target's color distribution was shifted from the background's one. The threshold for the mean of the target's color distribution depended on the standard deviation and increased as the standard deviation became bigger. In experiment 2, the standard deviation of the target's color distribution was shifted. There was the slight dependence of threshold of the standard deviation of the target's distribution on that of the background's distribution. In experiment 3, both of the mean and the standard deviation of the target's color distribution were shifted at the same time. The threshold was not determined by each of the mean and the standard deviation independently. There seemed to be some compensating contribution between them to each other. The threshold could be characterized by Doyle metric or modified Doyle metric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号