首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li HC  Feng HY  Zhang XP  Liu R  Ma DW  Qin H  Zhou Y  Yu L 《遗传》2010,32(12):1241-1246
为探讨错配修复基因hMLH1和hMSH2单核苷酸多态性(Single nucleotide polymorphism,SNP)与散发性结直肠癌(Sporadic colorectal caner,SCRC)发病易感性之间的关系,文章采用聚合酶链式反应-变性高效液相色谱方法和序列分析技术,检测了天津地区600例SCRC患者和600例健康对照个体hMLH1394G/C、hMSH2943-1G/A、hMSH21917T/G和hMSH22783C/A的基因型频率分布。结果显示:SCRC患者组hMSH22783C/A3种基因型C/C、C/A、A/A频率(90%、9%、1%)与对照组(95%、4.8%、0.2%)相比差异具有统计学意义(χ2=11.91,P0.01)。与hMSH22783C/C基因型相比,C/A和A/A基因型能增加SCRC发病风险(OR值分别为1.77和11.94,95%CI分别为1.03~3.03和1.38~103.2)。多态性位点联合分析显示,SCRC组与对照组单倍型分布差异有统计学意义(χ2=38.38,P0.01);与394G/943-1G/2783C单倍型相比,394G/943-1G/2783A单倍型显著增加SCRC的发病风险(OR=2.18,95%CI:1.40~3.40)。结果提示hMSH22783C/A多态性可能成为预测SCRC发病风险的独立因素,394G/943-1G/2783A单倍型可能增加SCRC的发病风险。  相似文献   

2.
Polymorphisms in DNA repair genes may be associated with differences in DNA repair capacity, thereby influencing the individual susceptibility to smoking-related cancer. We investigated the association of 10 base-excision and nucleotide-excision repair gene polymorphisms (XRCC1 -77 T/C, Arg194Trp, Arg280His and Arg399Gln; APE1 Asp148Glu; OGG1 Ser326Cys; XPA -4 G/A; XPC PAT; XPD Asp312Asn and Lys751Gln) with lung cancer risk in Caucasians. Genotypes were determined by PCR-RFLP and PCR-single base extension assays in 110 lung cancer patients and 110 age- and sex-matched controls, and the results were analyzed using logistic regression adjusted for relevant covariates. A significant association between the APE1 Asp148Glu polymorphism and lung cancer risk was found, with adjusted odds ratios (OR) of 3.38 (p=0.001) for the Asp/Glu genotype and 2.39 (p=0.038) for the Glu/Glu genotype. Gene-smoking interaction analyses revealed a statistically significant interaction between cumulative cigarette smoking and the XRCC1 Arg399Gln and XPD Lys751Gln polymorphisms: these polymorphisms were significantly associated with lung cancer in nonsmokers and light smokers (<25 PY; OR=4.92, p=0.021 for XRCC1 399 Gln/Gln; OR=3.62, p=0.049 for XPD 751 Gln/Gln), but not in heavy smokers (> or =25 PY; OR=0.68, p=0.566 for XRCC1 399 Gln/Gln; OR=0.46, p=0.295 for XPD 751 Gln/Gln). Both the XRCC1 Arg194Trp and Arg280His as well as the OGG1 Ser326Cys heterozygous genotypes were associated with a significantly reduced risk for lung cancer (OR=0.32, p=0.024; OR=0.25, p=0.028; OR=0.51, p=0.033, respectively). No associations with lung cancer risk were found for the XRCC1 -77 T/C, the XPA -4 G/A and the XPC PAT polymorphisms. In conclusion, the APE1 Asp148Glu polymorphism is highly predictive for lung cancer, and cumulative cigarette smoking modifies the associations between the XRCC1 Arg399Gln and the XPD Lys751Gln polymorphisms and lung cancer risk.  相似文献   

3.
The DNA repair pathway mismatch repair (MMR) is responsible for the recognition and correction of DNA biosynthetic errors caused by inaccurate nucleotide incorporation during replication. Faulty MMR leads to failure to address the mispairs or insertion deletion loops (IDLs) left behind by the replicative polymerases and results in increased mutation load at the genome. The realization that defective MMR leads to a hypermutation phenotype and increased risk of tumorigenesis highlights the relevance of this pathway for human disease. The association of MMR defects with increased risk of cancer development was first observed in colorectal cancer patients that carried inactivating germline mutations in MMR genes and the disease was named as hereditary non-polyposis colorectal cancer (HNPCC). Currently, a growing list of cancers is found to be MMR defective and HNPCC has been renamed Lynch syndrome (LS) partly to include the associated risk of developing extra-colonic cancers. In addition, a number of non-hereditary, mostly epigenetic, alterations of MMR genes have been described in sporadic tumors. Besides conferring a strong cancer predisposition, genetic or epigenetic inactivation of MMR genes also renders cells resistant to some chemotherapeutic agents. Therefore, diagnosis of MMR deficiency has important implications for the management of the patients, the surveillance of their relatives in the case of LS and for the choice of treatment. Some of the alterations found in MMR genes have already been well defined and their pathogenicity assessed. Despite this substantial wealth of knowledge, the effects of a large number of alterations remain uncharacterized (variants of uncertain significance, VUSs). The advent of personalized genomics is likely to increase the list of VUSs found in MMR genes and anticipates the need of diagnostic tools for rapid assessment of their pathogenicity. This review describes current tools and future strategies for addressing the relevance of MMR gene alterations in human disease.  相似文献   

4.
The multifactorial process of carcinogenesis involves mutations in oncogenes, or tumor suppressor genes, as well as the influence of environmental etiological factors. Common DNA polymorphisms in low penetrance genes have emerged as genetic factors that seem to modulate an individual’s susceptibility to malignancy. Genetic studies, which lead to a true association, are expected to increase understanding of the pathogenesis of each malignancy and to be a powerful tool for prevention and prognosis in the future. Here, we review the findings of genetic association studies of gene polymorphisms in gynecologic cancer with special reference to glutathione-S-transferase, FAS/CD95 and p53 genes including our recent research results.  相似文献   

5.
Biallelic germline mutations in the base excision repair gene MYH have been shown to predispose to a proportion of multiple colorectal adenomas and cancer. To evaluate the contribution of MYH mutations to non- FAP, non-HNPCC familial colorectal cancer, 84 unrelated Swedish individuals affected with colorectal cancer from such families were screened for germline mutations in the coding sequence of the gene. None of the cases was found to carry any pathogenic sequence change. We then determined the prevalence of the two most common pathogenic MYH mutations found in Caucasians, Y165C and G382D, in 450 Swedish sporadic colorectal cancer cases and 480 Swedish healthy controls. The frequency of both variants in Swedish cases and controls was similar to those previously reported. In addition, we found that previously unknown sequence variations at the position of amino acid 423 (R423Q, R423P, and R423R) appear to occur more frequently in cases than in controls (p = 0.02), a finding that warrants future studies.  相似文献   

6.
The effects of 1,25-dihydroxyvitamin D3 are mediated by binding to a specific intracellular vitamin D receptor (VDR), which has been identified in a variety of tissues. Certain polymorphisms in the VDR gene have been associated with various neoplasms. For this purpose, we studied whether VDR TaqI or FokI genotype are associated with serum 25-hydroxyvitamin D3 in 52 controls and 26 patients with colorectal cancer. Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP), and agarose gel electrophoresis tecniques were used to detect these polymorphisms. We measured 25-hydroxyvitamin D3 serum levels by ELISA. The frequencies of the FF, Ff and ff genotypes were 73.1%, 11.5%, 15.4% in colorectal cancer patients and 38.5%, 59.6%, 1.9% in healthy controls, respectively. We observed the T allele in 50% and 58.7%, and the t allele in 50% and 41.3% of colorectal cancer patients and the control group, respectively. In patients with colorectal cancer who have TT genotype, serum 25-hydroxyvitamin D3 level was lower than those with Tt/tt genotype (p:0.016). The frequency of subjects with TTFf or TtFf genotype in colorectal cancer patients was very low compared with all other genotypes (OR = 0.112; 95%CI 0.030-0.419). These data suggest that VDR TtFf or TTFf genotypes may protect against colorectal carcinogenesis. However, further studies are necessary to confirm these findings.  相似文献   

7.
Genetic instability, provoked by exogenous mutagens, is well linked to initiation of cancer. However, even in unstressed cells, DNA undergoes a plethora of spontaneous alterations provoked by its inherent chemical instability and the intracellular milieu. Base excision repair (BER) is the major cellular pathway responsible for repair of these lesions, and as deficiency in BER activity results in DNA damage it has been proposed that it may trigger the development of sporadic cancers. Nevertheless, experimental evidence for this model remains inconsistent and elusive. Here, we performed a proteomic analysis of BER deficient human cells using stable isotope labelling with amino acids in cell culture (SILAC), and demonstrate that BER deficiency, which induces genetic instability, results in dramatic changes in gene expression, resembling changes found in many cancers. We observed profound alterations in tissue homeostasis, serine biosynthesis, and one-carbon- and amino acid metabolism, all of which have been identified as cancer cell ‘hallmarks’. For the first time, this study describes gene expression changes characteristic for cells deficient in repair of endogenous DNA lesions by BER. These expression changes resemble those observed in cancer cells, suggesting that genetically unstable BER deficient cells may be a source of pre-cancerous cells.  相似文献   

8.
9.
Yu Y  Wang W  Zhai S  Dang S  Sun M 《Molecular biology reports》2012,39(8):8457-8463
A number of case-control studies were conducted to investigate the association of IL6 gene polymorphisms with colorectal cancer (CRC). However, the results were not always consistent. We performed a systematic review and meta-analysis to examine the association between the IL6 gene polymorphisms and CRC. Data were collected from the following electronic databases: PubMed, EMBASE, Web of Science, BIOSIS Previews, HuGENet, and Chinese Biomedical Literature Database, with the last report up to July 2011. A total of 17 studies involving 4 SNPs were included (16 for rs1800795, 2 for rs1800796, 2 for rs1800797, and 1 for rs13306435). Overall, no significant association of these polymorphisms with CRC was found in heterozygote comparisons as well as homozygote comparison, dominant genetic model and recessive model. In subgroup analysis, among studies using population-based controls, fulfilling Hardy-Weinberg equilibrium, or using Taqman genotyping method, we did not find any significant association. However, the rs1800795 C allele was significantly associated with reduced risk for CRC among persons who regularly or currently took NSAIDs (four studies, OR = 0.750; 95 % CI, 0.64-0.88; P = 0.474 for heterogeneity test), and with increased risk for CRC among persons who drank (one study, OR = 1.97; 95 % CI, 1.32-2.94). Individuals with the rs1800795 C allele in the IL6 gene have a significantly lower risk of CRC, but in the setting of NSAIDs use. Further studies are merited to assess the association between the IL6 gene polymorphisms and CRC risk among persons who take NSAIDs, drink or smoke, etc.  相似文献   

10.
The autosomal recessive polycystic kidney disease (ARPKD) gene, PKHD1, has been implicated in the genesis or growth of colorectal adenocarcinoma, as a high level of somatic mutations was found in colorectal tumor tissue. To determine whether carriers of a single PKHD1 mutation are at increased risk of colorectal carcinoma, we assessed the prevalence of the commonest European mutation, T36M. First, we assayed a European cohort of ARPKD patients and found T36M was responsible for 13.1% of mutations. We then investigated two European cohorts with colorectal adenocarcinoma versus two control cohorts of similar age and gender. Screening for the most common PKHD1 mutation, T36M, we detected 15:3,603 (0.42%) controls versus 1:3,767 (0.027%) colorectal cancer individuals, indicating that heterozygous PKHD1 mutations are not a risk factor and are protective (p=0.0002). We also show that the carriage rate for PKHD1 mutations in the European population is higher than previous accepted at 3.2% (1:31 genomes).  相似文献   

11.
Familial clustering of colorectal cancer occurs in 15-20% of cases, however recognized cancer syndromes explain only a small fraction of this disease. Thus, the genetic basis for the majority of hereditary colorectal cancer remains unknown. EPHB2 has recently been implicated as a candidate tumor suppressor gene in colorectal cancer. The aim of this study was to evaluate the contribution of EPHB2 to hereditary colorectal cancer. We screened for germline EPHB2 sequence variants in 116 population-based familial colorectal cancer cases by DNA sequencing. We then estimated the population frequencies and characterized the biological activities of the EPHB2 variants identified. Three novel nonsynonymous missense alterations were detected. Two of these variants (A438T and G787R) result in significant residue changes, while the third leads to a conservative substitution in the carboxy-terminal SAM domain (V945I). The former two variants were found once in the 116 cases, while the V945I variant was present in 2 cases. Genotyping of additional patients with colorectal cancer and control subjects revealed that A438T and G787R represent rare EPHB2 alleles. In vitro functional studies show that the G787R substitution, located in the kinase domain, causes impaired receptor kinase activity and is therefore pathogenic, whereas the A438T variant retains its receptor function and likely represents a neutral polymorphism. Tumor tissue from the G787R variant case manifested loss of heterozygosity, with loss of the wild-type allele, supporting a tumor suppressor role for EPHB2 in rare colorectal cancer cases. Rare germline EPHB2 variants may contribute to a small fraction of hereditary colorectal cancer.  相似文献   

12.
Rowley PT 《Genetic testing》2004,8(4):421-430
The principal Mendelian disorders predisposing to colorectal cancer are familial adenomatous polyposis (FAP) and hereditary nonpolyposis colorectal cancer (HNPCC). FAP is caused by mutations in the adenomatous polyposis coli (APC) gene. HNPCC is caused by a mutation in one of at least five mismatch repair genes. It is important to identify individuals with these conditions because colon cancer will occur in at least 80% and onset is earlier than in the general population. Potential benefits of identification include improved compliance with recommended surveillance, early detection of polyps, reduction in cancer mortality, and reassurance for relatives found to be negative with attendant savings in the time and expense of surveillance. For classic FAP, the large number of polyps readily identifies affected persons. For HNPCC, identification of individuals meriting DNA sequencing requires either recognition of a suspect family history or finding high microsatellite instability in a tumor. Individuals accepting the offer of genetic counseling and DNA testing often have more cancers in their family, are motivated to inform relatives, have a larger social network, and have more confidence in their coping ability. Individuals who decline are often concerned about their own or their family's emotional reaction or fear discrimination.  相似文献   

13.
Mismatch-repair systems have been identified in organisms ranging from Escherichia coli to humans. They can repair almost all DNA base pair mismatches as well as small insertion/deletion mismatches. Molecular and biochemical analyses have shown that the core components of eukaryotic mismatch-repair systems are highly homologous to their bacterial counterparts. In humans, defects in four mismatch-repair genes have been linked both to hereditary non-polyposis colorectal cancer and to spontaneous cancers that exhibit rearrangements in DNA containing simple repeat sequences.  相似文献   

14.
Mismatch repair defects in cancer   总被引:23,自引:0,他引:23  
Post-replicative mismatch repair in humans utilises the hMSH2, hMSH6, hMSH3, hMLH1 and hPMS2 genes and possibly the newly identified hMLH3 gene. Recently, a link has been established between hMSH6 mutations and 'atypical' hereditary non-polyposis colon cancer (HNPCC) with an increased incidence of endometrial cancers. To satisfy the need for a diagnostic test capable of differentiating between pathogenic mutations and polymorphisms, several functional assays that fulfil these criteria have been described. These should allow for better diagnosis of HNPCC.  相似文献   

15.
Hereditary non-polyposis colorectal carcinoma accounts for 5–13% of all colorectal carcinomas and is inherited in a dominant fashion. Two different forms can be distinguished. Type I is restricted to colorectal cancers, whereas type II patients acquire acolorectal, endometrial, gastric, small intestinal and transitional carcinomas of the upper urinary tract. Germline mutations in the human mismatch repair genes (hMSH2, hMSH6, hMLH1, hPMS2) account for the majority of hereditary non-polyposis colorectal carcinoma. As a result of the mismatch repair deficiency, replication errors are not repaired, resulting in a mutator phenotype. Simple repetitive sequences (microsatellites) are especially prone to replication errors and analysis of their stability combined with immunohistochemical analysis of mismatch repair protein expression provides a rapid diagnostic strategy. For patients either (1) fulfilling the Amsterdam criteria for HNPCC, (2) with synchronous or metachronous hereditary non-polyposis colorectal carcinoma-related tumors, (3) with hereditary non-polyposis colorectal carcinoma-related tumors before the age of 45 and/or (4) with right sided CRC and mucinous, solid, or cribriform growth patterns, screening for mismatch repair deficiencies should be performed. The identification of colorectal cancers displaying a mutator phenotype has implications for both treatment and prognosis.  相似文献   

16.
DNA mismatch repair is required for correcting any mismatches that are created during replication and recombination, and a defective mismatch repair system contributes to DNA damage-induced growth arrest. The colorectal cancer cell line HCT116 is known to have a mutation in the hMLH1 mismatch repair gene resulting in microsatellite instability and defective mismatch repair. Honokiol is a biphenolic compound that has been used in traditional Chinese medicine for treating various ailments including cancer. This study was designed to test the hypothesis that honokiol enhances the radiosensitivity of cancer cells with mismatch repair defect (HCT116) compared with those that are mismatch repair proficient (HCT116-CH3). We first determined that the combination of honokiol and γ-irradiation treatment resulted in dose-dependent inhibition of proliferation and colony formation in both cell lines. However, the effects were more pronounced in HCT116 cells. Similarly, the combination induced higher levels of apoptosis (caspase 3 activation, Bax to Bcl2 ratio) in the HCT116 cells compared with HCT116-CH3 cells. Cell cycle analyses revealed higher levels of dead cells in HCT116 cells. The combination treatment reduced expression of cyclin A1 and D1 and increased phosphorylated p53 in both cell lines, although there were significantly lower amounts of phosphorylated p53 in the HCT116-CH3 cells, suggesting that high levels of hMLH1 reduce radiosensitivity. These data demonstrate that honokiol is highly effective in radiosensitizing colorectal cancer cells, especially those with a mismatch repair defect.  相似文献   

17.
Genetic variations in excision repair cross-complementing group 5 (ERCC5) might influence individual vulnerability to gastric cancer (GC). We investigated effects of two putatively functional polymorphisms in ERCC5 promoter region, rs751402 (+ 25A > G) and rs2296147 (+ 202C > T), and their potential interaction with environment factors on the risk of developing GC. We performed a sex- and age-matched case–control design with 400 GC cases and 400 healthy controls for rs751402 and 403 GC cases and 403 healthy controls for rs2296147. Our results showed that rs751402 were associated with increased GC risk (AA vs. GG: OR = 1.99, 95%CI: 1.20–3.31, P = 0.008; AG + AA vs. GG: OR = 1.41, 95%CI: 1.07–1.86, P = 0.016), and rs2296147 was also associated with increased cancer risk (CC vs. TT: OR = 2.17, 95%CI: 1.04–4.54, P = 0.039; CC vs. CT + TT: OR = 2.26, 95%CI: 1.09–4.69, P = 0.028). In a stratified analysis, rs751402 (AG + AA vs. GG: OR = 1.44, 95%CI: 1.02–2.02, P = 0.037) and rs2296147 (CC vs. CT + TT: OR = 2.33, 95%CI: 1.00–5.44, P = 0.050) were also found to be associated with diffuse-type GC risk. The most common GT haplotype (rs751402–rs2296147) showed protective effect for GC development (OR = 0.73, 95%CI: 0.58–0.91, P = 0.005), and especially for diffuse-type GC (OR = 0.68, 95%CI: 0.52–0.90, P = 0.006). Genetic effects on increased GC risk seemed to be enhanced by Helicobacter pylori infection, smoking and alcohol drinking, with corresponding adjusted ORs of 4.57, 2.42 and 2.50 for the rs751402 AG/AA variants, and of 5.32, 3.20 and 6.87 for the rs2296147 CC variant, but their interaction effects on GC risk didn't reach statistically significance. ERCC5 rs751402 and rs2296147 polymorphisms might alter the risk of developing GC and especially the diffuse subtype. Further validation of our results in larger populations and additional studies evaluating their function impact are required.  相似文献   

18.
Incorporation of uracil during DNA synthesis is among the most common types of endogenously generated DNA damage. Depletion of Caenorhabditis elegans dUTPase by RNA interference allowed us to study the role of DNA damage response (DDR) pathways when responding to high levels of uracil in DNA. dUTPase depletion compromised development, caused embryonic lethality and led to activation of cell-cycle arrest and apoptosis. These phenotypes manifested as a result of processing misincorporated uracil by the uracil-DNA glycosylase UNG-1. Strikingly, abrogation of the clk-2 checkpoint gene rescued lethality and developmental defects, and eliminated cell-cycle arrest and apoptosis after dUTPase depletion. These data show a genetic interaction between UNG-1 and activation of the CLK-2 DDR pathway after uracil incorporation into DNA. Our results indicate that persistent repair intermediates and/or single-stranded DNA formed during repair of misincorporated uracil are tolerated in the absence of the CLK-2 checkpoint in C. elegans.  相似文献   

19.
DNA mismatch repair defects: role in colorectal carcinogenesis   总被引:25,自引:0,他引:25  
Jacob S  Praz F 《Biochimie》2002,84(1):27-47
The inactivation of the DNA mismah repair (MMR) system, which is associated with the predisposition to the hereditary non-polyposis colorectal cancer (HNPCC), has also been documented in nearly 20% of the sporadic colorectal cancers. These tumors are characterized by a high frequency of microsatellite instability (MSI(+) phenotype), resulting from the accumulation of small insertions or deletions that frequently arise during replication of these short repeated sequences. A germline mutation of one of the two major MMR genes (hMSH2 or hMLH1) is found in half to two-thirds of the patients with HNPCC, whereas in sporadic cases hypermethylation of the hMLH1 promoter is the major cause of the MMR defect. Germline mutations in hMSH6 are rare and rather confer predisposition to late-onset familial colorectal cancer, and frequent extracolonic tumors. Yet, the genetic background of a number of HNPCC patients remains unexplained, indicating that other genes participate in MMR and play important roles in cancer susceptibility. The tumor-suppressor genes that are potential targets for the MSI-driven mutations because they contain hypermutable repeated sequences are likely to contribute to the etiology and tissue specificity of the MSI-associated carcinogenesis. Because the prognosis and the chemosensitivity of the MSI(+) colorectal tumors differ from those without instability, the determination of the MSI phenotype is expected to improve the clinical management of patients. This review gives an overview of various aspects of the biochemistry and genetics of the DNA mismah repair system, with particular emphasis in its role in colorectal carcinogenesis.  相似文献   

20.
DNA repair defects in colon cancer   总被引:6,自引:0,他引:6  
Defects in DNA-repair pathways lead to an accumulation of mutations in genomic DNA that result from non-repair or mis-repair of modifications introduced into the DNA by endogenous or exogenous agents or by the malfunction of DNA metabolic pathways. Until recently, only two repair pathways, postreplicative mismatch repair and nucleotide excision repair, have been linked to cancer in mammals, but these have been joined in recent months also by the damage-reversal and base-excision-repair processes, which have been shown to be inactivated, either through mutation or epigenetically, in human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号