首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the complete genome sequence of Lactococcus lactis IO-1 (= JCM7638). It is a nondairy lactic acid bacterium, produces nisin Z, ferments xylose, and produces predominantly L-lactic acid at high xylose concentrations. From ortholog analysis with other five L. lactis strains, IO-1 was identified as L. lactis subsp. lactis.  相似文献   

2.
The review is devoted to literature data on antimicrobial metabolites produced by lactic acid bacteria (LAB), which have long been used for the preparation of cultured dairy products. This paper summarizes data on low-molecular-weight antimicrobial substances, which are primary products or by-products of lactic fermentation. Individual sections are devoted to a variety of antifungal agents and bacteriocins produced by LAB; their potential use as food preservatives has been discussed. The characteristics and classification of bacteriocins are presented in a greater detail; their synthesis and mechanism of action are described using the example of nisin A, which belongs to class I lantibiotics synthesized by the bacterium Lactococcus lactis subsp. lactis. The mechanism of action of class II bacteriocins has been demonstrated with lacticin. Prospective directions for using LAB antimicrobial metabolites in industry and medicine are discussed in the Conclusion.  相似文献   

3.
Oxidative stress in Lactococcus lactis   总被引:1,自引:0,他引:1  
Lactococcus lactis, the most extensively characterized lactic acid bacterium, is a mesophilic- and microaerophilic-fermenting microorganism widely used for the production of fermented food products. During industrial processes, L. lactis is often exposed to multiple environmental stresses (low and high temperature, low pH, high osmotic pressure, nutrient starvation and oxidation) that can cause loss or reduction of bacterial viability, reproducibility, as well as organoleptic and/or fermentative qualities. Among these stress factors, oxidation can be considered one of the most deleterious to the cell, causing cellular damage at both molecular and metabolic levels. During the last two decades, considerable efforts have been made to improve our knowledge of oxidative stress in L. lactis. Many genes involved with both oxidative stress resistance and control mechanisms have been identified; functionally they seem to overlap. The finding of new genes, and a better understanding of the molecular mechanisms of stress resistance in L. lactis and other lactic acid bacterium, will lead to the construction and isolation of stress-resistant strains. Such strains could be exploited for both traditional and probiotic uses.  相似文献   

4.
Lactococcus lactis, the model lactic acid bacterium (LAB), is a food grade and well-characterized Gram positive bacterium. It is a good candidate for heterologous protein delivery in foodstuff or in the digestive tract. L. lactis can also be used as a protein producer in fermentor. Many heterologous proteins have already been produced in L. lactis but only few reports allow comparing production yields for a given protein either produced intracellularly or secreted in the medium. Here, we review several works evaluating the influence of the localization on the production yields of several heterologous proteins produced in L. lactis. The questions of size limits, conformation, and proteolysis are addressed and discussed with regard to protein yields. These data show that i) secretion is preferable to cytoplasmic production; ii) secretion enhancement (by signal peptide and propeptide optimization) results in increased production yield; iii) protein conformation rather than protein size can impair secretion and thus alter production yields; and iv) fusion of a stable protein can stabilize labile proteins. The role of intracellular proteolysis on heterologous cytoplasmic proteins and precursors is discussed. The new challenges now are the development of food grade systems and the identification and optimization of host factors affecting heterologous protein production not only in L. lactis, but also in other LAB species.  相似文献   

5.
乳酸乳球菌是一种在食品工业中广泛应用的安全级微生物,应用基因工程手段能使乳酸乳球菌表达多种病毒、细菌、寄生虫的外源蛋白。乳酸乳球菌可经粘膜途径免疫,能有效递呈抗原,诱导外源蛋白的特异性免疫应答,并能同时诱导粘膜免疫与全身免疫,因此可作为潜在的疫苗载体。本文对乳酸乳球菌载体疫苗的优势、应用以及疫苗设计时需要考虑的问题进行了概述。  相似文献   

6.
IFN-gamma is a cytokine produced primarily by both T lymphocytes and natural killer cells and it is considered to be an attractive therapeutic molecule. In the present study, a DNA sequence encoding the mature murine IFN-gamma (muIFN-gamma) protein was cloned and expressed in the food-grade lactic acid bacterium Lactococcus lactis. The activity of recombinant muIFN-gamma produced by genetically engineered L. lactis was confirmed in an antiviral assay using MoV cells infected with Vesicular Stomatitis Virus. The data provide the first demonstration that a Gram-positive bacterium, L. lactis, is able to produce functional muIFN-gamma. This recombinant strain could lead to the development of a new, well-tolerated vector to deliver active muIFN-gamma at the mucosal level.  相似文献   

7.
IFN-γ is a cytokine produced primarily by both T lymphocytes and natural killer cells and it is considered to be an attractive therapeutic molecule. In the present study, a DNA sequence encoding the mature murine IFN-γ (muIFN-γ) protein was cloned and expressed in the food-grade lactic acid bacterium Lactococcus lactis . The activity of recombinant muIFN-γ produced by genetically engineered L. lactis was confirmed in an antiviral assay using MoV cells infected with Vesicular Stomatitis Virus. The data provide the first demonstration that a Gram-positive bacterium, L. lactis , is able to produce functional muIFN-γ. This recombinant strain could lead to the development of a new, well-tolerated vector to deliver active muIFN-γ at the mucosal level.  相似文献   

8.
AIMS: To determine if live recombinant Lactococcus lactis strains expressing rotavirus VP7 antigen are immunogenic in mice. METHODS AND RESULTS: Using the food-grade lactic acid bacterium L. lactis as a carrier, we expressed VP7, the major rotavirus outer shell protein and one of the main components of the infective particle, as a cytoplasmic, secreted or cell wall anchored forms. Our results showed that recombinant L. lactis strains secreting VP7 proved to be more immunogenic than strains containing the antigen in the cytoplasm or anchored to the cell wall. CONCLUSIONS: This is the first demonstration that recombinant L. lactis producing VP7 can induce the production of a neutralizing antibody response against rotavirus by the intragastric route. SIGNIFICANCE AND IMPACT OF THE STUDY: Rotaviruses are the single most important aetiological agents of severe diarrhoea of infants and young children worldwide and have been estimated to be responsible for 650 000-800 000 deaths per year of children younger than 5 years old in development countries. Thus, the development of a safe and effective vaccine has been a global public health goal. Although two of five mice orally inoculated with L. lactis strains secreting VP7 elicited a specific-antibody response, these strains could be very useful to be used as a prototype to develop a new generation of protective rotavirus vaccines.  相似文献   

9.
10.
11.
AIMS: Esters of short-chain fatty acids and alcohols participate significantly in the overall flavour of foods. The capacity of the lactic acid bacterium Lactococcus lactis to synthesize such esters is known even though the enzymes involved in the process are not well identified. The objective of our work is to determine whether the esterase is responsible for the whole capacity of L. lactis to synthesize esters in vitro. METHODS AND RESULTS: A negative mutant for the esterase was constructed and its capacity to synthesize short chain fatty acid esters from different substrate couples was compared to that of the wild type. We observed that the esterase is responsible for the main ester synthesis activity of L. lactis in vitro. However, in the presence of some substrates, the esterase negative mutant still synthesizes low amounts of esters. CONCLUSIONS: In favourable environmental conditions, the L. lactis esterase is responsible for the main ester synthesizing activity, even though another pathway for ester synthesis probably exists. SIGNIFICANCE AND IMPACT OF THE STUDY: Since esters are potent aroma compounds, esterase is probably a key enzyme in the development of food flavour.  相似文献   

12.
Wang H  Cronan JE 《Biochemistry》2004,43(37):11782-11789
The small genome of the Gram-positive bacterium Lactococcus lactis ssp. lactis IL1403 contains two genes that encode proteins annotated as homologues of Escherichia coli beta-hydroxyacyl-acyl carrier protein (ACP) reductase. E. coli fabG encodes beta-ketoacyl-acyl carrier protein (ACP) reductase, the enzyme responsible for the first reductive step of the fatty acid synthetic cycle. Both of the L. lactis genes are adjacent to (and predicted to be cotranscribed with) other genes that encode proteins having homology to known fatty acid synthetic enzymes. Such relationships have often been used to strengthen annotations based on sequence alignments. Annotation in the case of beta-ketoacyl-ACP reductase is particularly problematic because the protein is a member of a vast protein family, the short-chain alcohol dehydrogenase/reductase (SDR) family. The recent isolation of an E. coli fabG mutant strain encoding a conditionally active beta-ketoacyl-ACP reductase allowed physiological and biochemical testing of the putative L. lactishomologues. We report that expression of only one of the two L. lactis proteins (that annotated as FabG1) allows growth of the E. coli fabG strain under nonpermissive conditions and restores in vitro fatty acid synthetic ability to extracts of the mutant strain. Therefore, like E. coli, L. lactis has a single beta-ketoacyl-ACP reductase active with substrates of all fatty acid chain lengths. The second protein (annotated as FabG2), although inactive in fatty acid synthesis both in vivo and in vitro, was highly active in reduction of the model substrate, beta-ketobutyryl-CoA. As expected from work on the E. coli enzyme, the FabG1 beta-ketobutyryl-CoA reductase activity was inhibited by ACP (which blocks access to the active site) whereas the activity of FabG2 was unaffected by the presence of ACP. These results seem to be an example of a gene duplication event followed by divergence of one copy of the gene to encode a protein having a new function.  相似文献   

13.
14.
Lacticin 481 is produced by Lactococcus lactis subsp. lactis and belongs to subgroup AII of the lanthionine-containing bacteriocins. The putative homodimeric LctT involved in lacticin 481 production shares significant similarities with the 'LcnC' protein encoded by 'lcnC', located on the chromosome of the lactic acid bacterium, L. lactis IL1403. LctT and 'LcnC' belong to the recently defined family of AMS (ABC transporter maturation and secretion) proteins. Inactivation of the 'lcnC' gene demonstrates that it is not responsible for the weak lacticin 481 production observed in a strain expressing only the precursor peptide LctA, and the modification enzyme LctM. This result indicates that the two AMS proteins, 'LcnC' and LctT, are not interchangeable in the machinery of processing/export of lacticin 481.  相似文献   

15.
Unlike Bacillus subtilis and Escherichia coli, the gram-positive lactic acid bacterium Lactococcus lactis does not possess the SecDF protein, a component of the secretion (Sec) machinery involved in late secretion stages and required for the high-capacity protein secretion in B. subtilis. In this study, we complemented the L. lactis Sec machinery with SecDF from B. subtilis and evaluated the effect on the secretion of two forms of staphylococcal nuclease, NucB and NucT, which are efficiently and poorly secreted, respectively. The B. subtilis SecDF-encoding gene was tested in L. lactis at different levels. Increased quantities of the precursor and mature forms were observed only at low levels of SecDF and at high NucT production levels. This SecDF secretion enhancement was observed at the optimal growth temperature (30 degrees C) and was even greater at 15 degrees C. Furthermore, the introduction of B. subtilis SecDF into L. lactis was shown to have a positive effect on a secreted form of Brucella abortus L7/L12 antigen.  相似文献   

16.
The growing popularity of the lactic acid bacterium Lactococcus lactis has increased demand for novel high-throughput cloning methods. Here we describe a general TA-cloning methodology and demonstrate its feasibility using the plasmid pNZ8148. PCR products were directly ligated into a linear, PCR-amplified and XcmI-digested pNZ8148 derivative that was termed pNZ-T. Cloning using pNZ-T yielded a high proportion of insert-containing plasmids on transformation. Although demonstrated with L. lactis, the technique presented here is organism-independent and can be implemented in other plasmids.  相似文献   

17.
To control the pH during antimicrobial peptide (nisin) production by a lactic acid bacterium, Lactococcus lactis subsp. lactis (ATCC11454), a novel method involving neither addition of alkali nor a separation system such as a ceramic membrane filter and electrodialyzer was developed. A mixed culture of L. lactis and Kluyveromyces marxianus, which was isolated from kefir grains, was utilized in the developed system. The interaction between lactate production by L. lactis and its assimilation by K. marxianus was used to control the pH. To utilize the interaction of these microorganisms to maintain high-level production of nisin, the kinetics of growth of, and production of lactate, acetate, and nisin by, L. lactis were investigated. The kinetics of growth of and lactic acid consumption by K. marxianus were also investigated. Because the pH of the medium could be controlled by the lactate consumption of K. marxianus and the specific lactate consumption rate of K. marxianus could be controlled by changing the dissolved oxygen (DO) concentration, a cascade pH controller coupled with DO control was developed. As a result, the pH was kept constant because the lactate level was kept low and nisin accumulated in the medium to a high level compared with that attained using other pH control strategies, such as with processes lacking pH control and those in which pH is controlled by addition of alkali.  相似文献   

18.
A nucleoside N-deoxyribosyltransferase-homologous gene was detected by homological search in the genomic DNA of Lactococcus lactis subsp. lactis. The gene yejD is composed of 477 nucleotides encoding 159 amino acids with only 25% identity, which is low in comparison to the amino acid sequences of the N-deoxyribosyltransferases from other lactic acid bacteria, i.e. Lactobacillus leichmannii and Lactobacillus helveticus. The residues responsible for catalytic and substrate-binding sites in known enzymes are conserved at Gln49, Asp73, Asp93 (or Asp95), and Glu101, respectively. The recombinant YejD expressed in Escherichia coli shows a 2-deoxyribosyl transfer activity to and from both bases of purine and pyrimidine, showing that YejD should be categorized as a class II N-deoxyribosyltransferase. Interestingly, the base-exchange activity as well as the heat stability of YejD was enhanced by the presence of monovalent cations such as K(+), NH(4)(+), and Rb(+), indicating that the Lactococcus enzyme is a K(+)-activated Type II enzyme. However, divalent cations including Mg(2+) and Ca(2+) significantly inhibit the activity. Whether or not the yejD gene product actually participates in the nucleoside salvage pathway of Lc. lactis remains unclear, but the lactic acid bacterium possesses the gene coding for the nucleoside N-deoxyribosyltransferase activated by K(+) on its genome.  相似文献   

19.
Bacteriocin-producing lactic acid bacteria (LAB) are believed to be associated with many types of fermented food. The present study reports the identification of lactic acid bacterium MS27 producing a bacteriocin isolated from the Tsuda-turnip pickle, which is a Japanese fermented food, and characterization of LAB coexisting with the bacteriocin producers in the Tsuda-turnip pickle. The strain MS27 was identified as Lactococcus lactis subsp. lactis based on a partial 16S rRNA gene sequence and sugar fermentation pattern analyses. Mass spectroscopy and genetic analysis revealed that it produces nisin Z. Microbial population analysis revealed that the LAB community in the Tsuda-turnip pickle comprises nisin Z-sensitive and nisin Z-insensitive LAB (nonbacteriocin producers) and nisin Z producers at population rates of 52.5%, 37.5%, and 10.0%, respectively. This revealed that Leuconostoc spp. (nisin Z insensitive) is the dominant species among LAB microflora and that nisin Z insensitivity of a bacterial strain is proportional to its ability to dominate the population in Tsuda-turnip pickles. Competitive growth assay revealed that Leuconostoc spp. considerably suppressed the bacteriocin production of L. lactis MS27. These results suggested that Leuconostoc spp. contributes to the formation of the LAB community with a wide variety of microorganisms in Tsuda-turnip pickles.  相似文献   

20.
Previously we showed that glutathione (GSH) can protect Lactococcus lactis against oxidative stress (Y. Li et al., Appl. Environ. Microbiol. 69:5739-5745, 2003). In the present study, we show that the GSH imported by L. lactis subsp. cremoris SK11 or produced by engineered L. lactis subsp. cremoris NZ9000 can protect both strains against a long-term mild acid challenge (pH 4.0) and a short-term severe acid challenge (pH 2.5). This shows for the first time that GSH can protect a gram-positive bacterium against acid stress. During acid challenge, strain SK11 containing imported GSH and strain NZ9000 containing self-produced GSH exhibited significantly higher intracellular pHs than the control. Furthermore, strain SK11 containing imported GSH had a significantly higher activity of glyceraldehyde-3-phosphate dehydrogenase than the control. These results suggest that the acid stress resistance of starter culture can be improved by selecting L. lactis strains capable of producing or importing GSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号