首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In earlier studies of genetic competence in Escherichia coli induced with calcium-containing buffers, a strong correlation was found between transformation efficiency and the formation of poly-beta-hydroxybutyrate/calcium polyphosphate (PHB/Ca2+/PPi) complexes in the plasma membranes. In this study, we replaced Ca2+ with one of a number of other cations--monovalent, divalent, and trivalent--and found significant numbers of transformants (transformation efficiency, > 10(5)/micrograms of pBR322 DNA) only when the cells had high levels of PHB/Ca2+/PPi and the medium contained at least one of the divalent cations Ca2+, Mn2+, Sr2+, or Mg2+. Cells with high levels of the complexes were not competent when the medium did not contain these cations, but the cations were also ineffectual when the cells had few complexes. Surprisingly, Mn, Sr, and Mg were not incorporated into the complexes in place of Ca. These results indicate that PHB/Ca2+/PPi complexes and the above-mentioned divalent cations each have essential but disparate roles in genetic competence. Moreover, the strong selectivity of PHB/PPi for Ca2+ suggests the binding sites in the complexes are ionophoretic.  相似文献   

2.
Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.  相似文献   

3.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

4.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

5.
The inhibitory influence of divalent cations on the ability of bovine alpha-thrombin to hydrolyze prothrombin showed the trend Mn2+ much greater than Ca2+ greater than or equal to Mg2+ greater than Sr2+ much greater than Ba2+. This effect was not due to an inhibition of thrombin's catalytic activity as measured by hydrolysis of a specific synthetic substrate, H-D-Phe-pipecolyl-Arg-p-nitroanilide (D-PhePipArgNA). The presence of divalent cations did not inhibit thrombic proteolysis of gamma-carboxyglutamic acid (Gla)-domainless prothrombin. Prothrombin and Gla-domainless prothrombin were used as competitive inhibitors in the thrombic hydrolysis of D-PhePipArgNA. The apparent Ki value calculated for prothrombin was 18 microM. When either Ca2+ or Mn2+ were present, there was no inhibition. The apparent Ki value determined for Gla-domainless prothrombin was 28 microM in either the absence or presence of Ca2+. Addition of divalent cations to prothrombin, but not to Gla-domainless prothrombin, resulted in an altered protein conformation as measured by high-performance size-exclusion chromatography and ultraviolet difference spectroscopy. These results suggest that a conformational change secondary to the interaction of divalent cations with the Gla-containing domain of prothrombin is required for cation-dependent inhibition of thrombin hydrolysis.  相似文献   

6.
The abilities of various divalent cations to enter the cytoplasm of mouse lacrimal acinar cells was examined under resting and agonist-stimulated conditions, by monitoring their effects on the fluorescence of cytosolic fura-2. In vitro, Ni2+, Co2+, and Mn2+ quenched the fura-2 fluorescence, whereas Sr2+, Ba2+, and La3+ produced an excitation spectrum and maximum brightness similar to Ca2+. Stimulation of mouse lacrimal acinar cells with methacholine (MeCh) caused a biphasic elevation of intracellular Ca2+ concentration [( Ca2+]i) resulting from a release of Ca2+ from intracellular pools followed by a sustained entry of extracellular Ca2+. Neither La3+ nor Ni2+ entered the cells under resting or stimulated conditions, but both blocked Ca2+ entry. Although both Co2+ and Mn2+ entered unstimulated cells, this process was not increased by MeCh. Both Sr2+ and Ba2+ were capable of supporting a sustained increase in fura-2 fluorescence in response to MeCh, indicating that these cations can enter the cells through the agonist-regulated channels. However, Sr2+, but not Ba2+, was capable of refilling the agonist-sensitive intracellular stores. These findings demonstrate dissociation of agonist-induced Ca2+ entry from intracellular Ca2+ pool refilling and thereby provide strong support for the recently modified version of the capacitative Ca2+ entry model according to which influx into the cytoplasm occurs directly across the plasma membrane and does not require a specialized cation channel directly linking the extracellular space and the intracellular Ca2+ stores.  相似文献   

7.
The concentration of intracellular free Ca2+ ([Ca2+]i) was measured in dissociated bovine parathyroid cells using the fluorescent indicator quin-2 or fura-2. Small increases in the concentration of extracellular Ca2+ produced relatively slow, monophasic increases in [Ca2+]i in quin-2-loaded cells, but rapid and transient increases followed by lower, yet sustained (steady-state), [Ca2+]i increases in fura-2-loaded cells. The different patterns of change in [Ca2+]i reported by quin-2 and fura-2 appear to result from the greater intracellular Ca2+-buffering capacity present within quin-2-loaded cells, which tends to damp rapid and transient changes in [Ca2+]i. In fura-2-loaded parathyroid cells, other divalent cations (Mg2+, Sr2+, Ba2+) also evoked transient increases in [Ca2+]i, and their competitive interactions suggest that they all affect Ca2+ transients by acting on a common site. In contrast, divalent cations failed to cause increases in steady-state levels of cytosolic Ca2+. Low concentrations of La3+ (0.5-10 microM) depressed steady-state levels of cytosolic Ca2+ elicited by extracellular Ca2+ but were without effect on transient increases in [Ca2+]i elicited by extracellular Ca2+, Mg2+ or Sr2+, suggesting that increases in the steady-state [Ca2+]i arise from the influx of extracellular Ca2+. Mg2+- and Sr2+-induced cytosolic Ca2+ transients persisted in the absence of extracellular Ca2+ but were abolished by pretreatment with ionomycin. These results show that cytosolic Ca2+ transients arise from the mobilization of cellular Ca2+ from a nonmitochondrial pool. Extracellular divalent cations thus appear to act at some site on the surface of the cell, and this site can be considered a "Ca2+ receptor" which enables the parathyroid cell to detect small changes in the concentration of extracellular Ca2+.  相似文献   

8.
Y Ozaki  Y Yatomi  S Kume 《Cell calcium》1992,13(1):19-27
Divalent ion mobilization in human platelets was evaluated with Fura-2 fluorescence changes induced by Ca2+, Sr2+, Ba2+ and Mn2+. Extracellular Ca2+, Sr2+ and Ba2+ all entered thrombin-stimulated platelets. These divalent ions were also able to refill the intracellular Ca2+ storage sites which had been depleted of Ca2+ by ionomycin treatment, and were released from the storage sites upon thrombin stimulation. However, only the refilling of the storage sites with Ca2+ and Sr2+, but not with Ba2+, were capable of suppressing the opening state of Ca2+ channels assessed with Mn2+ influx. Efflux of intracellularly accumulated divalent ions was observed with Ca2+ and Sr2+ but not with Ba2+. These findings indicate that there are subtle differences in the Ca(2+)-binding domains of the various systems involved in Ca2+ mobilization in platelets, some of which discriminate Ba2+ while accepting Sr2+.  相似文献   

9.
K Kato  M Goto  H Fukuda 《Life sciences》1983,32(8):879-887
When investigating the effects of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+ and Ni2+) on 3H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of 3H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn2+ congruent to Ni2+ greater than Mg2+ greater than Ca2+ greater than Sr2+ greater than Ba2+. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl2, 2.5 mM CaCl2 or 0.3 mM MnCl2 whereas two components appeared in the presence of 2.5 mM MnCl2 or 1 mM NiCl2. In the former, divalent cations altered the apparent affinity (Kd) without affecting density of the binding sites (Bmax). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg2+, Ca2+, Mn2+ and Ni2+) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABAB sites, the affinity for (-), (+) and (+/-) baclofen, GABA and beta-phenyl GABA increased 2-6 fold in the presence of 2.5 mM MnCl2, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl2 and 1.2 mM MgSO4), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABAB sites for its ligands is probably regulated by divalent cations, through common sites of action.  相似文献   

10.
Initial uptake of Mn2+ and Sr2+ in the yeast Saccharomyces cerevisiae was studied in order to investigate the selectivity of the divalent cation uptake system and the possible involvement of the plasma-membrane ATPase in this uptake. The initial uptake rates of the two ions were not significantly different. This ruled out a direct role of the plasma-membrane ATPase, since this ATPase is specific for Mn2+ compared to Sr2+. After 1 h uptake, Mn2+ had accumulated 10-times more than Sr2+. Influx of Mn2+ and Sr2+ remained unchanged during that time, however. The differences in accumulation level found for Mn2+ and Sr2+ could be ascribed to a greater efflux of Sr2+ as compared with Mn2+. Probably this greater efflux of Sr2+ was only apparent, since differential extraction of the yeast cells revealed that Mn2+ is more compartmentalised than Sr2+, giving rise to a lower relative cytoplasmic Mn2+ concentration.  相似文献   

11.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

12.
The effects of membrane depolarization and divalent cations on histamine release have been studied in sensitized mast cells. Membrane potential of these cells has been measured with intracellular microelectrodes. Our results show that mast cells have a large resting potential (-61 +/- 12 mV) however they do not generate active membrane electrical responses when are depolarized by passing current through the recording microelectrode. High external K+ does not increase histamine release. Histamine secretion is supported by alkali-earth divalent cations (Ca2+ greater than Sr2+ greater than Ba2+) but strongly inhibited by transition metals. Ca2+ concentrations above 1 mM inhibit histamine release, however, this effect is not mimicked by Sr2+ and Ba2+.  相似文献   

13.
The intracellular Ca2+ concentration of nearly all cells is kept at submicromolar levels. The magnitudes of transmembrane Ca2+ movement that maintain this steady state in the human red blood cell have long been debated. Although there is agreement that the physiologic extrusion of Ca2+ by the well-characterized Ca2+. ATPase amounts to 45 mumol/liter cells per h (1982. Nature (Lond.). 298:478-481), the reported passive entry rates in physiological saline (2-20 mumol/liter cells per h) are all substantially lower. This discrepancy could be due to incomplete inhibition of the pump in the previous measurements of Ca2+ entry. We therefore examined both rate and mechanism of entry after completely inactivating the pump. This required pretreatment with iodoacetamide (to lower the intracellular ATP concentration) and vanadate (to inhibit any residual Ca2+ pump activity). The rate of Ca2+ entry (53 mumol/liter cells per h) was now found to be comparable to the accepted extrusion rate. Entry closely obeyed Michaelis-Menten kinetics (Vmax = 321 +/- 17 nmol Ca/g dry wt per h, Km = 1.26 +/- 0.13 mM), was competitively inhibited by external Sr2+ (Ki = 10.8 +/- 1.2 mM), and was accelerated by intracellular Ca2+. 45Ca2+ efflux from these pump-inactivated cells was also accelerated by either external Ca2+ or Sr2+. These accelerating effects of divalent cations on the opposite (trans) face of the membrane rule out a simple channel. Substrate-gated channels are also ruled out: cells equilibrated with 45Ca2+ lost the isotope when unlabeled Ca2+ or Sr2+ was added externally. Thus, passive Ca2+ movements occur predominantly by a reversible carrier-mediated mechanism for which Sr2+ is an alternate substrate. The carrier's intrinsic affinity constants for Ca2+ and Sr2+, 1.46 and 0.37 mM-1, respectively, indicate that Ca2+ is the preferred substrate.  相似文献   

14.
The quaternary structure and binding activity of the murine 46-kDa mannose 6-phosphate receptor (46MPR) were studied in semi-intact murine cells that overexpress the murine receptor. Chemical cross-linking studies showed that the murine 46MPR exists in monomer, dimer, and tetramer forms in membranes of overexpressing murine cells. Treatment of permeabilized cells with Mn2+ increased the tetramer form of 46MPR, and this tetramerization was reversed by removal of Mn2+. Thus, the divalent cations affected the distribution of receptor among the three forms, favoring tetramerization at the expense of dimer and monomer. Low temperature (4 degrees C) also increases the fraction present as tetramer. The binding assay results show that Mn2+ is required for the 46MPR to achieve and retain the ability to bind ligand at 37 degrees C but not at 4 degrees C. Preincubation with Mn2+ produced a 3-fold increase in Man-6-P-specific binding of beta-glucuronidase which paralleled the 3-fold increase in tetramer seen during preincubation with Mn2+. The similarity of the effects of addition and removal of Mn2+ on enzyme binding to the effects of Mn2+ on favoring tetramer formation suggests that divalent cation-dependent tetramerization of the 46MPR contributes to the stimulation of ligand binding to the 46MPR by divalent cations.  相似文献   

15.
The release of divalent cations (Ca2+ and Sr2+) from rat liver mitochondria after membrane depolarization with protonophore (carbonyl cyanide m-chlorophenyl hydrazone, CCCP), sodium azide and K(+)-ionophore (valinomycin) was studied. It is stated that membrane depolarization itself is not sufficient for cations release from mitochondrial matrix (provided that mitochondrial permeability transition pore is blocked by cyclosporin A). Complete delivering of divalent cations is observed only after protonophore (CCCP) addition to suspension of deenergized mitochondria. The data show that membrane permeabilisation to hydrogen ions (H+) is necessary for complete cation release from the mitochondrial matrix. The enhancement in K(+)-conductivity of mitochondrial membrane (by valinomycin), on the contrary, is not able to provide complete delivering of cations from mitochondria. It is shown that quantity of divalent metal cation released from mitochondria (depolarized and permeabilized for K+ as well) is proportional to the concentration of protonophore (but not K(+)-ionophore) introduced in the incubation medium. The data obtained lead to the conclusion that H(+)-permeabilization of the mitochondrial membrane is necessary for the complete release of Ca2+ and Sr2+ from mitochondria after membrane depolarization. The possible mechanism of divalent metal cations release from deenergized mitochondria is discussed.  相似文献   

16.
Properties of divalent cation potentials carried by either Sr2+ or Ca2+ ions in Na+-free, TEA-Ringer solution were characterized in identified neurons of two species of leeches (Macrobdella and Haementeria). In Macrobdella, the overshoot of the potentials varied logarithmically with [Sr2+]0 (28.5 mV per 10-fold change). The overshoot, Vmax, and duration of the potentials increased with increasing divalent cation concentration and saturated at about 20 to 30 mM [Sr2+]0. The Vmax, amplitude, and duration of the potentials were reversibly blocked by Co2+ and Mn2+. The block by Mn2+ could be well-fitted by a reverse Langmuir-curve with an apparent KI of 100 micromolar. The local anesthetic procaine also reversibly inhibited the Vmax and duration of the potentials. The inhibition was greater at alkaline pH suggesting that procaine blocks the calcium channel from inside the membrane. The identified leech neurons examined in Macrobdella varied considerably in their ability to sustain somatic divalent cation potentials. Stimulation of T cells and most motoneurons produced no or only weak potentials, whereas stimulation of Retzius, N, Nut, and AP cells evoked overshooting potentials of several seconds' duration. Stimulation of the ALG cell of Haementeria in normal Ringer solution evoked a slowly-rising, purely Ca2+-dependent potential of approximately 100 ms duration. This response was TTX-resistant, unaffected by complete removal of Na+ from the Ringer solution, and abolished by 1 mM Mn2+. The overshoot varied logarithmically with a slope of 28 mV/decade change in [Ca2+]0.  相似文献   

17.
The ionophoretic activity of PGBx, an oligomeric mixture synthesized from 15-dehydro PGB1, with different cations was measured using arsenazo III-entrapped liposomes. The order of ionophoretic activity was Zn2+ greater than Co2+ greater than Mn2+ greater than Cu2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. The intrinsic fluorescence of PGBx was quenched by the binding of divalent cations as well as by La3+ and H+. Quenching by K+ and Na+ was minimal. The order of quenching strength of divalent cations was Zn2+ greater than Co2+ greater than Cu2+ = Mn2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. Binding affinities of these cations determined by a murexide indicator method were in good agreement with that determined by the fluorescence quenching reaction. The cation binding affinity of PGBx in aqueous solutions correlates with the ionophoretic activity in liposomes. The binding affinity for K+ was estimated from the inhibition by K+ of Ca2+ binding by PGBx. Although PGBx has a lower selectivity for divalent cation binding than the ionophore A23187, the characteristics of the binding affinity of these two compounds for various ions were similar. The pK of PGBx as determined by fluorescence quenching was 6.7. The molecular weight of the divalent cation binding unit was estimated to be about 680, with each PGBx molecule having three such binding sites. The binding of Ca2+ to such a site is one-to-one.  相似文献   

18.
Depolarizing response of rat parathyroid cells to divalent cations   总被引:2,自引:0,他引:2       下载免费PDF全文
Membrane potentials were recorded from rat parathyroid glands continuously perfused in vitro. At 1.5 mM external Ca++, the resting potential averages -73 +/- 5 mV (mean +/- SD, n = 66). On exposure to 2.5 mM Ca++, the cells depolarize reversibly to a potential of -34 +/- 8 mV (mean +/- SD). Depolarization to this value is complete in approximately 2-4 min, and repolarization on return to 1.5 mM Ca++ takes about the same time. The depolarizing action of high Ca++ is mimicked by all divalent cations tested, with the following order of effectiveness: Ca++ greater than Sr++ greater than Mg++ greater than Ba++ for alkali-earth metals, and Ca++ greater than Cd++ greater than Mn++ greater than Co++ greater than Zn++ for transition metals. Input resistance in 1.5 mM Ca++ was 24.35 +/- 14 M omega (mean +/- SD) and increased by an average factor of 2.43 +/- 0.8 after switching to 2.5 mM Ca++. The low value of input resistance suggests that cells are coupled by low-resistance junctions. The resting potential in low Ca++ is quite insensitive to removal of external Na+ or Cl-, but very sensitive to changes in external K+. Cells depolarize by 61 mV for a 10- fold increase in external K+. In high Ca++, membrane potential is less sensitive to an increase in external K+ and is unchanged by increasing K+ from 5 to 25 mM. Depolarization evoked by high Ca++ may be slowed, but is unchanged in amplitude by removal of external Na+ or Cl-. Organic (D600) and inorganic (Co++, Cd++, and Mn++) blockers of the Ca++ channels do not interfere with the electrical response to Ca++ changes. Our results show remarkable parallels to previous observations on the control of parathormone (PTH) release by Ca++. They suggest an association between membrane voltage and secretion that is very unusual: parathyroid cells secrete when fully polarized, and secrete less when depolarized. The extraordinary sensitivity of parathyroid cells to divalent cations leads us to hypothesize the existence in their membranes of a divalent cation receptor that controls membrane permeability (possibly to K+) and PTH secretion.  相似文献   

19.
The electrophysiological properties of the membrane of mouse peritoneal macrophage polykaryons are studied. Slow hyperpolarizations can be elicited by iontophoretic injections of either Ca2+ or Sr2+ into the cytoplasm. The effect of both cations is identical, since: it is invariably triggered by the cation injection, the amplitude is dependent on the K+ gradient, quinine blocks reversibly the response to both cation injections. Mg2+, Ba2+ and Mn2+ did not elicit responses when injected into the cytoplasm. Ca2+ induced slow hyperpolarizations were reversibly blocked by the addition of Ba2+ to the external saline, but were not affected by the presence of external tetraethylammonium chloride. Cells maintained in saline containing high concentrations of Ca2+, Sr2+ or Mn2+ exhibited sustained hyperpolarizations. Quinine blocked the hyperpolarization induced by high Ca2+ or Sr2+, but was ineffective for the case of Mn2+. Cells hyperpolarized by external Mn2+ frequently exhibited nonlinear, voltage-current characteristics. Similar patterns could also be observed in a small fraction (less than 10%) of the cells in control conditions. Current-induced shifts between two stable membrane potentials were seen either in high Ca2+ or normal medium. The great variability of the responses described for this phagocytic membrane is discussed. The evidence supports the assumption that Ca2+ and Sr2+ can induce transient or persistent hyperpolarized states by activating a potassium permeability. External Mn2+ may act in part by reducing impalement-related current leakage from the phagocytic membrane.  相似文献   

20.
Regulation of the fibronectin receptor affinity by divalent cations   总被引:38,自引:0,他引:38  
The cell surface receptor for fibronectin is a heterodimeric membrane protein that recognizes an Arg-Gly-Asp sequence in fibronectin and that requires cations such as Mg2+ or Ca2+ for binding to fibronectin. The divalent cation requirements of this receptor were analyzed by measuring attachment of receptor liposomes to ligand-coated surfaces in the presence of different cations. The most striking effect observed was produced by Mn2+, which increased the binding of the receptor liposomes to fibronectin 2-3-fold over their binding in buffers containing Ca2+ and Mg2+. The binding activities of two related adhesion receptors, the vitronectin receptor and platelet GP IIb-IIIa, were supported but not enhanced by Mn2+. Two observations suggest that Mn2+ can compete with Ca2+ for the same cation-binding sites of the receptor. First, Mn2+ could still enhance fibronectin receptor binding activity even in the presence of 10-fold higher concentrations of Ca2+ or Mg2+. Second, Mn2+ inhibited the binding of radioactive Ca2+ to the alpha subunit of the receptor. The increased fibronectin receptor activity in the presence of Mn2+ appeared to be due to an increase in the affinity of the receptor for the Arg-Gly-Asp sequence because a 110-kDa cell attachment fragment and a synthetic hexapeptide containing the Arg-Gly-Asp sequence inhibited liposome binding more effectively in the presence of Mn2+ than in the presence of Ca2+/Mg2+. The affinity for the peptide was affected more than the affinity for the fragment, indicating that Mn2+ also induces a change in receptor specificity. Increased receptor binding in the presence of Mn2+ was also apparent in affinity chromatography of the fibronectin receptor on the 110-kDa fibronectin fragment; Mn2+ improved the yield of the receptor 4-fold. Mn2+ similarly increased the number of receptor-fibronectin complexes in preparations analyzed by electron microscopy. These results show that exogenous influences can modulate the affinity and specificity with which the fibronectin receptor binds to its ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号